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ABSTRACT
We propose a new method for activity recognition based on
a view independent representation of human motion. Robust
3D volume motion templates (VMTs) are calculated from
tracklets. View independence is achieved through a rotation
with respect to a canonical orientation. From this volumes,
features based on 3D gradients are extracted, projected to a
codebook and pooled into a bags-of-words model classified
with an SVM classifier. Experiments show that the method
outperforms the original HoG3D method.

Index Terms— Human action recognition, HoG3D, vol-
ume motion templates, depth information.

1. INTRODUCTION

Recognizing human activities is an important step in many ap-
plications, such as human-computer interfaces (HCI), health
care, smart conferencing, robotics, security surveillance etc.
In this work, we target applications where robustness to
changes in viewpoint are especially important, as for instance
in settings involving moving cameras like mobile robotics.

Early work on activity recognition proceeded by extract-
ing local spatio-temporal features, e.g. from space time in-
terest points (STIPs) [1, 2, 3, 4], and integrating the infor-
mation into bags-of-words (BoW) models which do not han-
dle any spatial relationships between points. This representa-
tion is quite invariant but suffers from lack of discriminative
power. Traditionally, keypoints are either sparsely sampled
[1, 2, 3, 4] or densely sampled [5]. This classical represen-
tation has been improved in various ways: (i) adding a hier-
archical representations through pyramid matching [6, 7]; (ii)
adding activity localization [8]; (iii) learning optimal code-
books for BoW construction [9, 10], etc.

Other methods have been introduced to model spatial
and spatio-temporal relationships which are ignored by BoW
models. Examples include pairwise histograms [8], space-
time graph-matching [11], and deformable parts models [12].
These models, originally designed for object detection and
recognition, decompose an entity into different parts and learn

filters for each part, as well as their geometric configuration:
anchor positions w.r.t.t. object center and deformation costs.

Dense sampling along trajectories have gained interest
lately [13, 14]. Using optical flow fields, densely sampled
points are tracked in multiple spatial scales to form trajec-
tories. Then, support volumes are constructed around each
trajectory, and a combination of HoGHoF [15] and MBF
feature descriptors are employed to describe the motion in
video.

A natural way of recognizing activities is through articu-
lated pose, i.e. skeletons. Made popular in cooperative set-
tings and extracted from depth videos [16] articulated pose is
a powerful descriptor when its extraction is possible [17, 18].

Automatic learning of hierarchical representations, also
known as deep learning, has been successfully applied to nu-
merous problems in recent years. Motion recognition tasks
have been successfully solved, for instance with deep convo-
lutional networks, in contexts like action recognition [19, 20,
21], gesture recognition [22] and video classification [23].

All robust vision techniques rely on certain invariances
in order to work in realistic conditions, which include invari-
ances towards viewpoints, size and morphology of subjects,
changes in acquisition conditions etc. Viewpoint invariance
is particularly important in this context, and various methods
have targeted this goal. Holte et al. fuse RGB and depth data
from a consumer sensor, compute 3D optical flow features
and finally transform them into a view-invariant representa-
tions using a spherical coordinate system [24]. In [18], his-
tograms of 3D joint locations are represented in 3D spherical
coordinates to assure viewpoint invariance. In [25], motion
history volumes are calculated and translated into 3D spheri-
cal coordinate system, and Fourier magnitudes are calculated
for classification.

In this paper, we we propose a robust method for view in-
variant action recognition based on volume motion templates
(VMT) [26], a model which calculates a 3D motion volume
from a sequence of depth images which is then projected to
a 2D history image. In contrast to [26], our method is able
to recognize and localize activities. Our contributions can



Fig. 1: Overview of the proposed method.

be described as follows: (i) in contrast to [26], features are
calculated directly in the 3D volume, which avoids losing in-
formation from the projection to 2D; (ii) The 3D volume is
rotated to a canonical axis which is the main source of view
invariance of our method; (iii) local space-time features are
extracted with the method of [27] and then pooled into a ro-
bust descriptor using bags-of-words; (iv) the descriptor is cal-
culated locally on tracklets, i.e. sequences of tracked people
or combinations of tracked people.

The paper is organized as follows. Section 2 outlines the
method and describes each module. Section 3 describes the
dataset and the experimental results. Finally, section 4 con-
cludes.

2. PROPOSED METHOD

Our method is outlined in Fig. 1. People are detected in the
scene and tracked, resulting in a sequence of bounding boxes
(see section 2.1). Since our activities may occur between sev-
eral people, bounding boxes of nearby people are combined
to create larger candidate bounding boxes. Then, a robust
variant of volume motion templates (VMT) is computed for
this tracklet (see sections 2.2 and 2.3). Viewpoint invariance
is achieved through a rotation w.r.t. a canonical orientation.
A spatio-temporal 3D descriptor based on histograms of 3D
gradients is then extracted and pooled into a BoW model (see
section 2.4). Finally from these features an SVM model is
trained for activity recognition purposes.

