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Learning multimodal behavioral models for 

face-to-face social interaction 

Abstract 

The aim of this paper is to model multimodal perception-action loops of human behavior in face-

to-face interactions. To this end, we propose trainable behavioral models that predict the 

optimal actions for one specific person given others’ perceived actions and the joint goals of the 

interlocutors. We first compare sequential models - in particular Discrete Hidden Markov Models 

(DHMMs) - with standard classifiers (SVMs and Decision Trees). We propose a modification of the 

initialization of the DHMMs in order to better capture the recurrent structure of the sensory-

motor states. We show that the explicit state duration modeling by Discrete Hidden Semi Markov 

Models (DHSMMs) improves prediction performance. We applied these models to parallel 

speech and gaze data collected from interacting dyads. The challenge was to predict the gaze of 

one subject given the gaze of the interlocutor and the voice activity of both. For both DHMMs 

and DHSMMs the Short-Time Viterbi concept is used for incremental decoding and prediction. 

For the proposed models we evaluated objectively several properties in order to go beyond pure 

classification performance. Results show that Incremental DHMMs (IDHMMs) were more 

efficient than classic classifiers and superseded by Incremental DHSMMs (IDHSMMs). This later 

result emphasizes the relevance of state duration modeling. 
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Introduction 

Face-to-face interaction is one of the basic elements of the human social system [1]. 

Nevertheless, it remains a complex and sophisticated bidirectional multimodal 

phenomenon in which partners continually convey, perceive, interpret and react to the 

other person’s verbal and co-verbal displays and signals [2]. Studies on human behavior 

have confirmed for instance that co-verbal cues – such as body posture, arm/hand 

gestures, head movements, facial expressions, and eye gaze – strongly participate in the 

encoding and decoding of linguistic, paralinguistic and non-linguistic information. 

Several researchers have notably claimed that these cues are largely involved in 

maintaining mutual attention and social glue [3]. 

Human interactions are paced by multi-level perception-action loops [4]. A multimodal 

behavioral model aims at simulating perception for action, i.e. analyzing the scene, 

estimating the intended mutual goals and finally predicting and generating multimodal 

behavior of one target party. 

Our challenge is here to train statistical multimodal behavioral models that learn by 

observation of the behavior of one target human subject during human-human 

http://en.wikipedia.org/wiki/Social_system
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interactions i.e. map perception to action given exemplars of joint multimodal 

perceptuo-motor scores (perception-action streams of the interacting subjects). In our 

work, these models are trained from parallel speech and gaze data collected from 

interacting dyads. The challenge was to predict the gaze of one subject given the gaze of 

the interlocutor and the voice activity of both. The long-term goal of this research is to 

endow - via these behavioral models - artificial agents with social skills enabling them to 

engage believable interactions with human interlocutors. In this context, we present and 

compare two candidate models: (1) Hidden Markov Models (HMM) and their different 

versions which take into account an underlying structure of the causal relations between 

perception and action cues over time. (2) Classifiers – Support Vector Machines (SVM) 

and Decision Trees – that perform a direct mapping between perception and action cues 

without any explicit sequential modeling. 

The paper is organized as follows: The first section reviews the state-of-the art of 

statistical analysis and generation of multimodal behaviors in face-to-face interaction. 

The challenging statistical models are described in details in section 2. Section 3 

illustrates the application of our models on data collected in a previous experiment [5]. 

In section 4, all results are given and a comparison between IDHMM and SVM is made. 

We further introduce a specific initialization of the IDHMM model that favors the 

capture of temporal cycles in perception-action loops and we analyze the impact of 

explicit state duration modeling. 

1 Related Work 

This research is a part of Social Signal Processing (SSP) [6] which is a new emerging 

domain, spanning research not only in signal and image processing but also in social and 

human science involving sociology, psychology and anthropology [7]. In recent years, it 

has become an attractive research area and there is an increasing awareness about its 

technological and scientific challenges. SSP essentially deals with the analysis and the 

synthesis of multimodal behavior in social interactions. These are the two main tasks of 

a behavioral model. 

Actually, automatic conversation and scene analysis [8] tries to infer information about 

social activities (e.g. addressing, turn taking, backchannel), social emotions (e.g. 

happiness, anger, fear), social relations (e.g. roles) as well as social attitudes (e.g. degree 

of engagement or interest, dominance) from raw social signals [6]. Several 

computational models have been proposed to cope with these problems. Pentland et al. 

[9] [10] [11] have characterized face-to-face conversations using wearable sensors. They 

have built a computational model based on Coupled Hidden Markov Models (CHMMs) 

to describe interactions between two people and predict their dynamics. The model is 

called the influence model. Otsuka et al. [12] proposed a Dynamic Bayesian Network 

(DBN) to estimate addressing and turn taking ("who responds to whom and when?"). 

