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Abstract

This paper presents GridNet, a new Convolutional Neural Network (CNN) architecture
for semantic image segmentation (full scene labelling). Classical neural networks are
implemented as one stream from the input to the output with subsampling operators
applied in the stream in order to reduce the feature maps size and to increase the receptive
field for the final prediction. However, for semantic image segmentation, where the task
consists in providing a semantic class to each pixel of an image, feature maps reduction
is harmful because it leads to a resolution loss in the output prediction. To tackle this
problem, our GridNet follows a grid pattern allowing multiple interconnected streams to
work at different resolutions. We show that our network generalizes many well known
networks such as conv-deconv, residual or U-Net networks. GridNet is trained from
scratch and achieves competitive results on the Cityscapes dataset.

1 Introduction
Convolutional Neural Networks (CNN) have become tremendously popular for a huge num-
ber of applications [1, 14, 18] since the success of AlexNet [8] in 2012. AlexNet, VGG16
[20] and ResNet [6], are some of the famous architectures designed for image classification
which have shown incredible results. While image classification aims at predicting a single
class per image (presence or not of an object in an image) we tackle the problem of full scene
labelling. Full scene labelling or semantic segmentation from RGB images aims at segment-
ing an image into semantically meaningful regions, i.e. at providing a class label for each
pixel of an image. Based on the success of classical CNN, new networks designed especially
for semantic segmentation, named fully convolutional networks have been developed. The
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main advantage of these networks is that they produce 2D matrices as output, allowing the
network to label an entire image directly. Because they are fully convolutional, they can be
fed with images of various sizes.

In order to construct fully convolutional networks, two strategies have been developed:
conv-deconv networks and dilated convolution-based networks (see Section 2 for more de-
tails). Conv-deconv networks are composed of two parts: the first one is a classical con-
volutional network with subsampling operations which decrease the feature maps sizes and
the second part is a deconvolutional network with upsampling operations which increase
the feature maps sizes back to the original input resolution. Dilated convolution-based net-
works [23] do not use subsampling operations but a "à trous" algorithm on dilated convolu-
tions to increase the receptive field of the network.

If increasing the depth of the network has often gone hand in hand with increasing the
performance on many data rich applications, it has also been observed that the deeper the
network, the more difficult its training is, due to vanishing gradient problems during the
back-propagation steps. Residual networks [6] (ResNet) solve this problem by using identity
residual connections to allow the gradient to back-propagate more easily. As a consequence,
they are often faster to train than classical neural networks. The residual connections are
thus now commonly used in all new architectures.

Lots of pre-trained (usually on Imagenet [3]) ResNet are available for the community.
They can be fine-tuned for a new task. However, the structure of a pre-trained network
cannot be changed radically which is a problem when a new architecture, such as ours,
comes out.

In this paper we present GridNet, a new architecture especially designed for full scene
labelling. GridNet is composed of multiple paths from the input image to the output predic-
tion, that we call streams, working at different image resolutions. High resolution streams
allow the network to give an accurate prediction in combination with low resolution streams
which carry more context thanks to bigger receptive fields. The streams are interconnected
with convolutional and deconvolutional units to form the columns of our grid. With these
connections, information from low and high resolutions can be shared.

In Section 2, we review the network architectures used for full scene labelling from which
GridNet takes inspiration and we show how our approach generalises existing methods. In
Section 3, we present the core components of the proposed GridNet architecture. Finally,
Section 4 shows results on the Cityscapes dataset.

2 Related Work
In traditional CNN, convolutional and non-linearity computational units are alternated with
subsampling operations. The purpose of subsampling is to increase the network receptive
field while decreasing the feature maps sizes. A big receptive field is necessary for the net-
work to get bigger context for the final prediction while the feature maps size reduction is a
beneficial side effect allowing to increase the number of feature maps without overloading
the (GPU) memory. In the case of semantic segmentation where a full-resolution predic-
tion is expected, the subsampling operators are detrimental as they decrease the final output
resolution.

