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Résumé

Cette thèse s’intéresse à deux problématiques liées et complémentaires, à savoir l’estimation de la posture
humaine et la reconnaissance des activités humaines. Il s’agit d’étapes importantes dans de nombreuses
applications, tels que les interfaces informatiques humaines, les soins médicaux, la robotique, la surveil-
lance et la sécurité, etc. Malgré les efforts continus dans ce domaine, ces problèmes ne sont toujours
pas résolus, en particulier dans des environnements non-coopératifs. L’estimation de la posture et la re-
connaissance d’activités posent de nombreux défis, comme les occultations , les variations de points de
vues, de morphologies humaines et d’apparences physiques, les fonds complexes, la nature articulée du
corps humain et la diversité des comportements des personnes. L’usage de la profondeur permet de gérer
les problèmes liés à l’arrière-plan et à l’apparence. En revanche, son application est limitée à des faibles
distances entre capteurs et objets d’intérêt. En conséquence, ces types de méthodes sont peu adaptées à
des scénarios non coopératifs. Plus précisément, nous avons envisagé des scénarios de reconnaissance
d’actions où la position du capteur visuel n’est pas fixée, et qui nécessitent une méthode invariante au
point de vue.

Dans la première partie, nous nous sommes concentrés sur la reconnaissance d’actions complexes
dans des vidéos. Nous avons exploré plusieurs méthodologies et avons introduit une représentation
spatio-temporelle en 3D, qui décrit une séquence vidéo de manière invariante au point de vue. Plus
précisément, nous avons caractérisé le mouvement de la personne pour une durée limitée en utilisant un
capteur de profondeur et nous l’avons encodé de manière compacte pour représenter l’activité effectuée.
Un descripteur de caractéristiques en 3D a ensuite été utilisé pour construire un dictionnaire, qui regroupe
des caractéristiques communes. Les activités sont reconnuées à l’aide d’une approche de type “bag-of-
words”.

Pour la deuxième partie, notre objectif était l’estimation de posture articulée, une étape intermédiaire
fréquemment utilisée pour la reconnaissance d’activités. Notre motivation était d’incorporer des infor-
mations obtenues à partir de plusieurs des vues, et de les fusionner. Nous avons proposé une extension du
modèle de mélange de parties à une gestion de plusieurs vues. Nous avons démontré que les contraintes
géométriques et de cohésion d’apparence sont particulièrement efficaces pour renforcer la cohérence en-
tre les points de vue. Par ailleurs, notre approche est capable de gérer les auto-occultations et d’améliorer
la robustesse.





Abstract

Estimating human pose and recognizing human activities are important steps in many applications, such
as human computer interfaces (HCI), health care, smart conferencing, robotics, security surveillance
etc. Despite the ongoing effort in the domain, these tasks remained unsolved in unconstrained and non
cooperative environments in particular. Pose estimation and activity recognition face many challenges
under these conditions such as occlusion or self occlusion, variations in clothing, background clutter,
deformable nature of human body and diversity of human behaviors during activities. Using depth
imagery has been a popular solution to address appearance and background related challenges, but it has
restricted application area due to its hardware limitations and fails to handle remaining problems.

Specifically, we considered action recognition scenarios where the position of the recording device is
not fixed, and consequently require a method which is not affected by the viewpoint. As a second prob-
lem, we tackled the human pose estimation task in particular settings where multiple visual sensors are
available and allowed to collaborate. In this thesis, we addressed these two related problems separately.

In the first part, we focused on indoor action recognition from videos and we consider complex ac-
tivities. To this end, we explored several methodologies and eventually introduced a 3D spatio-temporal
representation for a video sequence that is viewpoint independent. More specifically, we captured the
movement of the person over time using depth sensor and we encoded it in 3D to represent the performed
action with a single structure. A 3D feature descriptor was employed afterwards to build a codebook and
classify the actions with the bag-of-words approach.