The DBN framework is composed of three layers. The first one perceives speech and 

head gestures, the second layer estimates gaze patterns while the third one estimates 

conversations regimes. While the first layer is observable, the others are latent and 

should be estimated. Similarly, in order to recognize individual and group actions, Zhang 
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et al. [13] used a two-layered HMM. The first layer estimates individual actions from raw 

audiovisual data. The second one infers group actions taking into account the 

estimations of the first layer. For social affect detection, Petridis and Pantic [14] 

presented an audiovisual approach to distinguish laughter from speech (for a speaker) 

and showed that this approach outperforms the unimodal ones. The model uses a 

combination of AdaBoost and Neural Networks, where AdaBoost is used as a feature 

selector rather than a classifier. The model achieved a 86.9% recall rate with 76.7% 

precision. In the same context, ANNA (artificial neural network with a feedback loop) 

[15], RNN (Recurrent Neural Network) [16][17] were also used to detect social emotions 

integrating information from both visual and audio data streams. A Decision Tree is used 

in [18] for automatic role detection in multiparty conversations. Based mostly on 

acoustic features, the classifier assigns roles to each participant including effective 

participator, presenter, current information provider, and information consumer. In 

[19], Support Vectors Machines have been used to rate each person’s dominance in 

multiparty interactions. The results showed that, while audio remains the most relevant 

modality, visual cues contribute in improving the discriminative power of the classifier. 

More complete reviews on models and issues related to nonverbal analysis of social 

interaction can be found in [20] [8] [6]. Most of the models discussed above treat only 

perception and scene analysis issues. The behavioral models that we propose go beyond 

conversation analysis, i.e. not only analyze and understand the perceived scene but also 

generate relevant actions from perceived cues. In a behavioral model, the analysis is 

done for the sake of generation: we have to keep in mind that the perception is active 

and that generated actions constantly modify the perception and influence interacting 

agents. 

Actually, the generation of relevant social behaviors is the second scope of SSP. It 

requires robust behavioral models able of predicting the right signals to convey. One 

possible application is to integrate these models into social agents [21] to make them 

able of displaying social actions, social emotions and social attitudes through their 

artificial bodies. Several methods were proposed to model and synthesize human 

behavior. We are particularly interested on data-driven approaches which automatically 

infer the behavioral models from data using machine learning techniques. For instance, 

based on statistical gesture profiles learned from annotated multimodal behavior, Neff 

et al. [22] proposed to generate character-specific gesture styles capturing the individual 

differences of human speakers. The system takes as input arbitrary texts and produces 

synchronized conversational gestures in the style of a particular speaker. Admoni et 

Scassellati [23] introduced a preliminary model for nonverbal behavior generation. The 

model is aimed to be implemented in future work on a socially assistive robot for a 

tutoring application. Using empirical data from teachers and students in human-human 

tutoring interactions, the model (based on KNN algorithm) can be both predictive 

(recognizing the context of new nonverbal behaviors) and generative (creating new 

robot nonverbal behaviors based on a desired context). Only objective evaluation was 

performed: the model achieves 72% accuracy for gesture generation and 78% accuracy 

for eye gaze generation (over 4 regions of interest). For gaze generation, Lee et al. [24] 

implemented an eye movement model based on empirical models of saccades and 

statistical models of eye-tracking data. They notably observed that gaze patterns differ 
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depending on whether a subject is talking or listening and they included this finding in 

their modeling. A face character was synthesized using 3 different types of eye 

movements: stationary, random, and model-based. The subjective test shows that the 

model-generated eye movements look more natural, friendly and outgoing. Morency et 

al. [25] showed that sequential probabilistic models, i.e. HMMs (Hidden Markov Models) 

and CRFs (Conditional Random Fields), can directly estimate listener backchannels from 

a dataset of human-to-human interactions using multimodal output features of the 

speaker (spoken words, prosody and eye gaze). They notably addressed the problem of 

the automatic selection of relevant features and their optimal representation for 

probabilistic models. De kok et al. [26] presented a speaker-adaptive model to predict 

listener responses. The proposed approach based on a collection of individual models 

(trained on one interaction) outperforms the baseline model trained on all interactions. 

