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Abstract

In this paper we present a new approach to detect and
recognize 3D models in 2D storyboards which have been
drawn during the production process of animated cartoons.
Our method is robust to occlusion, scale and rotation. The
lack of texture and color makes it difficult to extract local
features of the target object from the sketched storyboard.
Therefore the existing approaches using local descriptors
like interest points can fail in such images. We propose
a new framework which combines patch-based Zernike de-
scriptors with a method enforcing spatial constraints for ex-
actly detecting 3D models represented as a set of 2D views
in the storyboards. Experimental results show that the pro-
posed method can deal with partial object occlusion and is
suitable for poorly textured objects.

Keywords: 2D/3D object detection, localization and
recognition, pose recognition, rotation angle retrieval, local
features

1. Introduction

In the process of creating 3D animated films, the manual
creation of 3D scenes out of storyboards sketched by artists
is a tedious process, hence the desire to perform it automat-
ically with a computer vision algorithm'. Indeed, currently,
the storyboards are hand drawn by the artists in charge of
the scenario of the movie, mostly with traditional non elec-
tronic pens. Then, for each episode, modeling specialists
create the 3D representation of the different scenes based on
the storyboards by using existing 3D object models stored
in a database.

In this paper we address the goal of recognizing each 3D
model from the corresponding piece of sketch, along with
its 3D viewing angle, its scale and its rotation angle in the

I'This work has partly been financed by Pinka Productions (http://
www.pinka-prod.com)

drawing plane, so that it can be automatically and correctly
placed in the 3D scene.

Object recognition is a fundamental problem in com-
puter vision. Recognizing three-dimensional objects in a
2D scene is a well known problem. On direct 3D object
recognition, very few work exists, e.g [7]. We chose to
tackle the problem by recognizing a 3D object through a
set of 2D images each corresponding to a single viewpoint.
In the state of the art, we can find a great variety of 2D
object recognition methods, some successful methods are
those of Lowe [11], Belongie et al. [2], Furgus et al. [5],
Shotton et al. [14], Opelt et al. [12]. However, most of
these methods work only on textured objects and fail on
smooth shapes, such as sketch images (drawings). In such
cases, global Zernike moments are particularly robust; they
have been successfully used for 2D/3D object recognition
through sketches in [1][8][13].

One of the main difficulties is the frequent occlusion
problem, which in image indexing and in object detection
is commonly tackled using local features [9][4]. In these
local approaches, local descriptors are calculated on key-
points [11][17] or on edges[6]. These methods are therefore
not applicable for sketch retrieval.

However, interest points being very unstable on sketch
images?, these methods are not applicable in our case.

Inspired from Revaud et al’s work [13], we chose
Zernike moment descriptors. However, we employ them
in a local manner, which allows us to overcome the occlu-
sion problems. In contrast to early local approaches pre-
sented above, we introduce a new patch-based Zernike mo-
ment method, which takes into account not only the fea-
tures themselves, but also their local relationships. Three
constraints are taken into account for the detection:

I. The Zernike moment distance between the model and
the storyboard patch.

2This is confirmed by our experiments, in which we have attempted to
use SIFT keypoints and descriptors for sketch recognition with very poor
results.
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Figure 1: The proposed 3D patch-based object detection in sketch
images.

II. The consistency of the neighborhood relationships
between model and storyboard patches.

ITI. The consistency of the rotation angle among the
neighboring patches.

Note that our objectives are two-fold:

e Detecting and recognizing the 3D models as well as
their location and size

e Recognizing the 3D pose: detecting the viewpoint for
each model

In our work, the latter viewpoint will be obtained by
selecting the correct 2D view stored in the database as well
as retrieving the in-plane rotation angle of this view.

The paper is organized as follows: the Zernike moment
descriptor is reviewed in section 2. In section 3, we present
our method. In section 4, we present experimental results il-
lustrating the effectiveness of our method. Finally, we con-
clude and give some perspectives in section 5.

2. Zernike moment descriptors

Zernike moments have been widely used as features for
pattern recognition. They are constructed by using a set
of complex polynomials which form a complete orthogonal
basis set defined on the unit disc. The Zernike moments
are defined with an order p and a repetition ¢ over D =

{(p,q)|0 < p < o0, |q| < |pl,|p — q| = even},
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and p and 6 are, respectively, the radius and the angle
of the pixel (z, y) with respect to the object’s gravity center.

To compute the distance between two Zernike descrip-
tors, we use the comparator proposed by Revaud et al. [13],
which returns both the distance (in the sense of similarity)
and the rotation angle between the two patterns. This angle
is further used for evaluating the rotation angle interaction
of the neighboring patches in our method. In the following
we will denote the Zernike distance between two patches as
d.q(-, ) and the retrieved rotation angle as d (-, -).

3. Proposed method

In figure 1, we present our general scheme for recogniz-
ing 3D objects in storyboards. Our method is based on the
following principle: each 3D model is represented by a set
of 2D views (model images); then, edges are detected in
the model images with a canny detector — the storyboard
images are already stroke images which do not necessite
edge detection. All images are thresholded before subse-
quent preprocessing.

