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ABSTRACT
We describe a new method for detecting and localizing multi-

ple objects in an image using context aware deep neural networks.
Common architectures either proceed locally per pixel-wise sliding-
windows, or globally by predicting object localizations for a full
image. We improve on this by training a semi-local model to detect
and localize objects inside a large image region, which covers an
object or a part of it. Context knowledge is integrated, combining
multiple predictions for different regions through a spatial context
layer modeled as an LSTM network.

The proposed method is applied to a complex problem in his-
torical document image analysis, where we show that is capable of
robustly detecting text lines in the images from the ANDAR-TL
competition. Experiments indicate that the model can cope with
difficult situations and reach the state of the art in Vision such as
other deep models.

1. INTRODUCTION
In this work we are concerned with the detection and precise lo-
calization of multiple objects in images, in particular in the context
of document image analysis. The detection and localization of text
lines in document images is a challenging task requiring the inte-
gration of information on a local scale, such as signal and geom-
etry, as well as information of contextual nature on a wider scale.
The former models the appearance of text lines, whereas the lat-
ter allows (i) to distinguish them from objects with similar appear-
ance, such as words, and (i) to integrate cases with high inter-class
variance in appearance, such as text lines structured into multiple
columns.

The problem of detecting and localization has been dealt with
several types of methods in computer vision. Local methods like
sliding windows need to calculate a complex prediction function for
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each pixel of the input image, which can be expensive to compute
and makes it difficult to take into account context account.

Global methods directly predict object bounding boxes given a
full input image. In the case of methods based on machine learn-
ing, they require the regressor to be highly invariant to translations,
i.e. the system has to be able to find the object at different posi-
tions in the image. Methods based on deep learning are the state
of the art in object detection and localization, especially Convolu-
tional Neural Networks (CNN) [17]. However, invariances are not
the strong points of these models, in particular invariance to trans-
lations. Instead, this property is enforced through massive amounts
of training data, often with the help of artificial data augmentations,
i.e. creating new data samples from existing training data through
shifting, cropping and rotating.

In this paper, we propose a new method for text line detection
and localization, which proceeds by a direct regression of line po-
sitions with a deep neural network. Compared to the state of the
art, our model is a compromise between pixel wise classification
and a global model, effectively combining the advantages of both
approaches.

The contributions are twofold:

• A semi-local detection and localization model, which com-
bines the advantages of sliding windows and global detection
methods. As for global methods, object bounding boxes are
directly predicted through regression. However, predictions
are fused from local regions and fused globally. The main
advantage is decreased variation in network input, because
the filters are shared between the different positions in the
image.

• A context layer in the deep network, which models depen-
dencies between different local regions in the input image.
The layer makes it possible to detect objects which are only
partially visible in a given single image region.

• An application of the proposed model to document image
analysis and text line detection in historical documents.

2. RELATED WORK
We will here briefly review existing literature on text line detection
in document analysis, but also more generally on object detection
and localization in computer vision.
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Text Line Detection.
Early work is purely based on image processing. They proceed
through projection, where lines are separated by finding minima in
the horizontal projection histograms [22] or they employ morpho-
logical operations or blurring [15, 4] to fuse letters belonging to
the same line. The methods that extract the text components and
group them by finding alignment with the Hough transform [12] or
sweep-line [16] also belong to this category. More recently, Nico-
laou et al. [14] find text interline whitespace by following low in-
tensity areas. Shi et al. [19] use steerable filters to filter the image,
where text line objects are remaining components after binariza-
tion. Moysset et al. regroup connected components obtained after
binarization to form lines [13].

Most of these state of the art techniques employ image-based
heuristics. This means that heavy engineering efforts have to be
done to design them and, more importantly, to adapt them to new
tasks and to new datasets. They are also arguable less powerful on
datasets with highly diversified document content.

Few techniques based on machine learning, and especially using
deep neural networks, have been applied on document segmenta-
tion. However, outside the document analysis community, these
models have received tremendous interest in the last few years, es-
pecially for the detection and localization of objects in natural im-
ages, for instance of the ImageNet dataset [17]. We will review
these techniques in the following paragraphs.

Sliding windows.
A popular yet classical technique consists in sliding a window over
the input image and classifying the contents of each window. The
raw output then requires post-processing to find bounding boxes,
for instance non-maxima suppression.