This approach first consists in identifying the closest prototypical speaker and further 

predicting the most adequate listener response according to the estimated 

communicative style. Lee et al. [27] used a probabilistic approach to predict speaker 

head nods and eyebrow movements for a virtual agent application. In order to learn the 

dynamics of head nods and the eyebrow movements, the authors explored different 

feature sets and different learning algorithms, namely HMM, CRF and Latent-Dynamic 

CRF (LDCRF). Quantitative evaluation showed that the LDCRF models achieved the best 

performance, underlying the importance of learning the dynamics between different 

gesture classes and the hidden internal orchestration of the gestures. Huang et al. [28] 

explored how a learning-based approach meant to model multimodal behaviors might 

address the limitations of heuristic-based models. They used Dynamic Bayesian 

Networks (DBNs) to model the coordination of speech, gaze, and gesture behaviors in 

narration. The evaluation of this model shows that this learning-based approach 

achieves similar performance compared to conventional rule-based approaches while 

reducing the effort involved in identifying hidden behavioral patterns. Other models 

using learning approaches can be found in [29][30][31][32]. More generally, these 

learning approaches frequently use probabilistic graphical models because of their 

capacity to provide a probabilistic representation of the dynamics of human behavior 

and to model complex multimodal relationships under uncertainty.  

In the next section we will present our statistical data-driven behavioral models. 

Compared to scripted behaviors, they have many advantages: first, they rely on machine 

learning and statistical modeling to intrinsically couple perception for comprehension 

and perception for action, i.e. combine different scopes/windows of interaction analysis 

[33] and organize sequences of percepts and actions into so-called joint sensory-motor 

behaviors. Secondly, both analysis and generation are done incrementally which make 

these models usable for online applications. Thirdly, we show below that our models 

capture the micro-structure and some regularities of the joint behaviors that often 

escape to human expertise. 

2 Modeling sensory-motor behaviors 

We model each situated human/human - and thus human/machine - interaction into a 

sequence of interaction units (IUs) [34]. The number, the extent and the ordering of 
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these IUs depend on the task. The sequencing of the IUs, i.e. their syntax, provides a sort 

of behavioral grammar that chains elementary sensory-motor behaviors. A given IU can 

be seen as an instance of the joint cognitive states of the interacting dyads such as 

“thinking”, “informing”, “listening”, “taking turn”, “glazing over”, etc. A similar concept 

was used in [35] where the authors propose a gaze model (based on the well-known 

Rickel model [36][37]) driven by the cognitive operations of a virtual agent. The Rickel 

model assumes that gaze is closely tied to the agent’s cognitive operations and critical 

gaze events are used to segment the interaction into relevant IUs. These cognitive 

operations may include perceptions of events, the update of beliefs, understanding 

speech, planning, taking etc. In our modeling framework, an interaction unit (IU) further 

conditions the sensory-motor coupling between partners of the conversation: it 

contextualizes the way partners mutually signal their willingness to initiate, regulate, 

give, accept, acknowledge or terminate information exchanges. The achievement of an 

elementary interaction unit may require the sequencing of several sensory-motor states 

(such as mutual gaze, nodding, lip reading, beat gestures, etc.), properly coordinating 

the joint multimodal score and sometimes repeated over time – i.e. cycling – to secure 

the information exchange via multimodal complementarity and redundancy. 

In this section, we present statistical/probabilistic approaches for modeling joint 

multimodal sensory-motor behaviors. These models should be able for a target subject 

(1) to estimate the interaction unit (IU) from perceptual observations (e.g. speech 

activity/gaze fixations of the partner); note that, when the two partners cooperate, this 

IU should ideally reflect the shared mental state of the conversation partners at that 

particular moment; (2) to generate suitable actions (e.g. his own gaze fixations, hand 

gestures or head movements) that reflect the current IU and his current awareness of 

the evolution of the shared plan. 

As matter of fact, we chose HMMs [38] [39] because they have intrinsic sequential and 

temporal modeling capabilities. We compare here their performance with those of two 

well-known powerful classifiers, namely SVMs and Decision Trees. We also investigate 

the contribution of HSMMs compared to simple HMMs. 

2.1 Incremental Discrete Hidden Markov Model (IDHMM) 

As introduced above, an interaction can be seen as a sequence of discrete tasks, sub-

tasks or activities [40]. Thus, in the following, we will consider a situated conversation as 

a sequence of interaction units (IUs) that structure the joint behavior of the 

conversation partners. In our model, we suppose to chain P interaction units; each IU is 

modeled by a single Discrete Hidden Markov Model (                     whose    

hidden states (here sensory-motor states or SMS) model the micro-syntax of IU-specific 

co-variations of the partners’ behaviors. The proper chaining of these HMM obeys a 

task-specific syntax and results from lawful mutual attention and collaborative actions. 

