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Abstract

We propose a new spatio-temporal attention based mech-
anism for human action recognition able to automatically
attend to most important human hands and detect the most
discriminative moments in an action. Attention is handled
in a recurrent manner employing Recurrent Neural Network
(RNN) and is fully-differentiable. In contrast to standard
soft-attention based mechanisms, our approach does not
use the hidden RNN state as input to the attention model.
Instead, attention distributions are drawn using external in-
formation: human articulated pose. We performed an ex-
tensive ablation study to show the strengths of this approach
and we particularly studied the conditioning aspect of the
attention mechanism. We evaluate the method on the largest
currently available human action recognition dataset, NTU-
RGB+D, and report state-of-the-art results. Another ad-
vantage of our model are certains aspects of explanability,
as the spatial and temporal attention distributions at test
time allow to study and verify on which parts of the input
data the method focuses.

1. Introduction

Human action recognition is an active field in computer
vision with a range of industrial applications, for instance
video surveillance, robotics, automated driving and others.
Consumer depth cameras made a huge impact in research
and applications since they allow to estimate human articu-
lated poses easily. Depth input is helpful for solving com-
puter vision problems considered as hard when dealing with
RGB inputs only [11]. In this work we address human ac-
tiion recognition in settings where human pose is available

Figure 1: We design a new spatio-temporal mechanism con-
ditioned on pose only able to attend to the most important
hands and hidden states.

in addition to RGB inputs. The RGB stream provides addi-
tional rich contextual cues on human activities, for instance
on the objects held or interacted with.

Understanding human behavior remains a unsolved
problem compared to other tasks in computer vision and
machine learning in general. This is mainly due to the lack
of large datasets. Large datasets, such as Imagenet [29] for
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object detection has allowed powerful deep learning meth-
ods to reach super-human performances. In the field of hu-
man action recognition most of the datasets have several
hundreds or few thousand videos. As a consequence, state-
of-the-art approaches on this datasets either use handcrafted
features or are suspected to overfit on the small datasets af-
ter years the community spent on tuning methods. The re-
cent release of large scale datasets like NTU-RGB-D [30]
(∼ 57’000 videos) will hopefully lead to better automati-
cally learned representations.

Video understanding is by definition challenging due to
its high dimensional, rich and complex input space. Most
of the time only a limited area of a video is necessary for
getting a fined-grained understanding of the action which
occurs. Inspired by neuroscience perspectives, models of
visual attention [26, 7, 32] (see section 2 for a full discus-
sion) have drawn considerable interest recently. By attend-
ing only to specific areas, parameters are not wasted on in-
put considered as noise for the final task.

We propose a method for human action recognition,
which addresses this problem by handling raw RGB input
in a novel way. Instead of taking as input the full RGB
frame, we take into account image areas cropped around
hands only, whose positions are extracted from full body
pose estimated by a middleware.

Our model uses two input streams: (i) an RGB stream
called Spatio-Temporal Attention over Hands (STA-Hands),
and (ii) a pose stream. Both are recurrent over time. A key
feature of our method is its ability to automatically draw
attention to the most important hands at each time step. Ad-
ditionally, our approach can also automatically detect the
most discriminative hidden RNN states, i.e. most discrimi-
native time instants.

Beyond of giving state-of-the-art results on the NTU
dataset, our spatio-temporal mechanism also features cer-
tain aspects of explainablity. In particular, it gives insights
into key choices made by the model at test time in the form
of two different attention distributions: a spatial one (which
hands are most important at which time instant?) and a tem-
poral one (which time instants are most important?)

The contributions of our work are as follows:

– We propose a spatial attention mechanism on human
hands on RGB videos which is conditioned on the es-
timated pose at each time step.

– We propose a temporal attention mechanism which
learns how to pool features output from the RNN over
time in an adaptive way conditioned on the poses over
the full sequence.