Sermanet et al. use a first classifier applied to sliding windows
to extract candidate objects which are then fed into a Convolutional
Neural Network (CNN) for validation [18]. Similarly, Garcia et al.
apply this principle to face detection [8]. Uijlings et al. produce
region candidates from an over-segmentation of the input image,
which are then classified [20]. R-CNNs, introduced by Girshick et
al., proceed in a similar way, classifying candidate bounding boxes
from features extracted with CNNs [9].

The specific task of text line segmentation is challenging for
these methods, as the appearance of a part of a line is often very
similar to the appearance of a full line. Moreover, the shape of
the line is highly variable whereas most of these approaches use
windows of fixed size.

Other methods proceed by labelling pixels or super-pixels of an
image as belonging or not to the special class of targeted object.
Delakis et al., for instance, use sliding windows and a CNN to clas-
sify parts of natural images as text or non-text [3]. Whereas the
group described above classifies a pixel as being the center pixel
of a targeted object, these methods classify a pixel as being part
of an object, be it center pixel or not. As a consequence, the raw
output is a segmented image which then requires non-trivial post-
processing to find bounding boxes. In particular, overlapping and
touching objects are challenging configurations. This is the case in
document text segmentation, especially for handwritten historical
texts, where successive lines are close, if not overlapping one each
other, making a correct and robust grouping challenging to develop.

Deformable parts models.
Most methods based on sliding windows use machine learning to
classify each window. Deformable parts models, which technically
belong to the group of sliding windows techniques, integrate de-

formable terms into the prediction model making it particularly in-
variant to complex transformations and deformations [7, 6]. An
object is modeled as a set of parts, each part being defined as a
filter, an anchor position w.r.t.t. object’s center, and a deformation
cost. At test time, the most probable configuration of part posi-
tions is searched by solving a combinatorial problem with dynamic
programming.

Straightforward regression of positions.
Sliding windows across a possibly large input window and per-
forming a complex prediction at each position is computationally
complex. A different approach proceeds by feeding the full input
image into a single predictor, which learns to predict the set of out-
put bounding boxes for each image. Ehran et al. recently proposed
this alternative solution [5] using a CNN as a regressor. The deep
network comprises multiple vectorial outputs, each one belonging
to a different bounding box. During training, the set of outputs
needs to be matched to the set of ground truth bounding boxes,
which is done solving a combinatorial problem with the Hungarian
algorithm.

Our method is inspired by [5]. However, instead of proceeding in
an entirely global way, which is sub-optimal in situations involving
a high variation in input image sizes, the model is semi-local.

3. SPACE DISPLACEMENT LOCALIZATION
(SDL) NEURAL NETWORKS FOR LO-
CATING POINTS OF INTEREST

In the lines of [5], our network directly predicts the position (x, y)
of one or several objects in an image. We also restrict ourselves to
the setting where a particular point of each object has to be located.
This is the case in the ANDAR-TL competition, where the points
of interest of the handwritten lines are the lower left corners of the
bounding boxes.

In [5], object locations are predicted from the full image, which
requires a high number of parameters on the fully connected layers
to train with a limited number of samples. To deal with this issue,
we created the Space Displacement Localization (SDL) layer. This
layer predicts object positions from a part (“block”) of the image,
effectively sharing parameters between different parts of the image.

The full input image is fed into a deep neural network consisting
of several convolutional layers, recurrent layers and fully connected
layers (see section 5 for the precise architecture). These different
layers are shared over a grid of W × H blocks, each block cor-
responding to a window in the input image. The topmost hidden
representation consists in W ×H vectors h(i, j), i = 1 . . .W and
j = 1 . . . H . On top of this comes a special layer, that we call
Space Displacement Localization (SDL).

In this section, we first present the new SDL output layer that
we propose. It was designed especially to perform localization in
relation to the position of each window in the input image. Then we
stress the importance of taking into account the context: to achieve
robust localization, the hidden representation h(i, j) for each block
(i, j) should encompass information coming from the other blocks
around (i− 1, j), (i, j− 1), . . . We finally show that [5] on the one
hand, and sliding-window approaches on the other hand, are two
special cases of our proposed model, that is a compromise between
these two kinds of approaches.

