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ABSTRACT
Evaluation of object detection algorithms is a non-trivial
task: a detection result is usually evaluated by comparing
the bounding box of the detected object with the bound-
ing box of the ground truth object. The commonly used
precision and recall measures are computed from the over-
lap area of these two rectangles. However, these measures
have several drawbacks: they don’t give intuitive informa-
tion about the proportion of the correctly detected objects
and the number of false alarms, and they cannot be accu-
mulated across multiple images without creating ambigu-
ity in their interpretation. Furthermore, quantitative and
qualitative evaluation is often mixed resulting in ambiguous
measures.

In this paper we propose an approach to evaluation which
tackles these problems. The performance of a detection
algorithm is illustrated intuitively by performance graphs
which present object level precision and recall depending on
constraints on detection quality. In order to compare dif-
ferent detection algorithms, a representative single perfor-
mance value is computed from the graphs. The evaluation
method can be applied to different types of object detection
algorithms. It has been tested on different text detection
algorithms, among which are the participants of the Image
Eval text detection competition.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval
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1. INTRODUCTION
In the past, computer vision (CV) as a research domain
has frequently been criticized for a lack of experimental cul-
ture, which has been explained by the young age of the dis-
cipline. However, experimental evaluation of the theoreti-
cal advances is indispensable in all scientific work. We are
currently trying very hard to establish a real experimental
culture, and the need of strict experimental procedures in
applying and evaluating algorithms is widely recognized.

In text and video retrieval, the very successful TREC com-
petition series1 help to considerately advance the state of the
art in this domain. In the field of document image analy-
sis, the Image Eval text detection competition2, the ICDAR
page segmentation competitions [2], the ICDAR text detec-
tion competitions [8] and the GREC competition for line
and arc detection [12] should be mentioned.

The introduction of the evaluation problem coincides with
the emergence of the field of visual information retrieval.
As a consequence, the first techniques have been naturally
inspired by tools from this domain, as for instance preci-
sion/recall graphs which are frequently used in information
retrieval. However, visual information has its own specifici-
ties, which need to be taken into account. This is the goal
of this work.

In computer vision, a successful evaluation algorithm is
rarely simple to design. Often it is necessary to conceive
non-trivial algorithms in order to ensure an evaluation sat-
isfying scientific requirements:

• A simple and intuitive interpretation of the obtained
measures.

• An objective comparison between the different algo-
rithms to evaluate.

• A good correspondence between the obtained measures
and the objective performance of the algorithm to eval-
uate, taking into account its goal.

A particular problem in computer vision, which has already
given birth to a multitude of solutions is the problem of
detecting objects in images. In this context, by detection
we also mean localization, thus tackling a two-part problem.

1http://trec.nist.gov
2http://www.imageval.org



We keep the general evaluation framework independent of
the object type, defining an object as a visual entity with a
spatial reality, and illustrate the concepts with experiments
and examples from the field of text detection.

The main contribution of this paper concerns the following
issues:

• The separation of detection quality and detection quan-
tity. New performance graphs allow us to easily per-
ceive the detection quantity (“how many objects have
been detected?” and “how many false alarms have
been detected?”) as well as detection quality (“how
accurate is the detection of the objects?”).

• The influence of the data base is evaluated, i.e. the re-
lationship between the performance of the detection al-
gorithms and the structure of the image test database
is put forward.

• The derivation of a single performance value which
does not depend on quality related thresholds. Al-
though this performance value, by definition, does not
allow us to fully comprehend the behavior of a detec-
tion algorithm, it makes it easier to create a ranking
of the algorithms to evaluate.

The reminder of this document is organized as follows: Sec-
tion 2 gives an introduction to the problem and presents
different evaluation modes on a hierarchy of different levels,
which is formed by the different possible result represen-
tations. Section 3 presents a survey on the previous work
on the evaluation of object detection algorithms. Section 4
introduces performance graphs for an easy and intuitive in-
terpretation of the detection performance as well as a perfor-
mance measure. Section 5 demonstrates the dependence of
evaluation algorithms on the structure of the test database.
Section 6 applies the evaluation measure to two different
text detection algorithms and illustrates its intuitive usage.
Finally, section 7 concludes.

