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ABSTRACT
In this paper we compare several directed and undirected
graphical models for different image segmentation prob-
lems in the domain of document image processing and anal-
ysis. We show that adapting the structure of the model to
specific sitations at hand, for instance character restoration,
recto/verso separation and segmenting high resolution char-
acter images, can significantly improve segmentation per-
formance. We propose inference algorithms for the different
models and we test them on different data sets (manuscripts
and printed text of different qualities).

1. INTRODUCTION

The segmentation of printed or hand written document im-
ages is an important step for several applications, either as
a post processing step for OCR, text/graphics separation,
physical and logical page segmentation, or as a goal in it-
self, for instance in document restoration tasks. Bayesian
estimation and probabilistic graphical models are a power-
ful tool which allow to model the statistical distributions
of observed and hidden values and to take into account the
statistical relationships between them. Although there is
a wide variety in model families and types, in the domain
of document segmentation the most frequently used models
are flat Markov random fields (MRF) [1, 2, 3, 4, 5].

In this paper we make the case of adapting the model
structure to the type of document at hand, to the imag-
ing conditions, the specific application etc. We show that
choosing the model structure according to very simple cri-
teria, e.g. the scanning resolution, may significantly boost
the classification results.

In the following we will present graphical models de-
fined on directed or undirected graphs, where each node
corresponds to a random variable which may be hidden or
observed. Hidden variables are denoted as Fi and take val-
ues from an alphabet Λ = {1, 2, . . . C}. Observed variables
are denoted as Di, and are related to the grayvalue or color
information of a pixel or a group of pixels. Depending on
the type of the model, the indices i are related to spatial
position, scale etc.
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Fig. 1. Different graphical models: flat MRF (a), double
layer MRF (b), quad tree (c) cube (d) flat MRF with large
3× 3 cliques (e)

In the classical case of a flat MRF defined on the im-
age pixels, the observed variables correpond to grayvalues
or colors, and the hidden variables correspond to classifi-
cation results for a single pixel. Figure 1a shows the de-
pendency graph for 4-pixel MRF with second order cliques
on horizontal and vertical neighborhood relationships: ob-



served nodes are shown as shaded, hidden nodes are empty.
The maximum a posteriori (MAP) estimator will return re-
alizations fi of the hidden variables Fi maximizing the joint
probability p(f, d) of the hidden and observed variables.
The prior probability p(f) is defined through the energy po-
tentials of the cliques involving hidden labels.

The paper is outlined as follows: sections 2, 3 and 4
present types of graphical structures which extend the pos-
sibilities of MRFs in order to more precisely model spe-
cific situations or applications, namely recto/verso separa-
tion, scale behavior, and character restoration, respectively.
Section 5 deals with inference algorithms for the presented
models and section 6 compares the models in terms of
restoration power. Section 7 finally concludes.

2. SEPARATELY MODELING RECTO AND VERSO

In segmentation and restoration applications, the Potts
model is frequently used to favor the segmentation of homo-
geneous regions. It defines the energy potentials of cliques
involving hidden labels only as follows:

UPotts(f) =
∑
{s}∈C1

αfs +
∑

{s,s′}∈C2

βs,s′δfs,fs′ (1)

where C1 is the set of single site cliques, C2 is the set of pair
site cliques and δ is the Kronecker delta defined as δi,j=1
if i=j and 0 else. The model is parametrized through α and
βx, where x denotes a direction index (horizontal, vertical).

In the case of bleedthrough removal, where information
from the verso side is showing through and must removed,
each hidden label may take values in (recto, verso and back-
ground). In this case, the hypothesis of homogeneous re-
gions is not justified anymore, since the unknown and unde-
graded source information is composed of two sources im-
ages, and a priori knowledge may be available for each of
the source images, but not for the mixture of these images.

The situation can be modeled with two different hid-
den fields, F 1 and F 2, connected through a single observed
field D, and where the hidden labels may take two different
values (text and non-text). The advantages of this formula-
tion are two-fold: first, the priors regularize fields which di-
rectly correspond to the natural process “creating” the con-
tents (e.g. hand writing letters). Second, estimating verso
pixels which are shadowed by recto pixels, which is only
possible with two separate fields, is not just desirable in the
case where the verso field is needed. More so, a correct es-
timation of the covered verso pixels, through the spatial in-
teractions encoded in the MRF, helps to correctly estimate
verso pixels which are not covered by a recto pixel, thus
increasing the performance of the algorithm.