3.1 SDL output layer
Each topmost hidden representation h(i, j) is used to predict

at most N points of interest. This is achieved by producing N
triplets (ρ, x, y) for each block (i, j): a confidence score ρ along
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Figure 1: Decomposition of the calculation into blocks: (a) a single block receives a patch of the input image and outputs N object locations
(3 shown). Recurrent connections (shown in orange) connect it to 4 neighboring blocks, which allows to model context. All DNN models
share parameters. (b) example of patch layout and recurrence chain. Recurrent connections are shown only for the center patch. The input
patch for block B1 contains a point P which resembles a textline origin point. Recurrent connections from block B2 provide context to
disambiguate the situation.

with the position x on the horizontal axes and the position y on
the vertical axes. For a given image, the model thus predicts at
most (N ×W ×H) object positions. If less objects are present in
an image, applying a threshold to the confidence value ρ allows to
determine unused network outputs. N is a hyper-parameter to be
tuned depending on the maximum number of points to retrieve per
block.

The triplet of outputs are computed as follows:

ρi,j,k = σ
(
wk
> · h(i, j) + bk

)
(1)

xi,j,k = σ
(
uk
> · h(i, j) + ck

)
×∆x + (i− 1)× δx (2)

yi,j,k = σ
(
vk
> · h(i, j) + dk

)
×∆y + (j − 1)× δy (3)

with k = 1 . . . N , i = 1 . . .W and j = 1 . . . H . σ(·) is the
logit sigmoid function. The weights (wk,uk,vk) and the biases
(bk, ck, dk) are free parameters to be learned.

The values of (∆x,∆y), resp. (δx, δy), are fixed so as to be
the size of each input block, resp. the step between two consec-
utive blocks in the input image. They depend on the neural net-
work architecture, namely the sizes of the convolutional filters used
to produce the topmost hidden representation h(i, j). They obey
0 < δx ≤ ∆x, and blocks are usually overlapping i.e. δx < ∆x.

The scaling factors (∆x,∆y) and (δx, δy) are used to map the
relative coordinates w.r.t. each block (σ in [0, 1]) into absolute co-
ordinates in the image : the vertical, resp. horizontal, absolute coor-
dinate naturally lie in [0,∆x + (W−1)δx], resp. [0,∆y + (H−1)δy].
The motivation to introduce parameter sharing across positions (i, j)
along with these factors is to make the model (roughly) invariant to
spatial translations of the input image, with modulo (δx, δy).

Section 4 will describe how to train a network with a SDL out-
put layer. Inference is straightforward: predictions are calculated
with forward passes on the neural network, and outputs with a con-
fidence score ρ above a threshold fixed to 0.5 are considered as
detected.

3.2 Including context in the network
Producing outputs per block (i, j) allows the SDL model to share

parameters, which avoid relearning specific prediction model for

each location in the image. However, taking decisions at a local
level may lead to problems when an image patch locally indicates
the presence of an object, which is not confirmed by a larger con-
text in the image. For instance, the beginning of a word can be
easily mistaken for the beginning of a line, if the left side is not
embraced by the corresponding block. Hence the importance of
taking into account the surrounding context to build each block rep-
resentation h(i, j) in equations (1), (2), (3). It is especially critical
when the full objects (that define the points of interest to retrieve)
are often larger than blocks of interest.

Taking into account the context can be done using convolutions
or recurrences. In our work, we used four-directional layers of
Long-Short Term Memory (LSTM) units [10]. Recurrent Neural
Networks (RNN) with LSTM units are now state-of-the-art in many
tasks involving sequential signals1.

Figure 1 illustrates the concept of incorporating surrounding con-
text into the representation of each block. The prediction model for
each block takes a decision based on the visual input of the cor-
responding image patch and from recurrent connections received
from the neighboring blocks. All DNN representations at the dif-
ferent positions share the same modeling parameters. In particular,
point P in the image resembles a textline origin point if only the
input patch for block B1 is taken into account, since the preced-
ing word in the textline is no visible on this local scope. Recurrent
connections from blockB2 provide context to disambiguate the sit-
uation.