2. EVALUATION LEVELS
Traditionally, object detection algorithms are evaluated us-
ing techniques developed for information retrieval systems.
More specifically, the measures of precision and recall are
widely used, since they intuitively convey the quality of the
results:

RIR =
N.o. correctly retrieved items

N.o. relevant items in the database

PIR =
N.o. correctly retrieved items

Total n.o. retrieved items

(1)

In order to have a single performance value for the ranking
of methods, the two measures are often linearly combined.
The harmonic mean of precision and recall has been intro-
duced by the information retrieval community [10]. Its ad-
vantage is that the minimum of the two performance values
is emphasized:

PerfIR = 2
PIR · RIR

PIR + RIR
(2)

For the object detection problem, the measures of recall
and precision are not directly applicable, since the deci-
sion whether an object has been detected or not is not a

binary one. Object detection algorithms may be evaluated
at different levels w.r.t. the representation of the detection
results, corresponding to different phases of the detection
algorithms. The evaluation measures of the different levels
differ in their relevance to the goal of the application and
in their coverage, i.e. in the detection phases which are
evaluated by the measure:

(a) Feature discriminance at pixel level At this level,
the quality of the chosen features is evaluated without
taking into account the classification decision taken in
a later phase. Therefore, the result evaluated for each
pixel p is not a binary decision but a feature vector
xp. Splitting the pixels into two populations, where
the first population consists of the pixels labeled as
“object” according to the ground truth, and the sec-
ond population consists of the “non-object” pixels, the
goal of the evaluation measure at this level is to assess
whether the features are well separated between the
two populations.

(b) Classification at pixel level Once the classification
decision for each pixel is available, i.e. we know for
each pixel whether it belongs to the object or not,
the measures of recall and precision may be applied at
pixel level. Alternatively, the classification error might
be used for evaluation. Note, that if the performance
is evaluated at pixel level, then the ground truth must
be very precise in order to get robust measures.

(c) Detection at region level From the end user’s point
of view, a more natural way is to ask the question
whether an object has been detected correctly or not.
This assumes objects of compact shape, for which for
instance a rectangle approach makes sense3. This is
not appropriate for textures, or objects like snow, falling
water, shadows, but does make sense for objects like
humans, faces, text, tools etc. The reminder of this
document deals with this evaluation level.

(d) Goal oriented evaluation In many applications, ob-
ject detection is performed for a specific reason which
is beyond the pure localization of the object. For in-
stance, face detection might be a preliminary step for
face recognition, text detection might be a preliminary
step for text recognition, etc.

In this case, in order to take into account the spe-
cific goal, the evaluation algorithm should resort to the
results of the application specific processing. In the
context of text detection, a goal oriented evaluation
scheme for a system which exploits the text content
(as opposed to its position) should penalize lost text
characters as well as additional characters which are
not present in the ground truth. Possibilities are re-
call and precision on character level, or the string edit
distance [11]. In the case of text detection for indexing
video broadcasts, one might consider evaluation on an
even higher level by weighting words according to their
usefulness for the indexing process [6].

The evaluation level to choose depends on the application
and the purpose of the evaluation. The pixel based evalu-
ation measures are easy to calculate and easy to interpret.
3In the following, we will refer to this evaluation level as
rectangle level.



However, they lack relevance to the goal of the process and
are not very accurate.

The goal directed approaches are natural methods to em-
ploy for the final evaluation of the algorithm’s performance.
However, very often the localization of the object is the fi-
nal goal of the application. For instance, in the case of face
detection or text detection, recognition of the object might
be impossible because of low data quality. In image and
video indexing applications, the presence of a face or of text
is valuable information which can be exploited.

Evaluation levels (a), (b) and (d) are easy to calculate,
whereas region based evaluation (level (c)) is a non-trivial
task: as the detection result is rarely exactly equivalent to
the object as specified in the ground truth, we cannot easily
say whether an object has been correctly detected or not.
In the reminder of this work, we concentrate on the problem
of evaluation on rectangle level.

3. PREVIOUS WORK
The goal of a rectangle based object detection evaluation
scheme is to take a list G of ground truth object rectan-
gles Gi, i = 1..|G| and a list D of detected object rectangles
Dj , j = 1..|D| and to measure the quality of the match be-
tween the two lists. The quality measure should penalize
information loss, which occurs if objects or parts of objects
have not been detected, and it should penalize information
clutter, i.e. false alarms or detections which are larger than
necessary4.

Most algorithms are based on an extension of the recall
and precision measures which are calculated on the area of
two rectangles Gi and Di and on the area of the overlapping
region:

RAR(Gi, Di) =
Area(Gi ∩Di)

Area(Gi)

PAR(Gi, Di) =
Area(Gi ∩Di)

Area(Di)

(3)

Recall illustrates the proportion of the ground truth rect-
angle which has been correctly detected, and precision de-
creases if the amount of additional incorrectly detected area
increases. In the reminder of this work, we call these mea-
sures “area recall” and “area precision”, respectively.