The dependency graph of the model is shown in Figure
1b. It is composed of two hidden fields with pairwise cliques
connected through cliques containing two hidden variables

and an observed variable. Assuming that the 2-node cliques
involving pairs ∈ F 1 × F 2 have zero potential, a property
which can be derived from the application, we can easily
see from the way the cliques connect F 1, F 2 and D, that
the following holds (see also [6]):

U(f1, f2, d) = UPotts(f1)+UPotts(f2)+UObs(f1, f2, d)
(2)

where UObs is an observation model which factorizes over
pixels, i.e. which decomposes into cliques containing hid-
den and observed variables related to same pixel only.

Transforming the clique energy potentials back to prob-
abilities using the Hammersley-Clifford theorem [7], we
can see that the prior probability P (f1, f2) is actually the
product of the two probabilities of the two fields P (f1) and
P (f2). In other words, the writing on the recto is indepen-
dent of the writing on the verso page, which makes sense
since the two different pages do not necessarily influence
each other — they may even have been created by different
authors. However, this independence only concerns the sit-
uation where no observation has been made. In the presence
of observations (the scanned image), the two hidden fields
are not independent anymore due to the cliques involving
pairs of hidden variables and one observed variable. Intu-
itively speaking this can be illustrated by the following ex-
ample: if the observation of a given pixel suggests that at
least one of the document sides contains text on this spot
(e.g. the gray value is rather low for a white document with
dark text), then the knowledge that the recto label is back-
ground will increase the probability that the verso pixel will
be text.

Assuming 100% opaque ink, Gaussian color variations
and eventual Gaussian noise of the scanning device (see
also [6]) as well as the usual conditional independence as-
sumption, the expressionUObs(f1, f2, d) of the observation
model factorizes as follows:

P (d|f1, f2) =
∏
s

N (ds; µf1
s ,f

2
s
,Σf1

s ,f
2
s
) (3)

The parameters of the Gaussian distributions (means and
covariances) depend on the labels of each site s, result-
ing in three different distributions — the distributions for
f1
s=1, f2

s=0 and f1
s=1, f2

s=1 are the same.

3. MODELING SCALE BEHAVIOR

Hierarchical models introduce a scale dependent compo-
nent into the segmentation algorithm, which allows the al-
gorithm to better adapt itself to the image characteristics.
The nodes of the graph are partitioned into different scales,
where lower scale levels correspond to finer versions of the
image and higher scale levels correspond to coarser versions
of the image. Examples are stacks of flat MRFs [8], pyra-
midal graph structures [9] and the scale causal multi-grid
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(a) (b)

Fig. 2. A one dimensional representation of the extension
of the quad tree — shown as a dyadic tree (a) — to the cube
(b). In both figures the observed nodes have been omitted.

[10]. The computational complexity issues encountered by
these models have been tackled by Bouman and Shapiro
who where the first to propose a causal hierarchical model
for image segmentation [11] (refined by Laferte et al. [12]).
A quad tree models the spatial interactions between the leaf
pixel sites through their interactions with neighbors in scale,
as shown in figure 1c. The main problem of the quad tree
structure is the non stationarity it induces into the random
process of the leaf sites, which results in “blocky” artifacts
in the segmented image — a serious problem in document
image processing.

We proposed an extension of the quad tree to a cube
structure [13] shown in figure 2, where for easier representa-
tion the one dimensional case — a dyadic tree — is shown.
Figure 2a shows the standard tree. First, a second dyadic
tree is added to the graph, which adds a common parent to
all neighboring leaf sites which did not yet share a common
parent. In the full two dimensional case, three new quad
trees are added. The problem is solved for the first level,
where the number of parents increased to 4 (for the full 2D
model). We repeat the process for each level. New trees
connect sites of the original quad tree, but also sites of the
trees added at the lower levels. The final result can be seen
in figure 2b. Note, that the final graph is not a pyramid any-
more, since each level contains the same number of nodes.
In general, each node has 4 parents (2 in the 1D representa-
tion) except border nodes.

The resulting full Markov cube including observed
nodes is a belief network, a small example part of the 2D
case is shown in Figure 1d. The model is parametrized
through three probability distributions: the discrete prior
distribution of the top level labels p(f), the transition prob-
abilities p(fs|fs−), where the sites s− are the parents of
site s, and the likelihood of the observed nodes given the
corresponding hidden nodes p(ds|fs). For the inference al-
gorithm, observations at different cube levels are needed.
The only available observations are at the base level, but the
higher levels can be calculated recursively, e.g. through a
mean filter.

4. MODELING CHARACTER SHAPES

In some applications the document images are of very low
resolution, for instance when we deal with screen text ex-
tracted from video sequences or captured with cell phones.
In this case we encounter characters having widths and
heights of a few pixels only, therefore the classical goal of
favoring homogeneous regions is not applicable anymore.
On the other hand, it might be desirable to learn the charac-
ter shapes in order to restore degraded characters [14].