2.1. Creating Tracklets

We create tracklets with a method by Ni et al. [28]. People
are detected with the Dalal and Triggs detector [29] employ-
ing HoG features and linear SVM. False positives are filtered
using features from the depth image and constraints: i) ratio
of the area to median depth should be within a given range
and ii) median of the human body should be smaller than the
depth values surrounding the human body in horizontal di-
rection. Obtained per frame detections are then matched in

consecutive frames with a distance threshold and merged into
tracklets.

2.2. Volume Motion Templates

Volume motion templates (VMT) [26] are an extension of mo-
tion history images (MHI) [30] to depth videos whose goal is
to describe the history of motion a scene. In a 3D cube cal-
culated for a given time window, recent movement is repre-
sented with higher intensity voxels, while earlier movement
decays and finally disappears. Consequently, motion history
is encoded using intensities, i.e. fading traces along the move-
ment trajectory.

A VMT is constructed for a given time window t: from a
depth image Zt, a human silhouette is extracted by any form
of background subtraction giving a binary image St. Then a
binary volume object Ot is calculated in 3D space for every
frame in the window as follows:

Ot(x, y, z) =

{
1 if St(x, y, z) = 1 and Zt(x, y) = z

0 otherwise
(1)

Motion is detected subtracting consecutive binary objects:

σt(x, y, z) = |Ot(x, y, z)−Ot−1(x, y, z)| (2)

A VMT is then constructed by defining the intensity of each
voxel as the “recentness of motion” at this position, i.e. newly
appeared voxels are set to maximum intensity Imax and vox-
els without change are subject to fading. More formally,

Vt(x, y, z) =

{
Imax if σt(x, y, z) = 1

max(0, Vt−1(x, y, z)− ηµt) otherwise
(3)

where µt is the magnitude of motion at time t and η is atten-
uating constant:

µt =

∫∫∫
σt(x, y, z)dxdydz , η =

Imax − 1∑
T
t=1

∑
µt

(4)

ηµt can be interpreted as the disappearing rate, and it is dy-
namic for a time window in order to ensure that VMT captures
a large amount of information from the scene.



2.3. Robust VMT

We present a robust variant of VMTs, which we call Robust
VMTs. We calculate binary objectsOt directly from the depth
image Zt without need of background subtraction:

Ot(x, y, z) =

{
1 if Zt(x, y) = z

0 otherwise
(5)

We introduce a new robust filter removing noise related to the
precision of the depth sensor at hand. Even for scenes where
there is no movement, there may be a slight noise in depth
images; in other words, a point in scene may appear on dif-
ferent coordinates within the successive Ot. Furthermore, the
variation is proportional to depth. To tackle this, we perform
a robust difference operation including a local neighborhood
search:

σt(x, y, z) = min
x′∈{x±∆x}

y′∈{y±∆y}

z′∈{z±∆z(z)}

|Ot(x, y, z)−Ot−1(x′, y′, z′)|

(6)
where ∆x, ∆y and ∆z(z) are parameters that define the size
of the search space. ∆x and ∆y are fixed, whereas ∆z(z),
is adaptive and depends on z. We set it as a monotonic func-
tion whose values have been defined from estimations of local
depth variances at specific intervals of absolute depth.

Our method does not rely on background estimation,
which makes it less dependent on any noise from this error
prone process. However, when subtracting successive vol-
ume objects Ot, classically done by Eq. (2), differences in
depth now directly translate into detected motion without
being masked by the BG subtraction process. In particular,
an object moving before background will translate into two
different pixels in motion in the binary motion object σt for
given coordinates (x, y): an appearance in foreground at one
pixel and a disappearance in background for the neighboring
pixel. The variation in background is not the actual motion
and therefore must be eliminated from the differences σt. We
therefore change the difference process in order to eliminate
the change in background. Formally,

σ′t(x, y, z) =

{
σt(x, y, z) if 6 ∃ z′<z : σt(x, y, z

′) > 0

0 otherwise
(7)

where the difference σt is defined as in (6).
As our VMTs are calculated on tracklets of varying win-

dow sizes and not on full frames, we modify the calculation
of the normalization rate. In particular,

µt =
1

V

∫∫∫
σt(x, y, z)dxdydz (8)

where V is space-time volume of the difference object σt.
Additionally, each robust VMT is normalized by scaling
along the z axis into [0, 2000].

(a) Standard VMT [26] (b) Proposed robust VMT

Fig. 2: Comparison of standard and robust VMTs.

To eliminate additional outliers (i.e. isolated points), a
Statistical Outlier Removal [31] filter is applied to the result-
ing VMT. This filter computes the mean distance between
each point and its corresponding k-nearest neighbors, then
assumes that the resulting distribution should be a Gaussian,
and finally considers points having mean distances outside a
defined interval as outliers.

Figure 2 shows an example standard VMTs (left) and the
proposed robust version (right). The standard version pro-
duces motion in static background areas which is avoided by
the robust version.

2.4. Viewpoint Normalization and feature extraction

In [26] the dominant motion orientation is considered for a
time window, by calculating moment vectors of first and last
volume objects of this time window. Instead of projecting the
VMT to this orientation into a 2D representation, as in [26],
we rotate the VMT w.r.t. canonical orientation, resulting in
a viewpoint invariant representation from which features can
be extracted.