– We show by an extensive ablation study that soft-
attention mechanisms (both spatial and temporal) can
be done using external variables in contrast to usual

approaches which condition the attention mechanism
on the hidden RNN state.

2. Related Work
Activities, gestures and multimodal data — Recent ges-
ture/action recognition methods dealing with several modal-
ities typically process 2D+T RGB and/or depth data as 3D.
Sequences of RGB frames are stacked into volumes and fed
into convolutional layers at first stages [3, 15, 27, 28, 38].
When additional pose data is available, the 3D joint posi-
tions are typically fed into a separate network. Preprocess-
ing pose is reported to improve performance in some situ-
ations, e.g. augmenting coordinates with velocities and ac-
celeration [42]. Pose normalization (bone lengths and view
point normalization) has been reported to help in certain sit-
uations [28]. Fusing pose and raw video modalities is tra-
ditionally done as late fusion [27], or early through fusion
layers [38]. In [22], fusion strategies are learned together
with model parameters with by stochastic regularization.

Recurrent architectures for action recognition —
Most recent human action recognition methods are based on
recurrent neural networks in some form. In the variant Long
Short-Term Memory (LSTM) [12], a gating mechanism
over an internal memory cell learns long-term and short-
term dependencies in the sequential input data. Part-aware
LSTMs [30] separate the memory cell into part-based sub-
cells and let the network learn long-term representations in-
dividually for each part, fusing the parts for output. Simi-
larly, Du et al [8] use bi-directional LSTM layers which fit
anatomical hierarchy. Skeletons are split into anatomically-
relevant parts (legs, arms, torso, etc), so that each subnet-
work in the first layers gets specialized on one part. Fea-
tures are progressively merged as they pass through layers.

Multi-dimensional LSTMs [10] are models with multi-
ple recurrences from different dimensions. Originally in-
troduced for images, they also have been applied to activity
recognition from pose sequences [24]. One dimension is
time, the second is a topological traversal of the joints in a
bidirectional depth-first search, which preserves the neigh-
borhood relationships in the graph.

Attention mechanisms — Human perception focuses
selectively on parts of the scene to acquire information at
specific places and times. In machine learning, this kind
of processes is referred to as attention mechanism, and has
drawn increasing interest when dealing with languages, im-
ages and other data. Integrating attention can potentially
lead to improved overall accuracy, as the system can focus
on parts of the data, which are most relevant to the task.

In computer vision, visual attention mechanisms date as
far back as the work of Itti et al for object detection [14]
and has been inspired by works from the neuroscience com-
munity [16]. Early models were highly related to saliency
maps, i.e. pixelwise weighting of image parts that lo-



cally stand out, no learning was involved. Larochelle and
Hinton [21] pioneered the incorporation of attention into
a learning architecture by coupling Restricted Boltzmann
Machines with a foveal representation.

More recently, attention mechanisms were gradually cat-
egorized into two classes. Hard attention takes hard de-
cisions when choosing parts of the input data. This leads
to stochastic algorithms, which cannot be easily learned
through gradient descent and back-propagation. In a semi-
nal paper, Mnih et al [26] proposed visual hard-attention for
image classification built around a recurrent network, which
implements the policy of a virtual agent. A reinforcement
learning problem is thus solved during learning [37]. The
model selects the next location to focus on, based on past
information. Ba et al [2] improved the approach to tackle
multiple object recognition. In [20], a hard attention model
generates saliency maps. Yeung et al [41] use hard-attention
for action detection with a model, which decides both which
frame to observe next as well as when to emit an action pre-
diction.