As for the second part, we concentrated on articulated pose estimation, which is often an intermediate
step for activity recognition. Our motivation was to incorporate information from multiple sources and
views and fuse them early in the pipeline to overcome the problem of self-occlusion, and eventually
obtain robust estimations. To achieve this, we proposed a multi-view flexible mixture of parts model
inspired by the classical pictorial structures methodology. In addition to the single-view appearance of
the human body and its kinematic priors, we demonstrated that geometrical constraints and appearance-
consistency parameters are effective for boosting the coherence between the viewpoints in a multi-view
setting.

Both methods that we proposed was evaluated on public benchmarks and showed that the use of
view-independent representations and integrating information from multiple viewpoints improves the
performance of action recognition and pose estimation tasks, respectively.

Keywords Activity recognition, articulated pose estimation, multi-view settings
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Chapter 1

Introduction

This chapter introduces scientific context, topics covered and research challenges addressed in this
manuscript. First, context of the research is introduced and application areas are discussed. Then, the
main problem that this thesis addresses is presented on Section 1.2 and research goals are introduced.
Contribution of this work towards the indicated problems are given in Section 1.3, and finally Section
1.4 describes the outline of the manuscript.

1.1 Context

Figuring out what is happening on an image or a video, or interpreting a scene is a non-trivial task
for computers. Understanding an image is a long sought effort and many domains of computer vision
such as object recognition, object tracking, activity recognition, pose estimation and others have been
popular research topics for many years. These researches have a very large variety of application areas
ranging from industrial automation to entertainment, and from health care to security surveillance. In
this thesis, we focus on activity recognition and articulated pose estimation of people in presence of
multiple cameras.

Recognizing human activities in images or videos is an important notion in many applications, such
as human-computer interfaces, health care and dementia care1, smart conferencing, robotics, security
surveillance, advertisement and many more. Figure 1.1 depicts examples from activity two datasets that
consist of several actions performed in a realistic kitchen environment and university environment.

Articulated human pose estimation is the task of predicting positions of limbs and other parts of a
person given visual data, with respect to a reference system that is based on image or on real world.
Estimating the pose is a building block in many vision tasks such as tracking, activity recognition and
video indexing, and 2D pose estimation can be an input for 3D pose estimation task. Furthermore, it
is more or less directly employed on industrial applications such as human-computer interaction and
entertainment, tracking based security systems and motion capture systems as illustrated on Fig. 1.2.

The availability of cameras nowadays is remarkably higher compared to past. This abundance of

1Seventh framework programme by EU, Dementia Ambient Care: Multi-Sensing Monitoring for Intelligent Remote Man-
agement and Decision Support - http://www.demcare.eu/, last accessed on 20/03/2017

http://www.demcare.eu/
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Fig. 1.1 Top: Sample images from The KIT Robo-Kitchen Activity Data Set [234], demonstrating various
kitchen related activities in a household environment. Bottom: Samples from LIRIS Human Activities
Dataset [327] showing everyday activities recorded in an uncontrolled environment.

Fig. 1.2 Examples of commercial markerless motion capture systems from MetaMotion2(left) and Or-
ganicMotion3(right).

visual sensors can often be leveraged, for instance where multiple cameras are installed to observe the
scene from different viewpoints. With an appropriate approach, information gathered from multiple
sources can be fused, and produce collaboratively more reliable and precise information. To that end, the
need for algorithms that can perform regardless of their view angle are exceptionally important.

In the next section, the scope of this research will be defined as well as the tackled problems. Addi-
tionally, the motivation of the thesis and research goals are presented.

2Company website - http://www.organicmotion.com/motion-capture/, last accessed on 21/03/2017
3Company website - http://metamotion.com/, last accessed on 21/03/2017

http://www.organicmotion.com/motion-capture/
http://metamotion.com/
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1.2 Problem and Objectives

For this thesis, we consider two separate but related problems for challenging and uncommon view angle
geometries. Problems are defined in the following, and corresponding research goals are stated thereafter.

First, there are numerous methods for recognizing human activities from video sequences, but they
are often tailored for specific scenarios and particular cases as discussed in literature review in Chapter 2,
therefore their robustness against viewpoint changes are debatable. It is desirable to establish a technique
where the position of the camera carries minimal or no impact on the recognition performance. This
can either be achieved by building a classification scheme that can directly handle all types of video
inputs; or by formulating an intermediate representation that can be view-invariant by its nature, that is,
establishing an operation that takes video with any kind of viewpoint as input and outputs a standardized
representation. The former clearly requires very large datasets with a high variance of camera angles
and ought to be hard to achieve enough generalization even in that case, while the latter can be achieved
with comparably smaller amount of data and a suitable approach for representation. Thus, our first
motivation is to propose a representation that is robust against viewpoint variation, albeit uncomplicated
for classification.