3.3 Special Cases
The SDL neural networks we propose are a compromise between
global regressors and purely local models based on sliding win-
dows. Indeed, with two particular (extreme) parameterization, they
amount to previously proposed models:

• If ∆x and ∆y are set to the image width and height, then
W = H = 1 and the model amounts to the method of Ehran
et al. [5]. It is fully global: all positions are determined from
the whole image, namely from a concatenation of the list of
hidden values h(i, j). In this case, the difference with [5] lies

1http://people.idsia.ch/∼juergen/rnn.html



in the presence of recurrent connections to model the con-
text at intermediate levels. Another minor difference is the
sigmoid activation function on position outputs (1), whose
interest is to confine the network responses to valid ranges.

• If we configure a network so that δx = δy = ∆x = ∆y = 1
then a prediction is created at each pixel of the input image.
The confidence scores ρk can be used to classify each pixel,
similarly to a high-resolution sliding-window approach. If
∆x = ∆y = 1, the predicted positions xk, yk turn out to be
obsolete, given that it is impossible to reach sub-pixel pre-
cision on the location. Including context in the hidden rep-
resentation that feeds the SDL layer is critical for such local
approaches, as discussed previously in sub-section 3.2.

A notable advantage of our approach over [5] is that it handles
input images with variable sizes, modulo (δx, δy). In [5], images
must be scaled to a fixed size imposed by the network architec-
ture, which is awkward when the format of pages vary a lot (e.g
mix of A4 and A5 page formats), because lines of text will be ob-
served with variable resolutions. With the SDL output layer, as
with sliding-window approaches in general, it is possible to natu-
rally adapt the maximum numberN ×W ×H of detectable points
depending on the size of the input image (W and H can vary with-
out modification to the inference process).

4. TRAINING
Training the network involves learning parameters w,u,v, b, c, d
of the output regression layer, as well as the weights of all hid-
den layers including the parameters of the recurrent connections.
These parameters are shared over all blocks, i.e. over all patches of
the input image, as are the different parameters. Training is done
in a supervised way from labeled ground truth images with gradi-
ent back propagation, which requires associating ground truth ob-
ject locations to the different network outputs. There are different
network output triplets for different blocks. As opposed to the net-
work parameters, the outputs are not shared over blocks. However,
as in [5], we assign ground truth object positions to the different
N × W × H network output triplets globally for the whole im-
age. Once the assignment is done, parameter updates are performed
classically using stochastic gradient descent.

4.1 Matching network outputs to ground truth
In the lines of [5], matching network output triplets to ground truth
points is done minimizing a global energy function designed with
two goals in mind: i) assign similar locations, and ii) assign net-
work outputs with high confidence. The matching cost is defined
over pairs of points (ground truth — network output), the total cost
is calculated as the sum over matched pairs:

E(X, θ) = α
∑
ij

Xij ||oi(θ)− gj ||p +
∑
i

Xij log

(
ci(θ)

1− ci(θ)

)

s.t. ∀j
∑

iXij ≤ 1 ∧
∀i
∑

j Xij ≤ 1
(4)

where oi(θ) is the position vector of network output triplet i de-
pending on network parameters θ, ci(θ) is the confidence value of
the same triplet, and gj is a ground truth point. ||.||p denotes the
Minkowski norm with parameter p. The binary matrix X={Xij}
denotes a solution of the assignment problem. In particular,Xij=1
indicates that output triplet i is matched to ground truth box j. Min-
imizing (4) with respect to the assignment matrix X and constant

network parameters θ is a constraint satisfaction problem which
can be done efficiently with the Hungarian algorithm.

The confidence cost value depends only on the confidence ρk.
Its value is log(1−ρk)− log(ρk). The position cost is the squared
distance between the ground truth point and the hypothesis point.
Two distances will be used in this work, namely the Euclidian L2

distance and the L∞ distance.
A coefficient α is used to weight these two costs, its aim is to

force all the output triplets to be matched with close ground truth
points while taking into account the network confidence of a point
being there.

4.2 Loss function
The loss function used for parameter updates is the same as equa-
tion 4. However, as usual, stochastic gradient descent minimizes
the loss with respect to the network parameters θ. The assignment
matrix X is kept constant during this step. the weight α is not nec-
essarily the same as during matching, as its role is slightly different.
During network weight updates, α needs to ensure that the training
is balanced between learning geometric positions oi(θ) and confi-
dences ci(θ)

The derivative of this cost function will be used to train the net-
work by gradient backpropagation. Note that for the unmatched
output triplets, only the gradient related to the confidence score s
will be non-null.