On the other hand, soft attention takes the entire input
into account, weighting each part of the observations dy-
namically. The objective function is usually differentiable,
making gradient-based optimization possible. Soft atten-
tion was used for various applications such as neural ma-
chine translation [5, 18] or image captioning [39]. Recently,
soft attention was proposed for image [7] and video under-
standing [32, 33, 40], with spatial, temporal and spatio-
temporal variants. Sharma et al [32] proposed a recurrent
mechanism for action recognition from RGB data, which
integrates convolutional features from different parts of a
space-time volume. Yeung et al. report a temporal recur-
rent attention model for dense labeling of videos [40]. At
each time step, multiple input frames are integrated and soft
predictions are generated for multiple frames. An extended
version of this work has been proposed [23] by also taking
into account the optical flow. Bazzani et al [6] learn spatial
saliency maps represented by mixtures of Gaussians, whose
parameters are included into the internal state of a LSTM
network. Saliency maps are then used to smoothly select
areas with relevant human motion. Song et al [33] propose
separate spatial and temporal attention networks for action
recognition from pose. At each frame, the spatial attention
model gives more importance to the joints most relevant
to the current action, whereas the temporal model selects
frames.

Up to our knowledge, no attention model has yet taken
advantage of articulated pose for attention over RGB se-
quences.

Our method has slight similarities with [26] in that crops
are done on locations in each frame. However, these oper-
ations are not learned, they depend on pose. On the other
hand, we learn a soft-attention mechanism, which dynam-

Figure 2: The spatial attention mechanism: SA-Hands.

ically weights features from several locations. The mech-
anism is conditional on pose, which allows it to steer its
focus depending on motion.

3. Proposed Model

A single or multi-person action is described by a sequence
of two modalities: the set of RGB input images I={It},
and the set of articulated human poses x={xt}. Both sig-
nals are indexed by time t. Poses xt are defined by 3D co-
ordinates of joints. We propose a hands spatio-temporal at-
tention based mechanism conditioned on pose. This stream
processes RGB data I and also uses pose information x
(human body joint locations and their dynamics). Our two-
stream model comprises the aggregation of the streams pre-
sented below.

3.1. SA-Hands: Spatial Attention on Hands

Most of the existing approaches for human action recog-
nition focus on pose data, which provides good high level
information of the body motion in an action but somewhat
limits feature extraction. A large number of actions such
as Reading, Writing, Eating, Drinking share the same body
motion and can be differentiated only by looking at manip-
ulated objects and hands shapes. Performing fine-grained
understanding of human actions can be handled by extract-
ing cues from the RGB streams.

To solve this, we define a glimpse sensor able to crop
images around hands at each time step. This is motivated
by the fact that humans perform most of their actions us-
ing their hands. The cropping operation is done using the
pixel coordinates of each hand detected by the middleware
(up to 4 hands for human interactions between 2 people).
The glimpse operation is fully-differentiable since the exact
locations are inputs to the model. The goal is to extract in-
formation about hand shapes and about manipulated objects
and to draw attention to specific hands.



The glimpse representation for a given hand i is a con-
volutional network fg with parameters θg (e.g. a pretrained
Inception v3), taking as input a crop taken from image It at
the position of hand i:

vt,:,i = fg(crop(It, handi); θg) i={1, . . . 4} (1)

Here and in the rest of the paper, subscripts of mappings f
and their parameters θ choose a specific mapping, they are
not indices. Subscripts of variables and tensors are indices.
vt,:,i is a (column) feature vector for time t and hand i. For a
given time t, we stack the vectors into a matrix V t={vt,:,i},
where i is the index over hand joints and j the index over
the feature dimensions . V t is a matrix (a 2D tensor), since
t is fixed for a given instant.

A recurrent model receives inputs from the glimpse sen-
sor sequentially and models the information from the seen
sequence with a componential hidden state ht:

ht = fh(ht−1, ṽt; θh) (2)

We select the GRU as our recurrent function fh. To keep
the notation simple, we omitted the gates from the equa-
tions. The input fed to the recurrent network is the context
vector ṽt, defined further below, which corresponds to an
integration of the different features vectors extracted from
hands in V t.

An obvious choice of integration are simple functions
like sums and concatenations. While the former tends to
squash feature dynamics by pooling strong feature activa-
tions in one hand with average or low activations in other
hands, the latter leads to high capacity models with low gen-
eralization.