To get a prediction at the same resolution than the input image, Long, Shelhamer et al.
proposed recently Fully Convolutional Networks (FCN) [19] by adding a deconvolution part
after a classical convolutional neural network. The idea is that, after decreasing in the con-
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volutional network, a deconvolution part, using upsampling operator and deconvolution (or
fractionally-strided convolution) increases the feature maps size back to the input resolution.
Noh et al. [13] extended this idea by using maximum unpooling upsampling operators in
the deconvolution part. The deconvolution network is the symmetric of the convolution one
and each maximum pooling operation in the convolution is linked to a maximum unpooling
one in the deconvolution by sharing the pooling positions. Ronneberger et al. [16] are going
even further with their U-Net by concatenating the feature maps obtained in the convolu-
tion part with feature maps of the deconvolution part to allow a better reconstruction of the
segmented image. Finally, Lin et al. [9] used the same idea of U-Net but instead of con-
catenating the feature maps directly, they used a refineNet unit, containing residuals units,
multi-resolutions fusions and chained residual pooling, allowing the network to learn a better
semantic transformation.

All of these networks are based on the idea that subsampling is important to increase
the receptive field and try to override the side effect of resolution loss with deconvolutionnal
technics. In our GridNet, composed of multiple streams working at different feature map
sizes, we use the subsampling and upsampling operators as connectors between streams
allowing the network to take decisions at any resolution. The upsampling operators are not
used to correct this side effect but to allow multi-scale decisions in the network. In a recent
work, Newell et al. [12] stacked many U-Net showing that successive steps of subsampling
and upsampling are important to improve the performance of the network. This idea is
improved in our GridNet with the strong connections between streams.

Yu et al. [23] studied another approach to deal with the side effect of subsampling. They
show that, for a semantic labelling task, the pooling operations are harmful. Therefore, they
remove the subsampling operators to keep the feature maps at the same input resolution.
Without subsampling, the receptive field is very small so they use dilated convolution to
increase it. Contrarily to classical convolutions, where the convolution mask is applied onto
neighbourhood pixels, dilated convolutions have a dilatation parameter to apply the mask
to more and more apart pixels. In their work Wu et al. [22] adapt the popular ResNet [6]
pre-trained on ImageNet [3] for semantic segmentation. ResNet [6] are very deep networks
trained with residual connections allowing the gradient to propagate easily to the first layers
of the network correcting the vanishing gradient problems. Wu et al. only keep the first layers
of ResNet and change the classical convolutions into dilated ones. For memory problems,
they also keep 3 subsampling operators so the final output prediction is at 1/8 of the input
size, and then use linear interpolations to retrieve the input resolution. In [24], Zhao et
al. replace the linear interpolation by a Pyramid Pooling module. The pyramid pooling
module is composed of multiple pooling units of different factors, followed by convolutions
and upsample operators to retrieve the original size. All the feature maps obtained with
different pooling sizes are then concatenated before a final convolution operator that gives
the prediction. When Zhao et al. add a module at the end of the network to increase the
feature maps size and allow a multi-scale decision, we incorporate this multi-scale property
directly into our network with the different streams.

In their work, He et al. [5] study the importance of residual units and give detailed results
on the different strategies to use residual connections (whether batch normalisation should be
used before the convolutions, whether linearity operator should be used after the additions,
etc.). GridNet also benefits from these residuals units.

With their Full Resolution Residual Network (FRRN) [15], Pohlen et al. combine a conv-
deconv network with a residual one. They also use different streams but only two of them:
one for the residual network linked with upsampling and subsampling operations, and one for
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Input Prediction
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Figure 1: GridNet: each green unit is a residual bloc, which does not change the input map
resolution nor the number of feature maps. Red blocks are convolutional units with resolu-
tion loss (subsampling) and twice the number of feature maps. Yellow units are deconvolu-
tional blocks which increase the resolution (upsampling) and divide by two the number of
feature maps. A zoom on the red square part with a detailed compositions of each blocks is
shown in Figure 2

the conv-deconv network which does not have any residual connections. GridNet subsumes
FRNN and can be seen as a generalisation of this network.