4.3 Model selection
We perform early-stopping and optimize model architectures over
the validation set. In particular, the F-Measure (harmonic mean
of precision and recall) as optimized. A given text line point was
considered as correct if it is within a 6-pixel range of a ground truth
point and if no other point has already been assigned to this ground
truth point.

5. NETWORK ARCHITECTURE
The grayscale document images are downscaled to a fix size cor-

responding to the convolutional neural network input size. The ra-
tio between the width and height is kept in order to avoid to change
the shape of the letters. An extra black margin is added if needed to
pad the image to the correct size. No extra pre-processing is done.
The pixels of this rescaled image are used as input features for the
first layer of our neural network.

The networks are constituted of three successive convolutional
layers on top of which is applied the Space Displacement Local-
ization layer. Max-pooling layers are placed after the two first
convolutions and three four-direction Long Short Term Memory
(LSTM) layers [10] can be added after the convolutional layers.
Non-linearities are added after each convolutional, max pooling or
LSTM layer. Dropout can be after the last convolutional layer. The
detail of the architecture, including the number of hidden units and
the filter sizes, can be found in Table 1.

6. EXPERIMENTS

6.0.1 Dataset: the ANDAR-TL 2015 competition
The systems have been tuned for the ANDAR-TL Text Line De-

tection competition task2. The ANDAR-TL image set is an his-
torical document database of 726 images. 635 pages have been
randomly chosen for training and the remaining 91 images have
been used for the validation. Some example of images are shown
in figure 2.
2http://collections.ancestry.com/ANDAR-TL-2015



Layer: Filter size Number of
hidden units

Number of
free parameters

(1) Convolution 12x12 12 1740
(2) MaxPooling 3x3
(3) LSTM 12 8880
(4) Convolution 5x5 25 7525
(5) MaxPooling 3x3
(6) LSTM 25 38000
(7) Convolution 5x5 50 31300
(8) LSTM 100 502000
(9) SDL 60 6060

Table 1: The architecture of our networks with the filter sizes, the
number of hidden units and the number of free parameters.

Figure 3: Place of the points to detect, shown in red.

The aim of the competition is to detect the origin point of the
text lines which is the point at the bottom left of the first character
of the line. These points are shown in red on figures 2 and 3.

As in most historical documents, there is the presence of heavy
noise in the images. Bleed through, heavy slant or annotation in
the margins can be found in these documents. Documents are from
different writers, from different books with different layouts and
the size of the page can vary.

6.1 Evaluation Metrics
The metric of the ANDAR-TL competition has been used in this

paper. Tolerance regions are constructed around each ground truth
point, an hypothesis point is considered in this tolerance region if
the following condition is met:

Hy−Ry < γ(Ry+1−Ry) ∧ |Hx−Rx| < γ(Ry+1−Ry), if Hy>Ry

Ry−Hy < γ(Ry−Ry−1) ∧ |Hx−Rx| < γ(Ry−Ry−1), if Hy<Ry

Where Hx,Hy and Rx,Ry are respectively the coordinates of
the ground truth and hypothesis point and where Ry+1 and Ry+1

correspond respectively to the ordinate value of the ground truth
points just below and above the current ground truth point. γ is a
coefficient set to 0.25.

A dynamic alignment is performed to maximise the number of
matched points. The error is then defined as:

Cost = 20×#Miss+ 10×#FalseAcceptance

We also used a standard F-Measure to show the influence of the
tolerance region size. The mean distance between following lines
is computed on the whole dataset. Then squared tolerance regions

are set around the ground truth points with a size corresponding to a
percentage of this mean distance. Precision and recall are computed
with only one hypothesis point kept per ground truth point.

6.2 Baselines
In this work we compared our system to two other approach.

6.2.1 Image-Processing based Text Line Detection
The first one is the use of common image processing based line

detector algorithms. Because of the complexity of handwritten text
in archive images and because the page background may be dam-
aged, pre-processing is performed on the images to enhance the
performance of the line detection.