We employ a soft-attention mechanism which dynami-
cally weighs the integration process through a distribution
pt, determining how much attention hand i needs with a cal-
culated weight pt,i. We define the augmented pose vector
x̃t defined by the concatenation of the current pose xt, the
acceleration ẋt and the velocity ẍt for each joint over time.
At each time step, x̃t gives a brief overview of human poses
on the scene and their dynamics. In contrast to mainstream
soft-attention based mechanisms [32, 1, 23], our attention
distribution does not depend on the previous hidden state
ht−1 of the recurrent network, but exclusively depends on
an external information defined just above: the augmented
pose x̃t.

Finally the spatial attention weights pt are given through
a learned mapping with parameters θp:

pt = fp(x̃t; θp) (3)

Remark that if we replace x̃t by ht−1 in equation 3 we get
the usual soft-attention mechanism by conditioning the at-
tention weights on the hidden state [32]. Attention distri-
bution pt and features V t are integrated through a linear

Figure 3: The temporal attention mechanism: ST-Hands
.

Figure 4: The spatio-temporal attention mechanism: STA-
Hands. The spatial mechanism is detailed in figure 2 and
the temporal one is details in figure 3

combination as

ṽt = V tpt , (4)

which is input to the GRU network at time t (see eq. (2)).
The conditioning on the augmented pose in 3 is important,
as it provides valuable body motion information at each
timestep (see the ablation study in the experimental sec-
tion).

We refer to this model as SA-Hands in our table. For a
better understanding of this module, a visualization can be
found in Figure 2.



Figure 5: Spatial attention over time: shaking hands will make the attention shift to hands in action.

3.2. ST-Hands: Temporal Attention on Hidden
States

Recurrent models can provide predictions for each time step
t by performing a mapping directly from the hidden state
ht. Some hidden states are more discriminative than other
one. Following this idea we perform a temporal pooling
on the hidden state level in an adaptive way. At the end of
the sequence an attention mechanism automatically gives
weights for each hidden states.

The hidden states for all instants t of the sequence are
stacked into a 2D matrix H={hj,t}, where j is the index
over the hidden state dimension. A temporal attention dis-
tribution p′ is predicted through a learned mapping to au-
tomatically identify the most important hidden states (i.e.
the most important time instants t). To be efficient, this
mapping should have seen the full sequence before giving a
prediction for an instant t, as giving a low weight to features
at the beginning of a sequence might be caused by the need
to give higher weights to features at the end.

To keep the model simple, we benefit from the fact that
sequences are of fixed length. We define a statistic called
augmented motion mt given by the sum of the absolute ac-
celeration and the sum of the absolute velocity of all body
joints at each time step t. mt is a vector of size 2 and we
obtain M by stacking all mt. M gives a good overview
of when most important moments occur. Our assumption is
that higher values of mt indicate more useful instants t. But
of course the network can learn more complex mappings
reacting to more complex motion or poses. The temporal
attention weights are given by the mapping:

p′ = f ′p(M ; θ′p) (5)

This attention is used as weight for adaptive temporal pool-
ing of the features H , i.e.

h̃ = Hp′ .

We called this module ST-Hands. A visualization of the
module can be found in figure 3.

The spatial and temporal attention mechanism are inde-
pendent of each other. When both are combined we call the
model Spatio-Temporal Attention over Hands (STA-Hands).
A visualization of the overall RGB stream can be found in
figure 4.

Related work — note that most current work in sequence
classification proceeds by temporal pooling of individual
predictions, e.g. through a sum or average [32] or even by
taking predictions of the last time step. We show that it can
be important to perform this pooling in an adaptive way. In
recent work on dense activity labeling, temporal attention
for dynamical pooling of LSTM logits has been proposed
[40]. In the context of sequence-to-sequence alignment,
temporal pooling has been addressed with bi-directional re-
current networks [4].