We here consider discrete observations, i.e. observations that can take on one of K 

possible outcomes such as gaze fixations over K regions of interest of the visual field, 

iconic gestures or speech over a finite vocabulary, etc. 
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Hence, the whole interaction is modeled by a global Discrete HMM (           that 

concatenates the different elementary IU-specific models (Figure 1). The global DHMM   

is composed of N hidden SMS (N=   
 
   ). As mentioned before, HMM states are 

associated with homogenous joint sensory-motor behaviors: given T as the length of the 

sequence, the observation vector              is in fact composed of two streams: (1) 

the sensory stream       
 
         collects perceptual cues; (2) the motor stream 

      
          is responsible for initiating actions. The observation vector is then 

defined as follows: 

       
 
   

          (1)  

Note that the sensory stream may include sensory consequences of self-generated 

actions. These may be of different natures: efferent copies of actions, proprioceptive or 

exteroceptive signals (such as involved in oculomotor coordination). Moreover, our SMS 

(Figure 1) intrinsically associate percepts and actions and may collect actual or expected 

responses of a self-generated action as well as motor responses for a perceived event 

that are appropriate to the current IU. Conversely, the discrete sensory observations can 

also include unknown cues: visual cues such as identity of an unknown object or agent, 

the gaze direction of an interlocutor are only available when the target agent is 

effectively gazing to them. One side benefit of joint sensory-motor learning is active 

perception, i.e. action for directing attention and triggering perceptual analysis of the 

region of interest of the audiovisual field. 

2.1.1 Training recognition and generation models 

Given labeled sensory-motor data, the training of IU-specific models is quite straight-

forward and can be done using the classical Expectation-Maximization (EM) algorithm. 

The global transition matrix A is built from the different trained intra-HMM transitions 

matrices (           . In addition, the inter-HMMs transition probabilities are trained in 

order to complete this matrix A. Note that more sophisticated syntactic models such as 

n-grams can be used. 

In practice, at an instant t, only perceptual information is available and actions have to 

be generated according to these input cues. For that reason, once we get the global 

trained HMM, two models are extracted:  

    is a recognition model that selects only perception streams (i.e.       
 

). 

   performs the SMS alignment    with these percepts: 

          
 

            (2)  

    is a generative model that samples the emission matrix B with action 

emission probabilities (i.e.       
 ). Given only the SMS alignment      

performed by   ,    further generates the adequate actions. 

Selection and sequencing of our SMS is solved by the process of HMM states decoding 

[38], usually performed by the Viterbi algorithm which normally runs in an offline mode, 

since it requires to entire sequence as input. We therefore perform online decoding with 
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an alternative approach known as the Short-Time Viterbi (STV), which also allows to 

control latency. It consists of using an expanding window and comparing partial paths 

converging to the same trajectory [41] [42] [43]. In fact, the central idea of this 

algorithm [42] and its variants is that the window is continuously expanding forward 

until a convergence/fusion point is found. When this is the case, the Viterbi algorithm is 

reinitialized from that point. The main advantage of this method is that the solution is 

strictly equivalent to the full Viterbi algorithm. The major drawback is that the fusion 

point can be very far ahead. In this paper, we adopted a bounded version of the STV 

(BSTV): we set up a threshold beyond which the path with maximum likelihood up to a 

given number of frames ahead of the current frame is retained when there is no fusion 

point within that horizon. Although the optimal solution is not always selected, the 

latency is fully controlled. We will show that, in our data, very short latencies do not 

significantly degrade the performance of the decoder. 

 

Figure 1: Management of perception-action loops in a probabilistic scheme linking observations, sensory-

motor states, IUs and task syntax (sequence of IUs). Red Arrow figures here probability density functions, 

notably the emission probabilities governing the distribution of the observed frames at a particular time 

given the hidden state at that time. We figured here perceptual observations with light gray and motor 

observations with dark gray. Note that observations can combine frames sampled at the current time as 

well as in the past. 
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2.2 Incremental Discrete Hidden Semi-Markov Model 

A major limitation of conventional HMMs is state duration modeling. Durations of 

hidden states implicitly follow a geometric distribution which may be inadequate for 

most applications. As an extension of the HMM, the Hidden Semi-Markov Model 

(HSMM) explicitly models the duration or residence time for each state [44]. The HSMM 

is also known as explicit duration HMM [45][38], variable-duration HMM [46], 

generalized HMM [47] and segmental HMM [48]. They have been successfully applied in 

a wide range of domains such as speech processing [49] [50], image and video analysis 

[51] [52], robotics [53], networks security [54], biology [47][55] and financial time series 

[56]. A good review of HSMMs can be found in [44]. Several approaches have been 

introduced to solve the problem of learning and inference in HSMM, including the 

approach described in the Rabiner paper [38] which was initially proposed by Ferguson 

[45] and then improved by Levinson [46] and Mitchell [57]. This later approach uses a 

Forward-Backward algorithm that estimates the joint probability that a state ends at a 

given time and models a series of observations until that time. A more efficient Forward-

Backward algorithm with a lower complexity in time and memory was proposed in 2003 

by Yu and Kobayashi [58]. In our work, we use a recent version of that algorithm [59] 

and the code provided by the authors. 