The idea of networks with multiple paths is not new [7, 17, 26]. Zhou et al. studied a
face parsing task with interlinked convolutional neural networks [26]. An input image is used
at different resolutions by multiple CNN whose feature maps are interconnected. Huand et
al. [7] use the same architecture but make it dynamically adaptable to computational resource
limits at test time. Recently, Saxena et al. have presented Convolutional Neural Fabrics [17]
which structure forming a grid is very similar to ours and which also use the full multi-
scale grid to make predictions. However, to better scale to full resolution images and large
size datasets, we make use of residual units and we introduce a new dropout technique to
better train our grids. Besides, we constrain our network, similarly to conv-deconv ones, to
have down-sampling layers, followed by upsampling blocks, where [17] use up and down
sampling across all network layers.

3 GridNet
The computation graph of GridNet is organised into a two-dimensional grid pattern, as shown
in Figure 1. Each feature map Xi, j in the grid is indexed by line i and column j. Maps are
connected through computation layers. Information enters the model as input to the first
block of line 0 and leaves it as output from the last block of line 0. Between these two
points, information can flow in several paths, either directly between these entry/exit points
in a straight line or in longer paths which also involve lines with indexes 6= 0.

Information is processed in layers which connect blocks Xi, j. The main motivation of our
model is the difference between layers connecting feature maps horizontally or vertically:
We call horizontal connections “streams”. Streams are fully convolutional and keep feature
map sizes constant. They are also residual, i.e. they predict differences to their input [6].
Stream blocks are green in Figure 1. Vertical computing layers are also convolutional, but
they change the size of the feature maps: according to the position in the grid, spatial sizes are
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Figure 2: Detailed schema of a GridBlock.
Green units are residual units keeping fea-
ture map dimensions constant between in-
puts and outputs. Red units are convolu-
tional + subsampling and increase the fea-
ture dimensions. Yellow units are deconvo-
lutional + upsampling and decrease the fea-
ture dimensions (back to the original one to
allow the addition). Trapeziums illustrate
the upsampling/subsampling operations ob-
tained with strided convolutions. BN=Batch
Normalization.

reduced by subsampling or increased by upsampling, respectively shown as red and yellow
blocks in Figure 1. Vertical connections are NOT residual. The main idea behind this concept
is an adaptive way to compute how information flows in the computation graph. Subsampling
and upsampling are important operations in resolution preserving networks, which allow to
increase the size of the receptive fields significantly without increasing filter sizes, which
would require a higher number of parameters1. On the other hand, the lost resolution needs
to be generated again through learned upsampling layers. In our network, information can
flow on several parallel paths, some of which preserve the original resolution (horizontal
only paths) and some of which pass through down+up sampling operations. In the lines
of the skip-connections in U-networks [16], we conjecture that the former are better suited
for details, whereas high-level semantic information will require paths involving vertical
connections.

Following the widespread practise, each subsampling unit reduces feature map size by
a factor 2 and multiplies the number of feature maps by 2. More formally, if the stream Xi
takes as input a tensor of dimension (Fi × Wi × Hi) where Fi is the number of feature
maps and Wi, Hi are respectively the width and height of the map, then the stream Xi+1 is of
dimension (Fi+1 × Wi+1 × Hi+1) = (2Fi × Wi/2 × Hi/2).

Apart from border blocks, each feature map Xi, j in the grid is the result of two dif-
ferent computations: one horizontal residual computation processing data from Xi, j−1 and
one vertical computation processing data from Xi−1, j or Xi+1, j depending if the column is a
subsampling or upsampling one. Several choices can be taken here, including concatenat-
ing features, summing, or learning a fusion. We opted for summing, a choice which keeps
model capacity low and blends well with the residual nature of the grid streams. The details
are given as follows: let ΘRes(.), ΘSub(.) and ΘU p(.) be respectively the mapping operation
for the residual unit (green block in Figure 1), subsampling unit (red block) and upsampling
unit (yellow block). Each mapping takes as input a feature tensor X and some trainable
parameters θ .