3.3. Deep GRU: Gated Recurrent Unit on Poses

Above, the pose information was used as valuable input to
the RGB stream. Articulated pose is also used directly for
classification in a second stream, the pose stream. We pro-
cess the sequence of pose, where at each time step t, xt is
a vector which represents the concatenation of 3D coordi-
nates of joints of all subjects. The raw pose vectors are input
into a RNN.

In particular, we learn a pose network fsk with parame-
ters θsk on this input sequence x, resulting in a set of hidden
state representation hsk={hsk

t }:

hsk
t = fp(h

sk
t−1,xt; θsk) (6)

We call this baseline on poses Deep GRU in our tables.

3.4. Stream fusion

Each stream, pose and RGB, leads to its own features re-
spectively hsk for the pose stream and h̃ for the RGB
stream. Each representation is classified with its own set



Figure 6: Spatial attention over time: giving something to other person will make the attention shift to the active hands in
the action.

of parameters using a standard classification approach as
defined further below in 4. We fuse both streams on logit
level by summing. More sophisticated techniques, such as
features concatenation and learned fusion [28] have been
evaluated and rejected.

4. Network architectures and Training

Architectures — The pose network fp consists of a stack
of 3 GRU each with an hidden state of size 150.

The glimpse senor fg is implemented as an Inception V3
network [34]. Each vector vt,:,i corresponds to the last layer
before output and is of size 2048. The GRU network fh
has a single recurrent layer with 1024 units. The spatial
attention network fp is an MLP with a single hidden layer
of 256 units with ReLu activation. The temporal attention
network f ′p is an MLP with a single hidden layer of 32 units
with ReLu activation. Output layers of attention networks
fp and f ′p use the softmax activation in order to get the sum
of the attention weights equal to 1. The full model (without
glimpse sensor fg) has 10 millions trainable parameters.

Training — All classification are done using a simple
fully-connected layer followed by a softmax activation and
trained with cross-entropy loss. For the pose stream Deep
GRU the classification is learned from all the hidden states
hsk
t . At test time we average the predictions given by each

time step since it gives better results than taking predictions
from the last hidden state.

For the RGB stream, classification using STA-Hands is
learned from the feature vector h̃. When the temporal atten-
tion (i.e.SA-Hands) is not employed in the RGB stream we
follow the same settings as described for the pose stream.
The glimpse sensor fg is pretrained on the ILSVRC 2012

data [29] and is frozen during training. Both spatial p and
temporal attention weights p′ are initialized to be equal for
each input modality. This set up leads to faster convergence
and better stability during training.

5. Experiments

The proposed method has been evaluated on the largest hu-
man action recognition dataset: NTU RGB+D. We exten-
sively tested all aspects of our model by conducting an ab-
lation study. This leads to get a proper understanding of
the choice of our proposed new spatio-temporal mechanism
and specially its conditioning aspect.

The NTU RGB+D Dataset (NTU) [30] has been ac-
quired with a Kinect v2 sensor and contains more than 56K
videos and 4 millions frames with 60 different activities in-
cluding individual activities, interactions between 2 people
and health related events. The actions have been performed
by 40 subjects and with 80 viewpoints. The 3D coordinates
of 25 body joints are provided in this dataset. We follow the
cross-subject and cross-view split protocol from [30]. Due
to the large amount of videos, this dataset is highly suitable
for deep learning modeling.