2.3 SVMs and Decision Trees 

In order to compare the IDHMM model to a baseline system, we propose to apply 

standard classifiers to our estimation problem, in particular SVMs and Decision Trees. 

Both SVMs and decision trees are among the most used and powerful classifiers. In our 

context, each HMM model will be compared to the outputs of two distinct classifiers 

trained with the same data: the first one will estimate the most likely interaction unit 

from perceptual observations while the second one will directly determine the most 

likely actions from perceptual observations. The performance of the classifiers with 

regards of these two tasks will be compared to the performance of the IDHMM 

recognizer    and generator   . In section 3 we will present how we applied all 

proposed models to our dataset. 

3 Experimental setting 

We used the dataset of Bailly et al. [5] who collected speech and gaze data from dyads 

playing a speech game via a computer-mediated communication system that enabled 

eye contact and dual eye tracking. The experimental setting is shown in Figure 2: the 

gaze fixations of each subject over 5 regions of interest (ROI: face, left & right eye, 

mouth, elsewhere) are estimated by positioning dispersion ellipsis on fixation points 

gathered for each experiment after compensating for head movements. The speech 

game involved an instructor who reads and utters a sentence that the other subject 

(respondent) should repeat immediately in a single attempt. The quality of the 

repetition is rated by the instructor. Dyads exchange Semantically Unpredictable 

Sentences (SUS) that force the listeners to be highly attentive to the audiovisual signals, 

notably to lip-read when listening to unknown linguistic content. The experiment was 
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designed to study adaptation: one female speaker called “LN” interacted with ten 

subjects (colleagues of roughly the same age and social status and students) both as an 

instructor for ten sentences and as a respondent for another set of ten sentences. 

 

 

 

Figure 2: Mediated face-to-face conversation [5]. Top: People sit in two different rooms and dialog 

through couples of cameras, screens, microphones and loudspeakers. Gaze of both interlocutors are 

monitored by two eye-trackers embedded in the TFT screens. Note that pinhole cameras and seats are 

positioned at the beginning of the interaction so that the cameras coincide with the top of the nose of 

each partner’s face. Bottom: four regions of fixation are tracked on each speaker’s face: left and right eye, 

mouth and face (mainly the nose ridge).  

3.1 IDHMM and classifiers 

For each dyad, we have two observations streams: voice activity (v1/v2 with binary 

values: on/off) and gaze fixations (g1/g2 towards 5 ROI: face/mouth/left eye/right 

eye/else) of both speakers. Seven interaction units (IUs) [34][60] have been labeled 

semi-automatically (‘Read’, ‘Prephon’, ‘Speak’, ‘Wait, ‘Listen’, ‘Think’ and ‘Else’). The 

task syntax controlling the seven IUs is illustrated in Figure 3. We tested the ability of 

IDHMMs to estimate the IU for the main subject "LN" given her voice activity (v1) as well 

as the voice activity (v2) and gaze (g2) of her conversational partner, and then predict 

her own gaze behavior (g1). Consequently, we use the recognition model    to decode 

              and next    to generate her gaze (g1). The number of hidden states 

was set to 5 per IU resulting in 35 hidden states for the whole IDHMM. Topologies with a 

fixed number of 4 and 6 hidden states per IU were also tested but resulted in no 

significant difference in performance. The rest of parameters (i.e.      )) were 

initialized randomly. For SVMs and Decisions Trees, a first classifier is used to estimate 

the IUs from (v1, v2, g2). Then a second classifier is used to estimate the gaze (g1) from 

the same data. DHMMs are trained with HTK [61], the IDHMM model was implemented 

in Matlab using PMTK3 toolkit [62]. For SVMs/Decision Trees, the Weka java package 

[63] has been used for both training and testing. For all models, 10-fold cross validation 

was applied. 



10 

 

Figure 3: Task syntax: transition matrix between interaction units, darker the color is, higher is the 

transition probability 

3.2 Data-driven dimensioning and initialization of the IDHMM model 

The internal cognitive process presumably differs from one interaction unit to another. 

The IU “Listen” will be surely longer in time and more complex in structure than the IU 

“Prephon”. We therefore varied the number of hidden SMS per IU according to some 

objective criterion. According to observations’ distribution, we propose a methodology 

that allows us to automatically (1) select the adequate number of hidden sensory-motor 

states representing a given IU and (2) initialize the emission probabilities for each 

selected hidden state. In the following we consider three assumptions: 

1. Each observation is associated with a unique sensory-motor state 

2. Observations must have a significant weight in the distribution 

3. The number of states to select must be in a reasonable interval 

These assumptions are not strict. They allow us to initialize model parameters to 

semantically meaningful values. However during EM training, the learned parameters 

may violate these assumptions. The first assumption which uniquely relates 

observations to hidden SMS only initializes emission probabilities. The EM training 

algorithm may of course reconsider these initial distributions of emission and transition 

probabilities as well as IU boundaries. 