If the column j is a subsampling column then:

Xi, j = Xi, j−1 +Θ
Res(Xi, j−1,θ

Res
i, j ) + Θ

Sub(Xi−1, j,θ
Sub
i, j )

1An alternative would be to use dilated convolutions with the à trous algorithm [23].
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Otherwise, if the column j is an upsampling one then:

Xi, j = Xi, j−1 +Θ
Res(Xi, j−1,θ

Res
i, j ) + Θ

U p(Xi+1, j,θ
U p
i, j )

Border blocks are simplified in a natural way. An alternative to summing is feature map
concatenation, which increases the capacity and expressive power of the network. Our ex-
periments on this version showed that it is much more difficult to train, especially since it is
trained from scratch.

The capacity of a GridNet is defined by three hyper parameters, NS, NCs and NCu respec-
tively the number of residual streams, the number of subsampling columns and the num-
ber of upsampling columns. Inspired by the symmetric conv-deconv networks [19], we set
NCs=NCu in our experiments, but this constraint can be lifted.

Input Prediction

U-Net Full-Resolution residual
Network

Fully convolutional network

Figure 3: GridNets generalize several classical resolution preserving neural models such
as conv-deconv networks [19] (blue connections), U-networks [16] (green connections) and
Full Resolution Residual Networks (FRRN) [15] (yellow connections).

GridNet generalize several classical resolution preserving neural models, as shown in
Figure 3. Standard models can be obtained by removing connections between feature maps
in the grid. If we keep the connections shown in blue in Figure 3, we obtain conv-deconv
networks [19] (a single direct path). U-networks [16] (shown by green connections) add skip-
connections between down-sampling and corresponding up-sampling parts, and Full Reso-
lution Residual Networks (FRRN) [15] (shown as yellow connections) add a more complex
structure.

3.1 Blockwise dropout for GridNets

A side effect of our 2D grid topology with input and output both situated on line 0 is that
the path from the input to the output is shorter across the high resolution stream (blue path
in figure 4) than with the low resolution ones (e.g. the orange path in Figure 4). Longer
paths in deep networks may fall into the well known problems of vanishing gradients. As a
consequence, paths involving lower resolution streams take more time to converge and are
generally more difficult to train. To force the network to use all of its available streams,
we employed a technique inspired by dropout, which we call total dropout. It consists in
randomly dropping residual streams and setting the corresponding residual mappings to zero.
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Input Prediction

Figure 4: The blue path only using the high resolution stream is shorter than the orange path
which also uses low resolution streams. To force the network to use all streams we randomly
drop streams during training, indicated by red crosses.

More formally, let ri, j = Bernoulli(p) be a random variable taken from a Bernoulli dis-
tribution, which is equal to 1 with a probability p and 0 otherwise. Then, the feature map
computation becomes: Xi, j = Xi, j−1 + ri, j(Θ

Res(Xi, j−1,θ
Res
i, j ))+Θ{Sub;U p}(Xi±1, j,θ

{Sub;U p}
i, j )

3.2 Parameter count and memory footprint for GridNets

In neural networks, the memory footprint depends on both the number of activations and
the number of trainable parameters. In many architectures, these two numbers are highly
correlated. While it is still the case in a GridNet, the grid structure provides a finer control
over these numbers. Let us consider a GridNet built following the principles from Section 3:
with NS streams, NCs subsampling columns and NCu upsampling columns, with the first
stream having F0 feature maps at resolution W0×H0, and the others streams obtained by
downsampling by 2×2 and increasing the feature maps by 2. From the exact computation of
the number of parameters nbparam and the number of activation values nbact , we can derive
meaningful approximations:

nbparam ≈ 18×22∗(Ns−1) F2
0 (2.5NCs +NCu−2)

This approximation illustrates that the number of parameters is most impacted by the
number of streams NS, followed by the number of feature maps (controlled by F0), and only
then, by the number of columns.

nbactiv ≈ 6H0 W0 F0 (4NCu +3NCs−2)