We extract features using a method based on [27], where
histograms of 3D gradients are computed on local spatio-
temporal regions of RGB images. Each support region is
divided into cells, and cells are divided into sub-blocks. For
each sub-block, a mean 3D gradient vector is computed and
quantized by projection onto faces of a regular polyhedron.
Then a histogram is computed over a cell, and then his-
tograms are concatenated over the complete support region to
obtain a full descriptor. These support regions are determined
either by an interest point detector or by dense sampling.

Unlike [27], we calculate the descriptor on robust VMT
objects by dense sampling, instead of stacking RGB frames
to form an integral video. Our robust VMT objects are sparse
point clouds, which makes gradient computation difficult. We
solve this by trilinear interpolation of gaps, using a maximum
gap length threshold.

2.5. Classification via Bag of Words

Each tracklet is represented by a BoW model calculated by
projecting densely sampled features on a codebook obtained
by k-means clustering. An SVM prediction model with a ra-



PPPPPGT
D DI GI BO EN ET LO UB HS KB TE

DI 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GI 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0
BO 0.0 0.0 0.0 33.3 0.0 16.7 0.0 50 0.0 0.0
EN 0.0 0.0 40.0 40.0 0.0 20.0 0.0 0.0 0.0 0.0
ET 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0
LO 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0
UB 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0
HS 0.0 0.0 25.0 25.0 25.0 25.0 0.0 0.0 0.0 0.0
KB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0
TE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

PPPPPGT
D DI GI BO EN ET LO UB HS KB TE

DI 50.0 0.0 0.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0
GI 50.0 0.0 0.0 0.0 0.0 25.0 0.0 0.0 0.0 25.0
BO 14.3 0.0 0.0 0.0 0.0 57.1 0.0 0.0 28.6 0.0
EN 15.0 0.0 0.0 70.0 10.0 5.0 0.0 0.0 0.0 0.0
ET 0.0 0.0 0.0 33.3 33.3 33.3 0.0 0.0 0.0 0.0
LO 0.0 0.0 0.0 33.3 0.0 66.7 0.0 0.0 0.0 0.0
UB 0.0 0.0 0.0 50.0 0.0 50.0 0.0 0.0 0.0 0.0
HS 0.0 0.0 0.0 40.0 0.0 60.0 0.0 0.0 0.0 0.0
KB 40.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 60.0 0.0
TE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

Fig. 3: Confusion matrix for [27] (left) and for the proposed method (right); GT: ground truth, D: detection.

dial basis function kernel is trained on these BoW models.
We divide tracklets into runs of sliding temporal windows
of length T = 40 frames and 50% overlap. Temporal win-
dows are classified individually and results are integrated over
tracklets through voting.

3. EXPERIMENTS

The proposed method has been evaluated on the LIRIS hu-
man activities data set [32], which contains complex and real-
istic actions and which can occur simultaneously. All actions
are recorded indoor using a consumer depth camera (Kinect)
mounted on a mobile robot. There are ten classes of ac-
tion: Discussion (DI), give item (GI), pick up / put down ob-
ject (BO), enter/leave room (EN), try to enter unsuccessfully
(ET), unlock and enter (LO), leave baggage unattended (UB),
handshake (HS), type on keyboard (KB), talk on telephone
(TE). Ground truth annotations are available consisting of se-
quences of bounding boxes and class labels. In order to be
able to detect activities (as opposed to pure classification), we
also included a ”No-Action” class whose training examples
are selected through bootstrapping.

Camera motion is present on in some of the sequences.
However, in this work we excluded videos including camera
motion. Future work will perform motion compensation to
make VMT calcluation applicable to moving cameras.

We compared the proposed method to the method de-
scribed in [27], which is based on 3D gradients without
VMTs. For training, 1800 samples have been used, each of
which of duration ≤T . The training set has been balanced.
The test set contained 29 test videos with a total of 375
tracklets.

Evaluation is carried out with the official metric for the
dataset as described in [32], and available as the HARL eval-
uation tool1.

Figure 3 gives confusion matrices for the baseline method
as well as for the proposed method. As can be seen, the pro-
posed method outperforms the baseline clearly. Most con-
fusion is created around three very similar activities, which
is typical for this dataset (EN=enter/leave room; ET=try to

1http://liris.cnrs.fr/voir/activities-dataset/harleval.html

enter unsuccessfully; LO=unlock and enter). These actions
are characterized by people manipulating doors in different
ways. In the baseline method, the differences between the
action instances are dominated by the differences in view-
points, which makes classification difficult. Extracting the
features from a view invariant representation (normalized ro-
bust VMTs) helps solving this problem. Noted that empty
rows in the confusion matrix are possible if all samples of
this class are detected as No-Action, i.e. not considered as
detected.

4. CONCLUSION

In this paper, we proposed a novel method for action recog-
nition based HoG3D features extracted from robust volume
motion templates which are normalized w.r.t. changing view-
points. Experimental results on the HARL dataset show that
our method outperforms the original HoG3D features without
robust volume motion templates [27]. Future work will in-
clude motion compensation and integration of multiple views
from different robots.
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