We first collected all observations of a given IU and rank these observations in a 

descending order according to their frequency of occurrence. We then select a number 

of observations (SMS) whose cumulative frequency represents at least 90% of the total 

ground truth (assumption 2). We limit the range of SMS to 5-10 in order to preserve the 

relevance of the model (assumption 3). In Figure 4 we show an example of our method 

to determine the appropriate number of hidden states for the IU Listen. The figure 

shows that 15 states should be selected in order to get 90% of the cumulative 

frequency. With 10 hidden states selected, we retain 76% of the information. Table 1 

gives the distribution of observations for the first three selected states for the IU Listen. 

Table 2 shows the number of SMS selected per IU and their corresponding cumulative 

frequency. The new IDHMM model contains 59 hidden states and emission probabilities 

of each state were initialized in a manner to reflect the observed distributions. The rest 

of training stage is similar to the first model. 
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Figure 4:  An example of our method to determine the number of sensory motor states. In this case the 

maximum number (10) SMS are selected for the IU Listen. 

 

 
State1 State2 State3 

Gaze of the interlocutor left eye left eye left eye 

Speech of the interlocutor on on on 

Gaze of the principal subject LN 
left eye mouth right eye 

Speech of the principal subject LN 
off off off 

Table 1: The first three selected sensory-motor states for IU Listen and the dominant observations with 

which they have been initialized 
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Number Weight 

Read 5 99% 

Prephon 8 91% 

Speak 10 89% 

Wait 9 91% 

Listen 10 76% 

Think 10 85% 

Else 7 90% 

Table 2: The number of SMS per IU and their corresponding cumulative frequencies 

 

3.3 The IDHSMM model 

As will be shown in section 4, the data-driven dimensioning and initialization of the 

IDHMM model has some interesting properties, notably for capturing SMS cycles. For 

that reason, we chose to keep the same structure for the IDHSMM: our model contains 

59 hidden states and was initialized in the same way as described in the previous 

subsection. Compared to HMM, the HSMM needs an additional matrix  , in which each 

line describes a discrete distribution of the duration of a sensory-motor state.   is 

defined as follows: 

                           (3)  

Where   is the number of hidden states (59 sensory-motor states),   is the maximum 

duration in frames and                
   . In our training set,   is equal to 101 frames 

(1 frame corresponds to 40ms). The matrix   is computed empirically from data by 

counting for each state i and duration j the number of occurrences of consecutive 

characteristic observations. For the rest of parameters, there is no difference in the 

training process compared to HMM. Thus, the HSMM is fully specified by    

         . Based on the concept of fusion point [42], the Forward-Backward algorithm 

[59] was modified in order to do incremental recognition and generation. In the next 

section we will discuss the results of all proposed models. 
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4 Results 

We will start by presenting in detail the results of the baseline IDHMM model and 

compare its performance with classifiers. Second, the properties resulting from the 

data-driven dimensioning and initialization of IDHMM are discussed. Finally, by 

comparing HMM with HSMM performance, we will demonstrate the relevance of state 

duration modeling. 

4.1 IDHMM results 

Classification accuracy is used to evaluate interaction unit recognition, whereas the 

Levenshtein distance [64] is adopted for the evaluation of gaze generation because it 

provides adequate structural – less sensitive to fine alignments – comparison between 

generated and original signals. In fact, the Levenshtein distance is a metric for measuring 

the difference between two sequences: using dynamic time warping, it computes the 

minimum number of elementary operations (insertions, deletions and substitutions) 

required to change one sequence into the other. From this optimal alignment, recall, 

precision and their harmonic mean (the F-measure) can be directly computed. In this 

paper, all generation rates represent F-measures. 

The mean recognition rate of 92% shows that STV is able to capture the structure of the 

interaction (see Figure 5 and Figure 9). An offline processing with an infinite horizon 

gives the same result which confirms the efficiency of STV performance. However, the 

problem with STV is mastering the output delay. We observe that 80% of latencies are 

less than 5 frames. But maximum values can be very high: in our case, for all subjects, 

the maximum latency was 259 frames which represents an unsuitable delay for real-

time application. BSTV is used to limit these delays. Theoretically, an optimal trade-off 

ought to be sought because of the inverse relationship between performance and 

latency. From Figure 5 and Figure 9, we can see that our IDHMM is able to approximate 

the Viterbi path with low thresholds/latencies at the expense of a small degradation of 

IU recognition (i.e. 89% for a threshold equal to 1 frame). Moreover the mean 

generation performance (59%) is not affected and remains practically the same at all 

thresholds. The IDHMM model with one frame delay has a rate of 89% for interaction 

unit detection and 59% for eye gaze generation. This performance is mainly due to the 

strong proportions of very short latencies: deviations from the global optimal path 

rapidly reconnect when robust cues are encountered. Another important factor is the 

constrained syntax of the task: the chaining of sub-tasks is very regular and highly 

constraints the alignment of interaction units. 