This shows that the number of activations mainly depends on the first stream size (width,
height and number of feature maps) and grows linearly with the number of columns. In
practice, the total memory footprint of a network at training time depends not only on its
number of parameters and on the number of activations, but also on both the choice of the
optimizer and on the mini-batch size. The gradient computed by the optimizer requires the
same memory space as the parameters themselves and the optimizer may also keep statistics
on the parameters and the gradients (as does Adam). The mini-batch size mechanically
increases the memory footprint as the activations of multiple inputs need to be computed
and stored in parallel.
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4 Experimental results
We evaluated the method on the Cityscapes dataset, which consists in high resolution (1024×
2048 pixels) images taken from a car driving across 50 different cities in Germany. 2975
training images and 500 test images have been fully labelled with 30 semantic classes. How-
ever, only 19 classes are taken into account for the automatic evaluation on the Cityscapes
website 2, therefore we trained GridNet on these classes only. Semantic classes are also
grouped into 8 semantic categories. The ground truth is not provided for the test set but an
online evaluation is available on the Cityscapes website. The dataset contains also 19998
images with coarse (polygonal) annotations but, we chose not to use them for training be-
cause they increase the unbalance ratio of the label distribution which is harmful to our
performance measures.

The Cityscapes performance are evaluated based on the Jaccard Index, commonly known
as the Pascal VOC Intersection-over-Union (IoU) metric. The IoU is given by T P

T P+FP+FN
where T P, FP and FN are the number of True Positive, False Positive and False Negative
classified pixels. IoU is biased toward object instances that cover a large image area so, an
instance-level intersection-over-union metric iIoU is also used. The iIoU is computed by
weighting the contribution of each pixel by the ratio of the class average instance size, to
the size of the respective ground truth instance. Finally, they give results accuracy for two
semantic granularities (class and category) with the weighted and not weighted IoU metric
leading to 4 measurements.

We tested GridNet with 5 streams with the following feature map dimensions 16, 32, 64,
128 and 256. GridNet is composed of 3 subsampling columns (convolutional parts) followed
by 3 upsampling columns (deconvolutional parts). This "5 streams / 6 columns" configura-
tion provides a good tradeoff between memory consumption and number of parameters: the
network is deep enough to have a good modelling capacity with few enough parameters to
avoid overfitting phenomena. This configuration allows us to directly fit in our GPU memory
a batch of 4 400× 400 input images. As a consequence, the lowest resolution stream deals
with feature maps of size (256 × 25 × 25).

We crop patches of random sizes (between 400× 400 and 1024× 1024) at random lo-
cations in the high resolution input images (1024× 2048). All the patches are resized to
400×400 and fed to the network. For data augmentation, we also apply random horizontal
flipping. We do not apply any post-processing for the images but we added a batch normal-
ization layer at the input of the grid. We use the classical cross-entropy loss function to train
our network using the Adam optimizer with a learning rate of 0.01, a learning rate decay of
5× 10−6, β1 = 0.9, β2 = 0.999 and an ε = 1× 10−8. After 800 epochs, the learning rate
is decreased to 0.001. We stopped our experiments after 10 days leading to approximately
1900 training epochs. For testing we fed the network with images at resolutions 1

1 ,
1

1.5 ,
1
2 ,

1
2.5

and used a majority vote over the difference scale for the final prediction.

4.1 Discussion

We conducted a study to evaluate the effects of each of our architectural components and
design choices. The results are presented in Table 1 and 2.

In Table 1, Sum† is the results given by the network presented in section 3 with total
dropout operators (see section 3.1). Total dropout proved to be a key design choice, which

2https://www.cityscapes-dataset.com/
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Performance measures
Fusion h-residual v-residual Total dropout IoU class iIoU class IoU categ. iIoU categ.
Sum 3 60.2 34.5 83.9 67.3
Sum 3 57.2 35.6 83.1 68.4
Sum† 3 3 65.0 43.2 85.6 70.1
Sum 3 3 57.6 36.8 86.0 72.6
Sum 3 3 3 35.6 23.0 62.1 60.3
Concat 3 53.9 34.0 82.2 65.2

Table 1: Results of different GridNet variants on the Cityscapes validation set: "Fusion"
indicates how feature maps are fused between horizontal and vertical blocks. The second
and third columns indicate whether horizontal (resp. vertical) computations are residual. †
stands for the final proposed method.

Performance measures
Nb columns Nb Features maps per streams IoU class iIoU class IoU categ. iIoU categ.