Whereas calculating these figures for a single pair of result
and ground truth rectangles is straightforward, the exten-
sion to the realistic case of two lists of rectangles is not as
easy. The existing evaluation methods differ in the way they
treat the correspondence problem between the two rectan-
gle lists, i.e. whether they consider single matches only or
multiple matches, and in the way they combine the figures
in order to generate a single measure for multiple rectangles
and multiple images.

Doermann et al. present a configurable ground-truthing
and evaluation system with a graphical java interface [3] for
video segmentation. Their system also takes into account

4We should emphasize, that a comparison of the rectan-
gles representing objects is not the same as comparing the
objects themselves, since the rectangle based algorithm as-
sumes that the object is identical to its bounding rectangle.
In reality, a missed part of Gi may not contain object pixels,
or a part of a false alarm in Di may not contain detected
pixels.

temporal matching of objects in videos and provides differ-
ent temporal matching levels. However, the spatial match-
ing algorithms supported by the tool are rather limited.

In [9], Mariano et al. propose a set of evaluation measures,
among which are the area measures on rectangle bases given
in equation (3) as well as measures on pixel level.

Antonacopoulos et al. propose an algorithm capable of
comparing lists of rectangles [1] in the context of document
page segmentation. “Partial misses”, “misses” and “merges”
are considered. The evaluation algorithm focuses on report-
ing the accuracy of the detection/classification of each rect-
angle, the authors do not provide performance measures for
a whole document.

A simple evaluation scheme has been used to evaluate the
systems participating at the text locating competition in the
framework of the 7th International Conference on Document
Analysis and Recognition (ICDAR) 2003 [8]. Each rectangle
in one list is matched with the best match in the opposing
list:

RICD(G, D) =

P|G|
i=1 BestMatchG(Gi)

|G|

PICD(G, D) =

P|D|
j=1 BestMatchD(Dj)

|D|

(4)

where BestMatchG and BestMatchD are functions which
deliver the quality of the closest match of a rectangle in the
opposing list:

BestMatchG(Gi) = max
j=1...|D|

2 ·Area(Gi ∩Dj)

Area(Gi) + Area(Dj)

BestMatchD(Dj) = max
i=1...|G|

2 Area(Dj ∩Gi)

Area(Dj) + Area(Gi)
(5)

A given rectangle may appear in only a single match. If
a rectangle is matched perfectly by another rectangle in
the opposing list, then the match functions evaluate to 1,
else they evaluate to a value < 1. Therefore, the original
measures taken from the information retrieval community,
given by (1), are upper bounds for the measures given by
(4). Both, precision and recall given by (4), are low if the
overlap region of the corresponding rectangles is small.

A disadvantage of the ICDAR evaluation scheme is that
only one-to-one matches are considered. However, in reality
sometimes one ground truth rectangle is “split” into sev-
eral object rectangles or several ground truth rectangles are
“merged” into a single detected object rectangle. This is a
problem the authors themselves report in [8]. The problem
is generally encountered in detection evaluation frameworks,
where an over- or under segmented solution may very well
be a correct detection.

Liang et al. present a method for the evaluation of docu-
ment structure extraction algorithms [7]. From the two lists
G and D of ground truth rectangles and detected rectan-
gles, they create two overlap matrices σ and τ . The lines
i = 1..|G| of the matrices correspond to the ground truth
rectangles and the columns j = 1..|D| correspond to the de-
tected rectangles. The values of these matrices correspond,
respectively, to area recall and area precision between the
row rectangle Gi and the column rectangle Dj :



Figure 1: Different match types between ground
truth rectangles and detected rectangles. Top: one-
to-one match; Middle: a split; Bottom: a merge.

σij = RAR(Gi, Dj)

τij = PAR(Gi, Dj)
(6)

Matching rectangles is done by thresholding the values in
the two matrices and clustering them into groups. Differ-
ent match types are supported: one-to-one matches, one-to-
many matches (splits) and many-to-one matches (merges).
See figure 1 for an illustration of these concepts.

Hua et al. [4] also take into account splits and merges.
They introduce two measures: “detection quality”, which
relates to recall, and ”false alarm rate” which relates to (1 -
precision). However, each measure is calculated as product
of two factors: a factor which depends on the surface ratios
and a factor which measures the rectangle fragmentation.
The latter factor decreases in the case of splits and merges.