Patches of different sizes are then extracted from the
model images as well as from the storyboard images (c.f.
figure 2a). Each model patch is assigned to a storyboard
patch by integrating the constraints described in section 1
(c.f. figure 2b).

In general, and for the full correspondence problem,
there are M® possible combinations of assignments, where
M is the number of model patches and S the number of sto-
ryboard patches. For each of these assignments, ~ M - D
consistency criteria need to be checked, where D is the av-
erage number of neighbors of a patch. In general, this clas-
sification problem is /N P-Hard [10].

Solutions for this problem including terms I. and II.
above (without the rotation angle consistency; c.f section



¢ _____ STORYBOARD

(a)

(b)

Figure 2: (a) Illustration of the overlapping patches extracted on a model view image: sizes range from 65% to 80% of the object size. (b)
The different constraints: I. the Zernike distance assigns model patches to storyboard patches (dotted arrows); II. the euclidean distance A
between neighboring patches is checked to be consistent with the euclidean distance B of neighboring storyboard patches; III. the rotation
angle ¢ of one assignment is checked to be consistent with the rotation angle v of a neighboring assignment.

1) have been proposed: e.g by adopting the neighborhood
structure in order to find the maximum a posteriori solution
with the junction tree algorithm [15], which is of complex-
ity O(M - S*) and applicable to few primitives only; or
by formulating the problem as a sampling procedure and
checking for the consistency of each sample (RANSAC)
[18, 3].

Instead of solving the full problem, we propose to pro-
ceed in two steps:

1. We assign model patches to storyboards patches using
constraint I. only, i.e. the minimum Zernike distance
(c.f. figure 2).

2. In a second step, we select among all model patches,
the one which best verifies constraints II. and III.; we
calculate a match score which is used for detection and
viewpoint selection (c.f. figure 2).

The algorithm can be formalized as follows: we start
from a list of model views H = {H,}(v = 1...V) and a
list of N, patches per view v: H,={hy1, hy2, ..., hun, }, as
well as a list of S scene patches C={cy, cs, ..., cs}.

As described above, in the first step we assign model
patches to scene patches according to the minimal Zernike
distance:

YU, Vi1 Sy = argterflll.%] dza(hyi, ct) 3)
where s,; denotes the storyboard patch assigned to model
patch ¢ of view v. Since the spatial relationships II. and III.
are not used, this sub problem is of low complexity com-
pared to the full problem.

In a second step, a match score c, ;) is calculated for
each model patch h,,; for each view v; for each patch, we
consider all its neighboring patches h,;, i.e patches whose

spatial euclidean distance is below a proximily threshold
T,:
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where dc(hy;, hyj) is the euclidean distance between the
spatial positions of the model view patches h,,; and h,j, d.q
is the rotation angle between a model patch h,,; and its cor-
responding scene patch c;, , and 0,4, 0,4 are variance pa-
rameters for Gaussian kernels parametrizing, respectively,
the differences in euclidean distance and in Zernike angle.
The first exponential measures the difference in spatial dis-
tance between two model patches and their corresponding
scene patches. This distance should be close to zero if the
object is subject to an isometry. The second exponential
measures the consistency in the in-plane rotation angles be-
tween neighboring patches. The operator 2 computes the
difference between two angles taking into account their cir-
cular domain.

Finally, we calculate a single match value o, for each
view v by selecting the patch which best satisfies these ge-
ometrical constraints:

ay = MAX C(y,j) %)
The view & giving the highest score « is selected as the best
view for the 3D model:

Q
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The score value « is thresholded with a threshold 7}; for
detection.

Note that our algorithm not only detects the best view
but also the in-plane rotation angle of the deteted viewpoint,
which is based on the best detected patch.

In order to detect multiple objects, after a successful de-
tection step we remove the corresponding patches from the
storyboard and restart a new detection process.

4. Experiments

We applied our method to a real industrial application
comprising five different 3D models: tents (2 different mod-
els), trailers, bushes, and trees provided by a company pro-
ducing animated films. As shown in figure 1, the pro-
posed method consists of two processing stages. For the
offline process, about 120 views from each 3D model (i.e.
5 x 120 = 600 views on total) are extracted and then the
views are indexed by calculating Zernike moments on 16
overlapping patches: the model patches are extracted on
different spatial locations are of sizes varying from 65%
to 80% of the model size. This boosts the probability of
finding some of these patches even in the case of partial oc-
clusion. In the online process, similar overlapping patches
are extracted from the storyboard and Zernike moments are
calculated at multiple-scales. We used 4 storyboards of size
33502260 for testing. We chose the same variance param-
eter which has been used in [15] for Gaussian kernels mea-
suring differences in euclidean distances: ¢4.=0,,=0.4.
The choice of an optimal parameter o is far from trivial [16]
and beyond the scope of this paper.