This can be achieved by defining a prior model on bi-
nary labels and a very large neighborhood, for instance 4×4
pixel cliques. A dependency graph of a smaller version on
3×3 pixel cliques is shown in Figure 1e. Characterizing the
shapes of the different characters rules out simple paramet-
ric potentials as the Potts model (1), and simple tabulariza-
tion of the clique potentials is not possible, since we would
need to specify the energy potentials for a large number of
clique labellings (2B = 65535, where B=16 is the clique
size). A different approach is to learn the clique potentials
from training data. The absolute probability of a clique la-
beling θi composed of B binary values can be estimated
from the frequency of its occurrence in the training images.
The probability can be converted into a clique potential as
follows:

U(θi) = − 1
B
ln(P (θi)) (4)

Not all of the theoretically possible clique labellings are
found in the training images, so the question arises how
to find the potentials for the missing cliques. One solution
is Hancock-Kittler smoothing proposed by Milun and Sher
[15]. The probability distribution of the clique labelings is
smoothed using the following function:

P ′(θi) =
∑
θj

P (θj)pH(i,j)(1− p)B−H(i,j)

where H(i, j) is the Hamming distance between θi and θj .
p is the smoothing coefficient, higher values denote more
smoothing.

5. INFERENCE

A part from the quad tree, the discussed dependency graphs
contain cycles (not taking into account the edge direction
in the case of directed graphs). In the general case, mini-
mizing the corresponding energy functions is therefore NP-
hard [16]. The functions are generally not convex so stan-
dard gradient descent methods will most likely return a bad
local minimum. Simulated Annealing has been proven to
return the global optimum under certain conditions [17] but
is painfully slow in practice.

For some specific classes energy functions, minimiza-
tion with graph cuts is a very fast technique to get the global
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Fig. 3. Cut graphs used for energy minimization of two
different models: double layer MRF (a) Markov cube (b)

minimum, or at least a very good local minimum [16]. A
very easy case concerns binary labels and pairwise poten-
tials U2 satisfying the following submodularity constraint:

U2(0, 0) + U2(1, 1) ≤ U2(0, 1) + U2(1, 0) (5)

Applied to the double MRF model (section 2), it can easily
be seen that this is the case of the terms corresponding to
the Potts model (1), but not necessarily for all terms corre-
sponding to the observation model. According to the value
of the observation ds at site s, the corresponding term may
be submodular or not.

The problem can be solved approximately by iteratively
fixing the hidden labels of one of the two fields F 1 and F 2

and estimating the labels of the other one. More precisely,
not all sites of one of the fields are fixed, but only the vari-
ables whose sites s are not regular. The variables F 1

s and
F 2
s for the regular sites s are estimated jointly. Figure 3a

shows an example cut graph constructed for a one line three
pixel image with two submodular sites [6].

The best choice of inference technique for the Markov
cube (section 3) may depend on the form of the function
parameterizing the transition probabilities p(fs|fs−). In the
general case, loopy belief propagation gives an approxima-
tive solution [13]. However, for a large sub class with in-
teresting properties, excellent graph cut solutions can be
found, for instance for a regularizing term based on the
number of parent labels which are equal to the child label:

p(fs|fs−) =
1
Z
α
ξ(fs,fs− )

l (6)

where αl is a parameter depending on the level l, ξ(fs, fs−)
is the number of labels in fs− equal to fs and Z is a nor-
malization constant. The so defined transition probabilities
favor homogeneous regions, which corresponds to the ob-
jective of an image segmentation algorithm. We can de-
compose this expression into a sum of binary terms:

ln p(fs|fs−) =
∑
s′∈s−

[(lnα) δfs,fs′ ]− Z (7)

(a) (b)

Fig. 5. A small part of the segmentation results obtained on
high resolution images: (a) MRF (b) Markovcube.

where δa,b is the Kronecker delta. Since each binary term is
submodular, a global solution can be obtained using graph
cuts. Figure 3b shows an example cut graph constructed for
the dependency graph of Figure 1d.

Since the large majority of the energy terms for the large
clique MRF (section 4) are in general not submodular, graph
cut optimization is not applicable in this case. Similarly,
loopy belief propagation will be too costly since it is expo-
nential in clique size. A standard technique in these situa-
tions is simulated annealing [17].