Implementation details — Following [30], we cut
videos into sub sequences of 20 frames and sample sub-
sequences. During training a single sub-sequence is sam-
pled, during testing 5 sub-sequences are extracted and logits
are averaged. We apply a normalization step on the joint co-
ordinates by translating them to a body centered coordinate
system with the ”middle of the spine” joint as the origin. If
only one subject is present in a frame, we set the coordinates
of the second subject to zero. We crop sub images of static
size 50×50 on the positions of the hand joints (pixel loca-



Methods Pose RGB CS CV Avg

Lie Group [35] X - 50.1 52.8 51.5
Skeleton Quads [9] X - 38.6 41.4 40.0

Dynamic Skeletons [13] X - 60.2 65.2 62.7
HBRNN [8] X - 59.1 64.0 61.6

Deep LSTM [30] X - 60.7 67.3 64.0
Part-aware LSTM [30] X - 62.9 70.3 66.6

ST-LSTM + TrustG. [24] X - 69.2 77.7 73.5
STA-LSTM [33] X - 73.2 81.2 77.2
GCA-LSTM [25] X - 74.4 82.8 78.6

JTM [36] X - 76.3 81.1 78.7
MTLN [17] X - 79.6 84.8 82.2

DSSCA - SSLM [31] X X 74.9 - -
Deep GRU [A] X - 68.0 74.2 71.1
STA-Hands [B] ◦ X 73.5 80.2 76.9

A+B X X 82.5 88.6 85.6

Table 1: Results on the NTU RGB+D dataset with Cross-
Subject (CS) and Cross-View (CV) settings (accuracies in
%, ◦ means that pose is only used for the attention mecha-
nism).

tions of each hands are given by the middleware). Cropped
images are then resized to 299×299 and fed into the Incep-
tion model.

Training is done using the Adam Optimizer [19] with an
initial learning rate of 0.0001. We use minibatches of size
32, dropout with a probability of 0.5 and train our model up
to 100 epochs. Following [30], we sample 5% of the ini-
tial training set as a validation set, which is used for hyper-
parameter optimization and for early stopping. All hyper-
parameters have been optimized on the validation sets.

Comparisons to the state-of-the-art — We show com-
parisons of our model to the state-of-the-art methods in ta-
ble 1. We achieve state of the art performance on the NTU
dataset with the two-stream model even if we explicitly im-
plemented a weak model, Deep GRU, on the pose stream.
That shows the strength of our RGB stream called STA-
Hands at extracting cues. Comparing one by one our two
streams (RGB vs pose) demonstrate that STA-Hands gets
better results than Deep GRU.

We have to keep in mind that the pose is used as external
data in our RGB stream but only for the cropping operation
around hands and for computing of the attention distribu-
tions. Poses are never directly fed as input to the GRU in
STA-Hands for updating the hidden state. The purpose of
STA-Hands is to extract cues from hand shapes or manipu-
lated objects. By its design choice STA-Hands is not able
to extract body motion since pose is only used for drawing
an attention distribution over hands. However this stream
achieves better performance than the pose one. This shows

that RGB data should not be put aside for human action
recognition.

We conducted extensive ablation studies to understand
the impact of our design choices on the full model, and in
particular on the spatial attention mechanism STA-Hands.

Conditioning the spatial attention — Conditioning the
spatial attention on the statistics of the pose (augmented
pose) at each time step is a key design choice, as shown
in table 2 (SA-Hands rows). Compared to mainstream soft-
attention mechanisms, which condition attention on the hid-
den state, we gain 2 points on average (75.0 vs 73.0). Inter-
estingly, conditioning using both the hidden state and the
pose statistics deteriorates the performances (75.0 vs 73.6)
showing that different kinds of information are contained in
these two latent variables. The recurrent unit is not able to
combine those two informations or at least ignore the hid-
den state. We can conclude that the augmented pose is a bet-
ter latent variable for weighting the spatial attention com-
pared to the internal hidden state of the GRU. Compared
to simple baseline like summing the different inputs, our
methods improves the average accuracy by 3.5 points (75.0
vs 71.5). This opens new perspectives for creating attention
mechanisms conditioned on new latent variables which can
be external to the GRU (but highly correlated to the inputs
and to the final task).