8 {8, 16, 32, 64, 128} 57.5 40.0 83.8 71.8
16 {8, 16, 32, 64, 128} 56.3 38.6 82.3 70.2
8 {8, 16, 32, 64, 128, 256, 512} 59.2 41.1 83.5 71.0

12 {8, 16, 32, 64, 128, 256, 512} 59.5 41.7 84.0 70.9

Table 2: Results of the impact of different number of columns and streams. No data aug-
mentation (only one scale) was use in testing.

lead to significative improvement in accuracy. We also provide results of a fully residual ver-
sion of GridNet, where identity connections are added in both horizontal and vertical com-
puting connections (whereas the proposed method is residual in horizontal streams only).
Full residuality did not prove to be an advantage. Total dropout did not solve learning diffi-
culties and further impacted training stability negatively. Finally, concatenation of horizontal
and vertical streams, instead of summing, did also not prove to be an optimal choice. We
conjecture that the high capacity of the network did not prove to be an advantage.

Table 2 presents the impact of the number of columns and streams used in GridNet. We
started with a GridNet composed of 8 columns (4 subsampling followed by 4 upsampling)
and 5 streams (results using networks with other configurations of the subsampling/upsampling
units are presented in Table 3). Instead of using 16 feature maps in the first stream, we used
only 8 to reduce the memory consumption and allow us to increase the number of columns
and/or streams while still coping with our hardware constraints. Networks are trained until
convergence and the tests are performed without data augmentation (only one scale and no
majority vote). From Table 2, we can see that increasing the number of streams increases the
performance (from 57.5 to 59.2 for the IoU class accuracy), but increasing only the number
of columns (from 8 to 16) do not improve the accuracy while increasing the training com-
plexity. A low number of streams limits the abstraction power of the network. Increasing
both the number of streams and of the columns (up to the hardware capacity), improves all
the performance measures.

4.2 Qualitative and Quantitative Results

Figure 5 shows segmentation results of some sample images. In Table 3, we compare the
results of our GridNet compared to state-of-the-art results taken from the official Cityscapes
website. We restrict the comparison to methods that the same input information as us (no
coarse annotations, no stereo inputs). Our network gives results comparable with the state-
of-the-art networks, in particular, the FRNN network presented in Section 2.
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Figure 5: Semantic segmentation results obtained with GridNet. On the left, he input image,
in the middle the ground truth and on the right, our results.

All other results on the Cityscapes website have been obtained by networks pre-trained
for classification using the Imagenet dataset. Nevertheless, among the 9 other reported re-
sults, only one of them (RefineNet) give slightly better results than our network.

Name Trained Performance measures
from scratch IoU class iIoU class IoU categ. iIoU categ.

FRRN - [15] 3 71.8 45.5 88.9 75.1
GridNet 3 69.45 44.06 87.85 71.11

GridNet - Alternative 3 66.8 38.24 86.55 68.98
RefineNet - [9] 7 73.6 47.2 87.9 70.6
Lin et al.- [10] 7 71.6 51.7 87.3 74.1

LRR - [4] 7 69.7 48 88.2 74.7
Yu et al.- [23] 7 67.1 42 86.5 71.1

DPN - [11] 7 66.8 39.1 86 69.1
FCN - [19] 7 65.3 41.7 85.7 70.1

Chen et al.- [2] 7 63.1 34.5 81.2 58.7
Szegedy et al.- [21] 7 63 38.6 85.8 69.8
Zheng et al.- [25] 7 62.5 34.4 82.7 66

Table 3: Results on the Cityscapes dataset benchmark. We only report published papers
which use the same data as us (no coarse annotations, no stereo inputs). "GridNet - Alterna-
tive" is another structure closer to [17] where up and down sampling columns are interleaved.

5 Conclusion
We have introduced a novel network architecture specifically designed for semantic segmen-
tation. The model generalizes a wide range of existing neural models, like conv-deconv
networks, U-networks and Full Resolution Residual Networks. A two-dimensional grid
structure allows information to flow horizontally in a residual resolution-preserving way
or vertically through down- and up-sampling layers. GridNet shows promising results even
when trained from scratch (without any pre-training). We believe that our network could
also benefit from better weight initialisation, for example by pre-training it on the ADE20K
dataset.
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