The evaluation protocol used for the ICDAR 2003 Page
segmentation contest [2] is based on the same principles
as Liang’s method. The overlap matrices (they call them
“MatchScore tables”) are used to match ground truth enti-
ties to detected entities, where an entity (i.e., a region) may
contain text, graphics, line-art, a separator or noise, which
makes an adaptation of the overlap matrices necessary in or-
der to evaluate the classification of each region. Splits and
merges are supported. For each match, a performance value
is calculated as the harmonic mean of a recall type measure
and a precision type measure. The global performance value
for all entities is computed as a weighted sum of the individ-
ual scores. The protocol suffers from the same drawbacks:
the lack of intuitivity and the ambiguity of the response due
to the mixture of detection quality and detection quantity.

Landais et al. propose an evaluation measure which is not
based on the overlap information [6]: they consider a pair of
detected/groundtruth rectangles as matching if and only if
the centroid of one rectangle is contained in the other rect-
angle. This solution tends to accept matches with very low
area recall and/or precision and it does not give an informa-
tion on the quality of the detection.

4. OBJECT COUNT/AREA GRAPHS
Area recall and area precision are easy to interpret as long
as there are only two rectangles involved. However, in the
case of multiple images or a single image with multiple text
rectangles, a combination of the measures is not straightfor-
ward.

This is the main drawback of the existing techniques de-
scribed in the previous section: the way the overlap informa-

tion is accumulated during the calculation of the evaluation
measures leaves room for ambiguity. For instance, a recall
of 50% could mean that 50% of the ground truth rectangles
have been matched perfectly, or that all ground truth rect-
angles have been found but only with an overlap of 50%,
or anything in between these two extremes. Quality and
quantity of the detection are not apparent.

4.1 Requirements of an evaluation algorithm
We developed an evaluation scheme which addresses these
problems. We propose a natural way to combine the contra-
dictive measures on quality and quantity: two-dimensional
plots which illustrate their dependence. More precisely, on
the y-axis we plot the two measures which are the most
interesting for us, object counts:

ROB =
N.o. correctly detected rectangles

N.o. rectangles in the database

POB =
N.o. correctly detected rectangles

Total n.o. detected rectangles

(7)

These two measures depend on the quality requirements,
which are imposed using two measures: area recall and area
precision. In other words, the detection performance is illus-
trated using two diagrams, where the first shows the depen-
dence on area recall and the second shows the dependence on
area precision. Each diagram, on the other hand, contains
two graphs: one plots object recall, the other one object
precision (see figure 4 in the results section for an example).

4.2 Rectangle matching
The computation of the measures given in (7) requires for
each ground truth rectangle Gi the determination whether
it has been detected or not, and for each rectangle Di in
the detection result the determination whether its detec-
tion is correct or not. These decisions are taken based on
constraints imposed on the detection quality, i.e. the over-
lap between detection result and ground truth. In order to
take into account one-to-one as well as one-to-many matches
(splits) and many-to-one matches (merges), we calculate the
overlap matrices σ and τ introduced in section 3.

The matrices are analyzed in order to determine the cor-
respondences between the two rectangle lists. In general, a
non zero value in an element with indices (i, j) indicates that
ground truth rectangle Gi overlaps with result rectangle Dj .
However, the two rectangles are matched only if the overlap
satisfies the quality constraints, i.e. if area recall and area
precision are higher than the respective constraint:

(a) σij > tr

(b) τij > tp
(8)

where tr ∈ [0, 1] is the constraint on area recall and tp ∈ [0, 1]
is the constraint on area precision. In detail, the different
matches are determined as follows:

one-to-one matches: one ground truth rectangle Gi matches
with a result rectangle Dj if row i of both matrices con-
tains only one element satisfying (8) and column j of
both matrices contains only one element satisfying (8).
This situation is shown in figure 1a.



one-to-many matches (splits): one ground truth rectan-
gle Gi matches against a set So of result rectangles
Dj , j ∈ So if

• a sufficiently large proportion of the ground truth
rectangle has been detected (condition (8a) in a

“scattered” version):
X
j∈So

σij ≥ tr, and

• each contributing result rectangle overlaps enough
with the ground truth rectangle to be considered
a part of it (condition (8b) in a “scattered” ver-
sion): ∀j ∈ So : τij ≥ tp.

many-to-one matches (merges): one result rectangle Dj

matches against a set Sm of ground truth rectangles if

• A sufficiently large portion of each ground truth
rectangle is detected (condition (8a) in a “scat-
tered” version): ∀i ∈ Sm : σij ≥ tr, and

• Each ground truth rectangle has been detected
with enough area precision (condition (8b) in a

“scattered” version):
X

i∈Sm

τij ≥ tp

many-to-many matches (splits and merges): this match
type is currently not supported by our algorithm. Our
experiments showed, that this situation does not occur
very often in the case of text detection.