Figure 3 illustrates some results of our algorithm. Each
object detected is marked with a bounding box and its cor-
responding 3D model view is displayed. Note the excel-
lent results on the very difficult storyboard images. Most of
the objects are occluded, some of them significantly, which
does not prevent our method from correctly detecting and
recognizing them. Furthermore, even very similar 3D mod-
els, as for instance the two different tents, are distinguished
correctly.

We used the classical recall and precision measures for
the evaluation of our method. Note that recall is defined as
the amount of correctly detected objects with respect to the
total amount of objects in the ground truth, whereas preci-
sion is the amount of correctly detected objects with respect
to the total amount of detected objects. Since the two mea-
sures are dependent, i.e. varying the threshold 77 in order to
increase recall will generally decrease precision, we chose
to report the recall figures obtained for 100% precision, i.e.
no false alarms.

Table 1 shows the comparison between Revaud et al’s
global approach [13] and our approach. The comparison
results show that the proposed method attains higher recall

Object 1 Object 2 Object 3 Object 4
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Global
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Proposed
approach

Figure 4: Examples of detection results, where the detected views
are given for both compared methods.

Global approach [13] | Proposed approach

total % | total %

tents 4/8 50.00 | 7/8 88.00
trailers || 2/3 67.00 | 2/3 67.00
bushes || 3/10 30.00 | 6/10 60.00
trees 1/31 3.00 | 4/31 13.00

Table 1: Comparison of recall for 100% precision for the global
approach and the proposed approach.

than that of the global one. Both methods obtain low re-
call for the tree models. This is mainly caused by the fact
that sometimes their sketch deviates too much from their 3D
model. In addition, the sketched trees belong to highly clut-
tered scenes (forest — see the tree models in figure 3). We
do not consider the errors of the detected viewpoint in cal-
culating recall and precision. A comparison of these errors
for both methods is given in table 2.

Table 2 presents the mean error in viewpoint detection
compared with the global method. We here show only the
mean errors for 100% precision, which are calculated ac-
cording to the results in table 1. Note that each view is char-
acterized by two angles ((« € [0, 2], 8 € [0, 7]). To com-
pute the error of the viewpoint detection, we translate the
angle pair into a corresponding 3D point on the unit sphere.
The error between the detected viewpoint and the sketched
viewpoint is then calculated as the euclidean distance be-
tween the corresponding 3D points on the sphere. The com-
parison results in table 2 demonstrate that our method per-
forms better than the global one in viewpoint detection.
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Figure 3: Examples of detection results on several storyboards. Note the successful detection in spite of many occlusions. Images (a)-(c)
show detection results for 100% precision, i.e. no false alarms. Figure (d) illustrates the difficulty of the tree and bush models on an image
created as a mixture of images (a)-(c). Searching for four tree and bush models, the best response for each detection are wrong models or

parts of wrong models (tents etc.).

In figure 4 some visual results are presented for both
approaches: in the first row are some sketched objects ex-
tracted from the storyboards, the second and third row show
the detected views of the global approach and the proposed
approach, respectively. We can see that the global approach
is very sensitive to occlusions: for objects 1 and 4, which
are slightly occluded, the global approach returned the cor-
rect object model but views which are not very similar to
the views of the sketched objects, while our method can find

the best views (the view which is closest to the sketched ob-
ject in the database). For objects 2 and 3, which are more
severely occluded, the global method failed, whereas our
method can still recognize the 3D models although the de-
tected views are sometimes slightly different from the orig-
inal ones.



Global approach [13] | Proposed approach
tents 0.81 0.31
trailers 0.29 0.06
bushes 1.16 1.41
trees 2.70 1.36

Table 2: Comparison of the mean error in viewpoint detection be-
tween the global approach and the proposed approach.

5. Conclusion

We have presented a new approach to recognize 3D mod-
els in storyboards. Our contribution is two-fold: First,
we proposed a new local patch-based representation using
Zernike moments, which is suitable for sketch recognition
and is robust to occlusion, rotation and scale. Secondly,
in addition to the Zernike distance, we have incorporated
two main relationships between patches: spatial interac-
tions and rotation angle consistency. This makes the pro-
posed method flexible and easy to use with other descrip-
tors.

Although only rigid transformations preserve distances,
which are checked by our method, a very large class of non-
rigid transformations is handled by the gausians kernels in
equation (4) and the fact that interactions between neigh-
bors are verified as opposed to more arbitrary interactions,
as for instance in [15].

The results are very satisfying for objects which do not
contain pseudo random structure, as for instance tree and
bush images.

Taking into account distance and rotation angle coher-
ence significantly increases the power of the method, mak-
ing the method applicable to a large number of objects.

Our work can be extended in several directions. First,
in the current model, we assumed that all model patches
have the same a priori probability to be found in the scene.
We hope to increase the robustness of the proposed method
by defining a prior on the patch distribution, which should
make the method more efficient. We also plan to test our
method with other descriptors like kAS [6].
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