 

http://en.wikipedia.org/wiki/String_metric
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Figure 5: Recognition and generation results using IDHMM as function of threshold/latency (expressed in 

frames, 1 frame is 1/25
th

 of a second) 

4.2 Analyzing speaker-dependent models 

Until this point, the IDHMM is interlocutor-independent (II): for each interlocutor, the 
corresponding II model is trained on the other 9 interactions. We build also interlocutor-
dependent (ID) models [65] [26]: a set of 10 ID models is built using data from each 
dyad. Mirroring the training of II models, each ID model is thus trained on one 
interaction and tested on the 9 remaining ones. The results shows that the II models 
result in better performances compared with ID models: the mean behavior 
outperforms all individual ones. This is not surprising since II models are trained on more 
interactive data. Nevertheless, ID models were further used to study social proximity 
and relation between the subjects. Actually a multidimensional scaling (MDS) analysis 
based on Kruskal’s normalized STRESS1 criterion was performed on ID interaction unit 
recognition and gaze prediction errors (see Figure 6). This analysis of the resulting 
proximity between ID behaviors nicely mirrors known social relationships between our 
target speaker LN and her interlocutors: LN consistently behaves differently when 
interacting with colleagues compared to students. The MDS finely reflects social 
distance: the PhD student supervised by LN is closer than others, junior colleagues with 
permanent positions are positioned far more than PostDocs. As already evidenced by 
Pentland and colleagues [10] [11], joint behavioral models may capture subtle adaptive 
cues that signal pre-existing or developing social relations. Indeed gaze is a very social 
signal and no doubt that social determinants of interaction such as personalities and 
dominance relations are mirrored in gaze behaviors: such by-product of modeling 
deserves further research. Note also that interactive models may capture subtle 
behavioral idiosyncrasies that are difficult to characterize with short-term signal-based 
methods that do not exploit the structure nor the intend of the interaction. 
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Figure 6: An MDS projection of the performances of the ID models cues proximities between interlocutor-

specific behaviors: note its coherence with the a priori clustering of their social relations with “LN” 

4.3 Comparison with classifiers 

In this paragraph, we compare our sequential IDHMM with SVMs and decisions trees 

that do not explicitly perform sequential modeling. Figure 8 clearly shows that there is 

no significant difference between the two non-sequential classifiers. However, the 

IDHMM model (threshold=1) outperforms the two classifiers and the improvement 

provided by this model is quite significant (p<0.05). Moreover, Figure 9 shows that the 

IDHMM model is more efficient in detecting the structure of the interaction. We can see 

that the estimated path of interaction units correctly reflects the predefined syntax of 

the task. In comparison, the SVMs has more difficulty in capturing the organization of 

the real path (see Figure 9) and discards short interaction units: we can see that the 

estimated IUs are principally « Speak », « Wait » and « Listen ». This is in not in 

contradiction with the 81% recognition rate because these three interaction units alone 

represent 85% of the ground truth. This performance gap is mainly due to the sequential 

constraints imposed by HMMs. This lack of sequential organization impairs the 

performance of SVMs and Decision Trees that should exclusively exploit instantaneous 

information provided by the observations. 

4.4 Adding contextual observations 

In a previous work [66], classifiers’ performances were improved by adding memory 

(historical values) to each observation. In fact, at a time t, the classical models only use 

data of that moment. In this new configuration, we added the same three attributes 

(v1,v2,g2) but from a previous instant t-T, where T is an offset parameter which was 

empirically chosen as T=55 frames (~ 2 seconds, see Figure 7). This optimal delay 

corresponds exactly to the one reported in [67] in which authors demonstrate that, if a 

speaker looks at an object, 2 seconds after the listener will most likely be looking at the 

same object. SVMs with contextual attributes lead to a generation rate of 59% (vs. 50% 

in the classic model). Hence, supplying the SVM model with memory relatively 

addressed the missing sequential aspect. 

4.5 Results of IDHMM with data-driven dimensioning and initialization 

The objective comparison between automatic and data-driven initialization of IDHMM 

does not result into significant difference in IU estimation and gaze generation. However 

we notice significant differences in the estimated SMS alignment paths. In Figure 10 (see 
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selected zones), we can see that, when transition probabilities     are randomly 

initialized, the HTK training algorithm ends roughly with a left-right HMM typology. 