If a situation occurs which requires simultaneous splits
and merges, then the algorithm translates this situa-
tion into several splits or a set of splits and one-to-one
matches: each ground truth rectangle in the matching
set is either part of a split if it is matched against sev-
eral detected rectangles, or it is part of a one-to-one
match if it is matched against a single detected rect-
angle. The drawback of this implementation is a slight
unjustified punishment of combined splits and merges,
since detected rectangles may be part of several sets of
splits. In each set, the part of the detected rectangle
which covers a ground truth rectangle of another set,
is falsely reported as “missing” in the original set.

Based on this matching strategy, the recall and precision
measures which we intuitively described in (7), can be finally
defined as follows:

ROB(G, D, tr, tp) =

P
i MatchG(Gi, D, tr, tp)

|G|

POB(G, D, tr, tp) =

P
j MatchD(Dj , G, tr, tp)

|D|

(9)

where MatchG and MatchD are functions which take into
account the different types of matches described above and
which evaluate to the quality of the match:

MatchG (Gi, D, tr, tp) =

=

8>>>>><>>>>>:

1 if Gi matches against
a single detected rectangle

0 if Gi does not match against
any detected rectangle

fsc(k) if Gi matches against
several (→ k) detected rectangles

MatchD (Dj , G, tr, tp) =

=

8>>>>><>>>>>:

1 if Dj matches against
a single detected rectangle

0 if Dj does not match against
any detected rectangle

fsc(k) if Dj matches against
several (→ k) detected rectangles

where fsc(k) is a parameter function of the evaluation scheme
which controls the amount of punishment which is inflicted
in case of scattering, i.e. splits or merges. If it evaluates to
1, then no punishment is given, lower values punish more.
In our experiments we set it to a constant value of 0.8.

Another possibility could be to use two different functions
in the expressions MatchG and MatchD in order to pun-
ish over segmentation differently than under segmentation.
This might be useful if text detection is followed by text
recognition. Furthermore, more scattering might be pun-
ished more severely by adding a dependence to the number
of rectangles k, for instance by setting fsc(k) = (1+ln(k))−1,
which corresponds to the fragmentation index suggested by
Mariano et al. [9].

Note, that text which is only partly detected and therefore
not matched against a ground truth rectangle, will correctly
decrease the precision measure, in contrast to the ICDAR
evaluation scheme described in section 3.

4.3 Multiple images
In the case of N images, we compare several lists Gk ∈
G, k = 1..N of ground truth rectangles with several lists
Dk ∈ D, k = 1..N of result rectangles. As in information
retrieval, the results on multiple images may not be accu-
mulated by summing the recall or precision values. Instead,
object recall and object precision are defined as follows:

ROB(G, D, tr, tp) =

P
k

P
i MatchG(Gk

i , Dk, tr, tp)P
k |Gk|

POB(G, D, tr, tp) =

P
k

P
j MatchD(Dk

j , Gk, tr, tp)P
k |Dk|

(10)

4.4 Constructing the graphs
As explained before, the object related measures introduced
in equation (10) depend on two constraints tr and tp which
impose constraints on the detection quality. The perfor-
mance diagrams are produced by fixing one constraint to a
set value, varying the second one (assigned to the x-axis)
and plotting object recall and object precision on the y-axis
of two graphs.

Figure 4 in the experimental section shows an example of
the two diagrams obtained this way. The diagram shown
in figure 4a is generated by varying the constraint on area
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Figure 2: An example rectangle detected with area
recall = 100% and area precision = 50%.

recall, tr, while constraint tp is held to a fixed value. The
diagram is composed of three graphs: object recall, object
precision and the harmonic mean of the two measures. Sim-
ilarly, figure 4b is created varying constraint tp while con-
straint tr is fixed.

The diagrams are easily interpreted by looking at the dy-
namics of the graphs: in this particular example, the fact
that object recall never drops to zero when area recall ap-
proaches 1 means, that most of the text rectangles are de-
tected with an area coverage of 100%, i.e. the detection
rarely cuts parts of the ground truth rectangle. On the
other hand, the fact that object recall does drop to zero
when area precision approaches 1, means that all result rect-
angles exceed the ground truth boundaries. The particular
amount of area which is detected additionally can be seen by
the point/range where the object recall dramatically drops
when area precision increases.