The image pre-processing algorithm is composed of four main
steps:

1. Global and a local contrast enhancement [23].

2. Skew correction [1].

3. Dedicated process to delete left and right margins with verti-
cal line detection.

4. Adaptive binary threshold (sliding window algorithm) cou-
pled with a filtering to delete noisy structures.

Three different handwritten text line detectors, designed for fluc-
tuating, touching or crossing text lines have been tested:

1. An adaptation of Nicolaou et al. [14]

2. An adaptation of Shi et al. [19],

3. The algorithm described in Moysset et al. [13].

After getting the bounding box of each line, the baseline of snip-
pet [21] is finally computed to get the positions of the beginning of
the line.

6.2.2 “Ehran et al. [5]”
The second one is the algorithm of Ehran et al. [5] that has been

adapted to learn to detect points instead of boxes for this special
task. The system is similar to the one described in this paper ex-
cept for the last layer where the neurons corresponding to the dif-
ferent parts of the image are all connected to a last layer that is then
fully connected to the outputs that are the point coordinates. The
architecture of the network (filter sizes, number of neurons on each
hidden layer) has been tuned specifically for this technique.

Use of k-Means for initialisation.
In order to force the different outputs of the system to get some

specialisation in predicting points, the initialisation of the network
can be performed for this technique.

k-Means clustering is done on the training set points with N clus-
ters. For each cluster, the centroid is associated with an output of
the network and the matching step is done comparing the position
of the hypothesis points to the position of the centroids instead of
the position of the reference point. Note that it does not change the
computation of the gradients.

This will help all the neural network outputs to be matched to
some points of the training set and thus to learn.

The use of the k-Means technique detailed in section 6.2.2 was
improving the results as shown in table 2.



Figure 2: Illustration of ANDAR-TL database images with target points highlighted in red.

Without K-Means With K-Means
61.4% 72.2%

Table 2: Comparison of the results with and without a k-means
initialisation. F-Measure metric is used with a 80% tolerance area.

7. RESULTS AND DISCUSSION
All hyper parameters for our technique and for the Ehran et al.

method have been optimized on the validation set.
The alpha parameter described in the training section need to be

tuned. As mentioned in section 4, there is not necessarily a reason
to choose the same alpha parameter for the matching of the refer-
ence and hypothesis boxes on the one hand and for the backpropa-
gation of the gradients on the other hand. The goals are different.
The objective of the former step is to match outputs and groundtruth
such to balance network output triplets and to keep low variances in
training positions per triplet. On the other hand, the objective of the
latter is to balance training of network parameters associated with
geometry and confidence. We therefore optimized both weights in-
dependently, as shown in table 3. Surprisingly, both goals lead to
similar α values.

Alpha for weight updates Alpha for matching
100 300 1000

100 35.76% 41.96% 39.85%
300 36.84% 46.23% 42.4%
1000 34.4%4 41% 35.08%

Table 3: Results with the F-Measure metric, and a 25% tolerance
area for various alpha choices.

The impact of the context layer based on spatial LSTMs has been
evaluated as given in table 4. From one to three recurrent LSTM
layers have been added to the network leading to a significant gain
in performance. The contextual layer has indeed a very import role
in the model. During training, each ground truth point can be seen
by multiple blocks. However, global matching will assign it to a
single block. The contextual layer ensures coherence of this choice
taking into account the global image. A deeper contextual network
with additional LSTM layers further improves performance.

Figure 4: Impact of the use of data augmentation on line detection.
Results are presented as F-Measure with a 80% tolerance zone and
several systems.
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ANDAR-TL 2015: influence of data augmentation

No LSTM layer 1 LSTM layer 2 LSTM layers 3 LSTM layers
30.3% 76.4% 79.5% 82.2%

Table 4: Impact of the number of LSTM layers on line detection.
Results are presented as F-Measure with a 80% tolerance zone.

The Minkowski norm ||.||p used to calculate distances between
network outputs and groundtruth depends on a parameter p. We
have observed an improvement of the results when using the infin-
ity norm L∞ in the matching cost and in the loss function instead
of using the Euclidian distance L2. An illustration of these results
can be found in figure 5, which reports the distribution of perfor-
mances over a large set of experiences involving different choices
of hyper-parameters (with or without dropout, data augmentation,
contextual layer etc.). We think that the better performance of the
L∞ norm could be explained by the fact that our metrics are using
squared acceptance zones around the target points.