However, when initialized with a data-driven counting procedure, the internal structure 

of IU becomes fully connected and exhibits SMS cycles. Figure 11 compares the number 

of such cycles found in ground truth data in comparison with SMS scores computed by 

the randomly initialized IDHMM and the data-driven initialized IDHMM. The number of 

cycles between sensory-motor states for the modified IDHMM is closer to ground truth’s 

number than the baseline IDHMM model. Due to this interesting propriety, we kept the 

same structure for the IDHSMM model. 

 

 

Figure 7: Optimal memory instant for SVMs. A frame equals to 40ms. 

 

Figure 8: Results of the three models: SVMs, Decision Trees and IDHMMs 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 9: Estimation of the interaction units (IUs) for a specific subject (a) using IDHMM (no threshold) (b) 

using IDHMM (threshold=1) (c) using SVMs (d) the real IU path 
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(a) 

 

(b) 

Figure 10: Example of an estimated path (a) in the baseline IDHMM and (b) in the modified IDHMM 
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Figure 11: Number of internal cycles per second performed by sensory-motor states for all models 

4.6 IDHSMM results 

As argued before, state duration in classic HMMs is modeled by a geometric distribution 

which is not appropriate for most of physical signals [38]. We study here the capacity of 

our IDHSMM to overcome such limitations. General comparison results are shown in 

Figure 12. As we can see, recognition rates are almost the same for IDHSMM and 

IDHMM (90% vs. 89%). However, generation rates are significantly better for IDHSMM 

(63% vs. 59%). Note that this improvement stands also for non incremental processing: 

HSMM also outperforms HMM for generation (64% vs. 59%). The better performance in 

gaze generation is due to the capacity of IDHSMM to circumvent the duration of 

generated fixations. In fact, Figure 13 displays mean durations of each region of interest 

(face, right eye, etc) generated by IDHMM and IDHSMM. Compared to ground truth, the 

mean durations of gaze generated by IDHSMM are better than those of IDHMM in four 

of the five regions of interest. Another important result is that IDHSMM better captures 

sensory-motor cycles (see Figure 11). As a conclusion, IDHSMM generates more 

accurate SMS durations and then leads to more relevant motor scores. 
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Figure 12: Comparison results between IDHMM and IDHSMM 

 

Figure 13: Comparison of mean duration of each region of interest between IDHMM and IDHSMM (for all 

subjects). Notice that no region of interest corresponding to “Face” was generated by IDHMM. 

5 Conclusions 

In this paper, we presented a comparative study of behavioral models designed to 

model face-to-face social interaction. A first model called IDHMM is introduced in which 

subtask-specific sensory-motor HHMs are trained and split into sensory HMMs for 

subtask recognition and motor HMMs for motor generation. Short-term Viterbi with a 

limited horizon is used to perform incremental recognition and generation. We have 

seen that even with low thresholds (up to one frame ahead), performances of the model 

are not significantly degraded. A remarkable property of this behavior model is the 

estimation of behavioral proximities between interlocutors. This could be exploited for 
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social evaluation but also to organize and select behavior models most suited to an 

unknown subject. Compared to classic classifiers (SVMs and decisions trees), the 

IDHMM model showed better performances thanks to its sequential modeling 

properties. In addition, classifiers like SVMs could result in good performance if a certain 

memory (~2 seconds in our case) was included in the input observations. Moreover, we 

show that data-driven dimensioning/initialization of the IDHMM improved the modeling 

of SMS cycles, and that explicit modeling of state duration improves substantially the 

generation figures.  

In this paper, we argue that the sole quest for performance, ignoring properties of the 

generated signals (e.g. here state durations, loops patterns) may be misleading. One 

contribution of our paper is a thorough evaluation of the generated interactions with 

respect to properties that go beyond pure classification performance. The data mining, 

machine learning and objective evaluations have been facilitated by the repetitive 

structure of our interactions that maximize statistical coverage of IU realizations. Our 

next challenge is to scale up our behavioral models to larger sets of observations and IUs 

using more sparse interaction scores. Another challenge is to extract a minimal set of 

generic IUs that can bootstrap developmental learning of more complex interaction 

tasks and adapt to various users and situations thanks to principal modes of variation 

such as sketched in section 4.2. 

Note also that the evaluation figures are totally objective and performed off-line. The 

statistically significant differences between performances do not prejudge for the results 

of on-line processing: small differences in the generated scores may result in large 

differences in reactive human behaviors and interaction management. For that reason, 

we are currently implementing those models on iCub robot, put the robot on a real face 

to-face interaction and get a subjective evaluation of the relevance of our models. We 

recently recorded also richer scenarios (with a larger number and higher branching 

factor of IUs) and larger sensory-motor scores (head and hand gestures in addition to 

gaze). We plan to apply our models to this new data, explore the best models, and then 

implement them on the robot. 
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