As stated above, during the creation of the graphs one of
the two constraints is held fixed. The particular values as-
signed to the fixed constraints have been chosen empirically.
However, we decided to pick different values for the two dif-
ferent constraints: while tr is fixed to 0.8, we chose the lower
value of 0.4 for constraint tp. This decision is motivated by
the fact that a detection result which cuts parts of the text
rectangle is more disturbing than a detection which results
in a too large rectangle. The value of 0.4 might seem very
low, but keep in mind that the area of a square is a quadratic
function of its side length. This fact is illustrated in figure
2, which shows a detection result with 50% area precision.
The detected rectangle is twice as large as the ground truth
rectangle, although the difference in the corner coordinates
is quite small. Please refer to the discussion section for some
remarks on the implications of this situation to text detec-
tion algorithms.

4.5 A single performance value
Very often it is useful and desirable to determine a single
performance value for an algorithm, either for direct com-
parison of the performances of different algorithms, or to
optimize the parameters of the detection algorithm.

For the reasons laid out in section 4.1, an objective com-
parison of the algorithms by a single scalar value is difficult,
up to impossible. A single value is hardly able to charac-
terize the complex behavior of a detection algorithm, which
makes it necessary to resort to compromises. At first sight,
a simple solution might be to hold the quality constraints
tp and tr at fixed values, calculate object recall and object
precision and combine them in a harmonic mean. However,
this evaluation would depend heavily on the particular cho-
sen values. One algorithm could outperform another one

for given quality constraints, while it could show a weaker
performance for other constraints. A good indicator should
cover the performance of the evaluated algorithm across a
whole range of quality constraints. We therefore propose
the proportion of the graph area which is beneath the per-
formance graphs as a reliable and objective measure, which
is equivalent to the mean value of object measures over all
possible constraint values.

More precisely, we first calculate the area proportion sep-
arately for object recall and object precision:

ROV = 1
2T

TX
i=1

ROB(G, D,
i

T
, tp) +

1

2T

TX
i=1

ROB(G, D, tr,
i

T
)

POV = 1
2T

TX
i=1

POB(G, D,
i

T
, tp) +

1

2T

TX
i=1

POB(G, D, tr,
i

T
)

(11)
The final performance value is the harmonic mean of the
two measures.

The parameter T is a granularity parameter which con-
trols the trade-off between the computational complexity of
the evaluation algorithm and the precision of the integration
approximation. In our experiments, we set the parameter to
T = 20.

5. EVALUATING THE INFLUENCE OF THE
TEST DATABASE

As for information retrieval (IR) tasks, the measured per-
formance of an object detection algorithm highly depends
on the test database. It is obvious, that the nature of the
images determines the performance of the algorithm. An
objective comparison between different algorithms will only
be possible if the respective communities decide on shared
common test databases. Alternatively, we recommend tack-
ling this problem partly by performing different experiments
for different test databases with different difficulties.

The structure of the data, i.e. the ratio between the rel-
evant data and the irrelevant data, is another major factor
which influences the results. In [5], Huijsmans et al. call at-
tention to this fact and adapt the well known precision/recall
graphs in order to link them to the notion of generality for an
IR system, which is defined as the ratio between the number
of relevant items and the number of all items in a database.

Very large databases with low generality, i.e. much ir-
relevant clutter compared to the relevant material, produce
results with lower precision than databases with higher gen-
erality. A standard IR system presents the retrieved items
to the user in a result set of predefined size. Since this size is
fixed, with falling generality the amount of relevant material
in the result set — thus the recall — will tend to be smaller.
Thus, recall and precision depend on the generality of the
database. In IR one is interested in the retrieval perfor-
mance with respect to the generality as well as with respect
to the size of the result set, which determines the search ef-
fort for the user. The dependence on two parameters makes
three-dimensional performance graphs necessary. Alterna-
tively, Huijsmans proposes two-dimensional graphs, which
corresponds to a plane of the 3D space defined by Precision
= Recall. Therefore, the graph plots Precision=Recall on
the y-axis against generality on the x-axis.