Dropout [11] has been applied during the training of the net-
works and improved the results, as shown in table 5.



Figure 5: Impact of the choice of the norm on line detection. Re-
sults are presented as F-Measure with a 80% tolerance zone and
several systems.
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ANDAR-TL 2015: influence of position-cost type

No dropout With dropout
61.5% 82.2%

Table 5: Impact of the use of dropout. Results are presented as
F-Measure with a 80% tolerance zone.

Lack of invariance properties of deep networks often requires
data augmentation to ensure high generalization [2]. In our work,
data augmentation has been performed to increase the number of
training pages and thus improve the generalisation. Pages have
been simply moved laterally and expanded or shrunk by a small
factor. After this transformation, only the pages with all the target
points inside the image have been kept. Figure 4 shows that there
is an improvement of the performances when using data augmen-
tation, in particular due to the small size of the database.

We compare the performance of the proposed method to differ-
ent other techniques of the state of the art. Results using the two
metrics given in section 6.1 are provided in table 6 below. For the F-
Measure metric, two sizes of acceptance zones have been computed
with different values for the γ parameter presented in section 6.1.
The detail of the F-Measure results with respect to this parameter
and therefore to the size of the tolerance zones is shown in figure 6.

As can be seen, our method outperforms the state of the art with
a medium sized tolerance region and is only beaten by Shi et al.
[19], an image processing method without learning, if the tolerance
region is set to a low value. For this reason, we also combined the
two methods, as given in the last line in table 6. This combination
achieves the highest results over all tested methods.

The origin points predicted by the ConvNN/LSTM system are
matched to the origin points predicted by the image processing
approach system[19], using the Munkes matching algorithm and
minimizing the sum of the Euclidian distances. When the matched
points are less than 150 pixels distant, the location predicted by the
image processing approach system is kept. Otherwise, We keep the
point predicted by the ConvNN/LSTM system. Points predicted by
the ConvNN/LSTM system and unmatched are also kept. We do so
because we observed that the ConvNN/LSTM system is better to
predict the right number of ground truth points in the page, while
the image processing approach system is more accurate in the lo-
cation it gives.

Method F-Measure1 ANDAR2

80% 25% official
(tolerance) metric

Moysset et al. [13] with preprocessing 62.4 16.5 599.0
Nicolaou et al. [14] with preprocessing 44.6 6.1 716.0
Shi et al. [19] with preprocessing 69.0 35.5 468.8
Erhan et al. [5] 72.2 27.1 512.2
SDL (proposed) 85.5 31.4 493.9
SDL (proposed) + Shi et al. [19] 81.3 38.9 449.6
1 Higher is better ; 2 Lower is better

Table 6: Comparison of the different systems with several metrics.

Figure 6: F-Measure of the different systems with respect to the
size of the tolerance region.
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The dependency of performance on the precision used in the
evaluation metric (the size of the tolerance region) is plotted graph-
ically in figure 6.

Let us note, in particular, that the proposed local displacement
layer significantly outperforms the global method proposed by Er-
han et al. [5], confirming the validity of our strategy to share net-
work weights over overlapping blocks.

We also participated in the ICDAR ANDAR-TL competition.
However, the official results were still pending at the submission
of the paper. Our submission was a combination of the proposed
deep learning approach and a second method based on image pro-
cessing without learning [19].

8. CONCLUSION AND PERSPECTIVES
We presented a new semi-local model for the detection of mul-

tiple objects in an image. In particular, we present an application
to text line detection in document images. The deep model is a
compromise between a purely local method based on sliding win-
dows and a pure global method based on regression. This strategy
allows to keep the advantages of both extremes. Positions are deliv-
ered directly without post-processing, and the semi-local approach
allows to share weights over spatially overlapping blocks. Experi-
ments have shown excellent results on the ICDAR 2015 ANDAR-
TL dataset. The official ranking in the ANDAR-TL competition is
pending.

Future work will tackle the problem of detecting full bounding
boxes instead of origin points. This is a more difficult problem,



since the different points of a bounding box may lie on different
block of the model. An additional matching stage is required.
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