Effect of the temporal attention — Weighted integra-
tion of the hidden states over time seems to be an important
design choice as shown in table 2. Compared to classical
baselines, like averaging the predictions, we improve per-
formance by 3.3 points in average (74.8 vs 71.0). Taking
only the final predictions even leads to worst performance.
Again we can see that pose and its statistics, in this case
the augmented motion, are good latent variables for (though
external from the input data but highly correlated) for com-
puting the temporal attention weights.

A powerful spatio-temporal attention mechanism —
We show consistent results by combining spatial and tem-
poral attention trained end-to-end. Conditioning the spatial
and temporal attention mechanisms on statistics of the pose
(respectively augmented pose and augmented motion) leads
to the best results. In average we gain up to 5.4 and 4.9
points compared to baseline without any attention modules
like summing or concatenating the inputs (76.9 vs 71.5 and
72.0).

Impact of the attention on the two stream model —
Again we get consistent results when going from RGB
stream only to two-stream model (pose and RGB streams).
Even if both streams are trained separately and fused at the
logit level they extract complementary features. Spatial at-
tention seems to be more important than temporal one (85.6
vs 84.2). Compared to baseline like summing inputs on
the RGB stream, our full spatio-attention mechanism con-
ditioned on poses beats the baseline by 2.8 points on the



Methods Spatial Attention Temporal Attention CS CV Avg
Hidden state Augmented Pose Augmented Pose

Sum - - - 68.3 74.6 71.5
Concat - - - 68.9 75.2 72.0

SA-Hands
X - - 69.8 76.2 73.0
- X - 71.0 78.9 75.0
X X - 70.5 76.6 73.6

ST-Hands - - X 71.1 78.5 74.8

STA-Hands
X - X 72.2 77.8 75.0
- X X 73.5 80.2 76.9
X X X 72.8 78.3 75.6

Table 2: Effects of the conditioning on the spatial attention and the temporal attention (RGB stream only, accuracies in %).

RGB stream methods Spatial Attention Temporal Attention CS CV Avg
Hidden state Augmented Pose Augmented Motion

Sum-Hands - - - 79.5 85.9 82.8

SA-Hands
X - - 80.5 86.8 83.7
- X - 81.4 87.4 84.4
X X - 81.0 86.9 84.0

ST-Hands - - X 80.8 87.6 84.2

STA-Hands
X - X 81.4 87.4 84.4
- X X 82.5 88.6 85.6
X X X 81.6 88.0 84.8

Table 3: Effects of conditioning the spatio-temporal attention on different latent variables in the RGB stream for the two-
stream model (accuracies in % on NTU). The pose stream is always the same: (Deep GRU) for every row.

two-stream model.

Runtime — For a sequence of 20 frames, we get the
following runtimes for a single Titan-X (Maxwell) GPU
and an i7-5930 CPU: A full prediction from Inception fea-
tures takes 1.4ms including pose feature extraction. This
does not include RGB pre-processing, which takes addi-
tional 1sec (loading Full-HD video, cropping sub-windows
and extracting Inception features). Classification can thus
be done close to real-time. Fully training one model (w/o
Inception) takes ∼4h on a Titan-X GPU. Hyper-parameters
have been optimized on a computing cluster with 12 Titan-
X GPUs. The proposed model has been implemented in
Tensorflow.

Pose noise — Crops are performed on hand locations
given by the middleware. In case of noise, crops could end
up not being on hands. We saw, that the attention model can
cope with this problem in many cases.

6. Conclusion

We propose a new method for dealing with RGB video data
for human action recognition given pose. A soft-attention
mechanisms crops on hand joints allowing the model to
collect relevant features on hand shapes and on manipu-
lated objects from more relevant hands. Adaptive temporal
pooling further increases performance. We show that condi-
tioning attention mechanisms on pose leads to better results
compared to standard approach which conditioned on the
hidden state. Our method on RGB stream can be seen as
a plugin which can be added to any powerful pose stream.
Our two-stream approach shows state-of-the-art results on
the largest human action recognition even by employing a
weak pose stream.
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