However, unlike IR tasks, object detection algorithms do
not work with items (images, videos or documents). Instead,



images (or videos) are used as input, and object rectangles
are retrieved. Nevertheless, a notion of generality can be
defined as the amount of objects which are present in the
images of the database. We define it to be

G =
N.o. object rectangles

Average n.o. obj. per relevant image×N.o. images
(12)

where the first factor in the denominator is the average num-
ber of objects per image containing objects, a constant which
can be estimated for each database, or set to 1. Its actual
value does not change the behavior of the mesure, only its
scale.

Another difference to IR systems is the lack of a result set
window, because all detected items are returned to the user.
Therefore, the generality of the database does influence pre-
cision, but not recall. Thus, the influence of the database
structure on the system performance can be shown with sim-
ple two-dimensional precision/generality graphs. In reality,
this graph should be very close to a straight line since it
depends on a single property of the detection system: the
average amount of rectangles detected in an image which
does not contain any desired object. A very simple and
straight forward way to evaluate the influence of general-
ity on different detection algorithm is therefore to compare
these values.

A decision needs to be made concerning the generality
level of the database when result tables or graphs are dis-
played which contain a fixed level of generality. In other
words, it is necessary to decide how many images with zero
ground truth (no object present) should be included in the
database. The exact amount depends on the particular ap-
plication. The a priori probability of an image to contain
exotic objects, as for instance water falls or fire might be
very low. Another determining factor is the type of medium.
In most cases, for applications working on single images the
probability is higher than for applications working on video
sequences. In this document, where experiments were per-
formed on images containing text objects (see section 6), we
chose a mixture of 50% images with relevant objects and
50% images without relevant objects.

6. EXPERIMENTAL RESULTS
We tested our metric on two different test detection algo-
rithms applied to different test databases.

6.1 Evaluating text detection in video frames
The first test dataset contains two algorithms, which have
been developed by the authors [14] [13]. For the sake of
brevity, in the reminder of this paper we call them algorithm
1 and algorithm 2. The two methods have been applied to a
small set of video frames in the CIF format (384×288 pixels),
which have been provided by INA5 and France Telecom.
This small database contains only 14 images, which makes it
possible to visually show the detection results superimposed
on the images (see figure 3). Thus, a direct comparison can
be made between the detected object rectangles and the
object/area performance graphs (figure 4).

The left column of figure 4 shows object recall and pre-
cision depending on the constraints imposed on area recall.

5The French national institute in charge of the archive of
the public television broadcasts.

Object recall and precision decrease only slowly when tr ap-
proaches 1, which means that most of the object rectangles
are detected with their entire area. Note, that the object
recall graph drops faster for algorithm 2, illustrating a lack
of the algorithm to detect the whole area of each rectangle.
This can be confirmed looking at the superimposed results
in figure 3a and figure 3b, respectively.

The right column of figure 4 shows object recall and preci-
sion depending on the constraints imposed on area precision.
Object recall and precision drop to zero when tp approaches
1, illustrating the fact that all object rectangles are larger
than the corresponding ground truth rectangles. We can see
that algorithm 1 is more precise, since object recall drops
slower when the tp is increased. Again, this is confirmed
looking at the superimposed results in figure 3.

6.2 The Image Eval text detection competition
results

The second dataset consists of the text detection algorithms
participating at the ImageEval text detection competition
20066. Pierre-Alain Moellic, the organizer of the compe-
tition, kindly provided results of the participants in XML
format. The test image database consists of various im-
ages: postal cards as well as color and black and white pho-
tographs.

Five runs submitted by two different teams have been
evaluated. The performance graphs of the best run for each
team are shown in Figure 5 and the corresponding perfor-
mance values are shown in table 1. The first run seems to
have some performance troubles which can be noted imme-
diately from the low overall performance of 18.3%. Looking
at the graphs we get a clearer picture of the reasons: the left
curve (varying tr on the x-axis) shows that the object re-
lated performance drops drastically when the requirements
on area recall are increased. An object level performance
comparable to the other runs may be achieved when the area
recall requirements are set to a small ε > 0. In order words,
the algorithm detects almost the same number of rectangles
than the better algorithm, but at a very low precision, i.e.
only detecting a very small part of the rectangles.

In general, the performance characteristics of the detec-
tion algorithms are well illustrated by the graphs: the pro-
portion of “recalled” objects and the proportion of false
alarms is immediately visible for the quality a user might
want to impose. Inflection points in the performance curves
show the precision of the detection algorithm. Runs 2 to 5
show a rather flat dependence on area recall, with a drop
of the performance around 80% - which is quite typical of
object detection algorithms, e.g. compared to the graphs
computed on the results of the ICDAR 2003 text detection
competition[15].