6. EXPERIMENTAL RESULTS

To evaluate the different models and inference algorithms
we tested them on real applications. The double layer MRF
and the Markovcube have been tested on medium and high
resolution images of low quality printed manuscripts from
the 18th century. The objective was restoring the images
degraded with ink bleedthrough, i.e. removing the verso
component from the recto scan, which makes it a three class
segmentation problem. The medium resolution dataset con-
tained 104 images and the high resolution dataset contained
9 images. The difficulties of the two datasets in terms of
image contents were different, the results are therefore not
comparable across datasets. We tested the methods’ abili-
ties to improve the performance of an OCR algorithm and
compared them to several widely cited algorithms: k-means
clustering, a flat Markov random field (MRF) with graph
cuts optimization [16], as well as two well known methods1

based on source separation [18, 19].
Figure 4 shows parts of the restoration results on

medium resolution images together with OCR results. The
restored images are obtained by replacing all pixels classi-
fied as verso by the means of the grayvalues of the surround-
ing pixels classified as background. Figure 5 shows parts of
the segmentation results on high resolution images.

We manually created groundtruth and calculated the re-
call and precision measures on character level, which are

1We thank Anna Tonazzini for providing us with the source code of the
two source separation methods and her kind help in setting up the corre-
sponding experiments as well as for the interesting discussions.



lc dir triicfgitar le delr t.tiPce tat le delr ttiftc tat le defir trie tat — no result —
Input image K-means Single MRF [16] Double layer MRF Tonazzini [18] - SP 1

— no result — Qc gicfx t1;1ftc% grat — no result — — no result — le delit trie tat
Tonazzini [18] - SP 2 Tonazzini [18] - SP all Tonazzini [19] - SP 1 Tonazzini [19] - SP 2 Sauvola [20]

Fig. 4. Restoration and OCR results obtained on medium res. images. SP denotes the source plane for ICA based methods.

104 med. res. images 9 high res. images 5 low res. images
Method Recall Precision Recall Precision Accuracy
No restoration 65.65 49.91 � � −
Niblack [21] (segm. only) � � − − −
Sauvola et al. [20] (segm. only) 78.75 66.78 − − 79.0
K-Means (k=3) 78.57 69.43 61.23 51.74 −
Tonazzini et al. [19] ‡ 41.00 ‡ 30.05 − − −
Tonazzini et al. [18] � � − − −
Tonazzini et al. [18] - all 3 sources ‡ 50.52 ‡ 33.90 13.13 25.43 −
MRF - Potts & α-exp. move [16] 81.99 72.12 69.10 58.42 −
MRF 4× 4, simulated annealing − − − − 82.0
Double layer MRF 83.23 74.85 75.76 68.08 −
Markovcube & graph cut − − 69.34 61.19 −

� Low quality result : correct evaluation impossible
‡ Low quality result: evaluation of a subset of the images only

Table 1. Evaluation of OCR improvement by different restoration methods when applied to scanned document images. Three
different datasets have been used with different difficulties. The results are not comparable across datasets.

given in table 1. Surprisingly, the recognition performance
on the results of the two source separation results was very
disappointing. Unfortunately, the recognition performance
on these results was not good enough for the whole datasets,
we give results only on partial datasets only.

The methods based on graphical models outperform all
other methods. Not surprisingly, the double layer MRF per-
forms best since it has been designed for recto/verso sep-
aration. However, we can also note that the (single layer)
Markovcube outperforms the single layer MRF on the high
resolution images. On image segmentation problems not re-
lated to recto/verso separation the Markovcube is therefore
able to improve the performance of flat models, which can
be explained by its ability to take into account the image
characteristics at multiple scales. A double layer Markov
cube could further boost performance.

The large clique MRF has been tested on a binarization
task and low resolution images, a configuration which it has

(b)(a)

Fig. 6. Low resolution example binarized with Sauvola’s
method (a) with the MRF method (b)

been designed for. We compare two different techniques:
adaptive document binarization by Sauvola et al. [20] as
well as the large clique MRF with a Gaussian observation
model corrected by Sauvola et al.’s algorithm [14]. As ta-
ble 1 shows, the learned clique potentials significantly im-
prove OCR performance. Figure 6 shows a zoom of a single
character of the dataset binarized with both methods.



7. CONCLUSION

We compared several different graphical models on docu-
ment image segmentation tasks. As pointed out, the models
perform best on the images they have been adapted for. Ap-
plied to the 3 class recto/verso separation problem, the dou-
ble layer MRF performs best since it takes into account the
specific situation of two independent sources images. The
Markov cube is able to outperform the flat MRF model on
high resolution images, although on the recto/verso prob-
lem it does not perform better than the double layer MRF. A
double Markov cube might further improve results on high
resolution recto/verso separation problems. The large clique
MRF with non parametric learned energy potentials finally
is able to restore characters in very low resolution images.
Perspectives are extensions to discriminative models and/or
to pairwise or triplet Markov models.
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