Table 1 presents the performance values for each algo-
rithm compared to the metric used during the ICDAR com-
petition, introduced in section 3. The ranking of the algo-
rithms stayed the same, although there are differences in the
different performance values. More important, the interpre-
tation of the values changes: recall according the ICDAR
metric corresponds to the area recall, averaged across all
images, which results in the ambiguity described in section
4. On the other hand, the new recall value corresponds to
averaged object recall and may thus be interpreted as the

6http://www.imageval.org



(a) (b)

Figure 3: Some detection examples: (a) detection algorithm 1 (b) detection algorithm 2



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
x=tr

Recall
Precision

Harmonic Mean

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
x=tp

Recall
Precision

Harmonic Mean

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
x=tr

Recall
Precision

Harmonic Mean

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
x=tp

Recall
Precision

Harmonic Mean

Figure 4: Results on the images shown in figure 3. Top: detection algorithm 1, bottom: detection algorithm
2; Left: varying constraint tr (area recall) while tp is constant and equal to 0.4, right: varying constraint tp

(area precision) while tr is constant and equal to 0.8;

Method Recall Precision H.Mean

ICDAR Metric (eq. (4))
Run 1 31.0 23.6 26.8
Run 2 65.1 48.3 55.4
Run 3 67.7 48.0 56.2
Run 4 67.9 47.6 56.0
Run 5 68.9 48.8 57.1

New Metric (eq. (11))
Run 1 18.3 15.9 17.0
Run 2 55.1 42.4 47.9
Run 3 57.6 42.3 48.8
Run 4 58.0 42.0 48.8
Run 5 59.7 43.8 50.5

Table 1: Single performance values on the Image
Eval 2006 data set.

proportion of correctly detected objects, averaged across the
whole range quality constraints a user might want to impose.
Precision is interpreted in a similar manner.

7. DISCUSSION AND CONCLUSION
In this paper we have presented a novel method to evaluate
object detection algorithms. The proposed method is appli-
cable to any kind of object, as long as the detection result
may be represented by a list of rectangles.

We introduced diagrams containing 2D graphs which de-
pict measures on object level depending on quality con-
straints, making easy a clear and intuitive interpretation.
A clear distinction is made between a quantitative evalu-
ation of the detection algorithm and a qualitative evalua-
tion. The dynamics of the graphs illustrate the behavior of
the detection algorithm against different quality constraints
which might be imposed by a user. The proposed evalua-
tion method overcomes several shortcomings of the existing

approaches, notably the ambiguity problem which follows
from the direct accumulation of overlap proportions. Since
the performance values are calculated on object level, a user
can directly see the number of correctly detected objects and
the amount of false alarms.

For the comparison of different detection algorithms we
have proposed a single performance measure which is di-
rectly derived from the performance graphs.

Our evaluation method is based on the amount of overlap
between the ground truth rectangles and the result rectan-
gles, not on the location of this overlap. In many applica-
tions, e.g. in the case of text detection, however, the amount
of overlap between two rectangles is not a perceptively valid
measure of quality: Error space around the rectangle might
be less harmfull than a concentration of the error space at
one side of the rectangle.

As specified in section 4.4, in order to prevent the rejec-
tion of detection results as the one in figure 2, the precision
constraint tp is set to a very low value. This is necessary
because the error surface grows with the square of the addi-
tional rectangle length (or height). However, we still might
want to reject detections of cases where the error is concen-
trated at one side of the rectangle.

A statistical test using all error pixels would be overkill
given the fact that the functional form of the error distri-
bution is known and that it depends on 4 parameters only:
the absolute differences of the left (respectively right, up-
per and lower) coordinates of the rectangle pair. We chose
therefore a simpler yet more effective method, which directly
checks these parameters. In the more specific case of text
detection, we are more interested in detecting a horizon-
tal disequilibrium. Therefore, we concentrate on two of the
differences measures: the absolute differences of the left (re-
spectively right) coordinates of the rectangles to match need
to be smaller than a constraint which depends on the width
of the ground truth rectangle.



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
x=tr

Recall
Precision

Harmonic Mean

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
x=tp

Recall
Precision

Harmonic Mean

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
x=tr

Recall
Precision

Harmonic Mean

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
x=tp

Recall
Precision

Harmonic Mean

Figure 5: Results on the Image Eval 2006 data set. The two rows show the best run of each participant.
Left column: varying constraint tr (area recall) while tp is constant and equal to 0.4; Right column: varying
constraint tp (area precision) while tr is constant and equal to 0.8;
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