The second problem involves articulated pose estimation, which can be estimated in 2D or 3D and
from RGB or depth data. Whereas the problem has been almost solved for easy instances, such as co-
operative settings in close distance and depth data without occlusions, other realistic settings present a
notable challenge, nevertheless. In particular, pose estimation from RGB input in non-cooperative set-
tings is an ongoing effort and a very active research topic. We consider scenarios where multiple cameras
are available and are able to cooperate, and we aim for a solution for these particular cases. Consequently,
our second motivation is to propose a method that can leverage the visual data acquired from different
viewpoints to achieve a reliable and accurate pose estimation. Furthermore, such a method can be ex-
ploited to its maximum if it is possible to evaluate on the fly the adequacy of available viewpoints to
support the consistency for a part. We are additionally motivated to explore such a technique that will
grant us control over the part based contributions of each viewpoint.

These two problems can be consolidated under the broader notion of geometrical flexibility for com-
puter vision tasks.

1.3 Contributions

In the previous section, targeted problems and research objectives of this thesis were stated. In the follow-
ing, main contributions and achievements will be briefly summarized with respect to the aforementioned
problems.

View invariant representation for activities: In order to address the first problem mentioned in the
previous section, we aim for a method which is capable of recognizing actions in a view invariant man-
ner. Our goal is to establish a video representation that is able to encode what is happening on the scene,
regardless of the placement of the camera. To that end, we exploit depth sensors which provide 3D
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information about the scene. Discarding any appearance information, we focus on motion, which by
definition conveys crucial information about human activities. The premise here, is that human activ-
ities can be recognized solely based on the motion information. Concerning the viewpoint invariance,
we argue that actions often possess a dominant direction, and accordingly the acquired 3D motion in-
formation can be transformed into a standardized reference system, or a canonical orientation. We also
advocate that this approach generally yields an analogous output for similar scenes, regardless of the
view angle of the observer. Once the 3D motion information conforms to this recognized representation,
it can be leveraged to extract various features, particularly ones that are appropriate for 3D data and can
be eventually utilized to label the initial input with an action type.

To accomplish this goal, we first examine various ways to represent a video sequence and present
the related literature in Chapter 2. Following the work that focus on motion history, i.e. representations
that preserve information about the movement, we propose a volumetric data structure in Section 3.2,
which encodes the history of motion in 3D space of the scene. We also propose various improvements
and efforts to make this volume motion templates more robust. This template is then converted into a
canonical representation with a geometric transformation, which grant us the desired view invariance. A
particular feature extractor is then employed to determine underlying properties, as described in Section
3.4, and common machine learning techniques are finally used for classification of human activities.

Multi-view model for pose estimation: In response to the second problem that we stated earlier, our
goal in the second part of this thesis is to establish an articulated pose estimation method that particularly
focus on settings where multiple RGB cameras are allowed to cooperate. This objective compels us to
propose an approach that enables to share the acquired information among the viewpoints. First, we
identify a method that is naturally compatible for such information transfer. Specifically, we focus on a
method that models the scene as an energy function and scores the eligibility of each possible location
for body parts, i.e. higher the energy on a given point, higher the likelihood of this point being the body
part that we seek. This approach is a common one in pose estimation, either with energy functions or
probability maps, and is usually complemented with a body model (e.g. a kinematic tree) which impose
a prior on the relative locations of each body part. The solution to the problem is then formulated as
an optimization task, and the body part configuration that yields the maximum score is considered the
body pose on the scene. Moreover, calculated score for a location can be transferred into other views,
for instance via geometrical correspondence.

The advantage of using an energy function is that one can translate any supplementary data into extra
score and influence the final pose in favor of this additional information. In our case, we leveraged ap-
pearance information of body parts and introduced additional scores to enforce the consistency between
the views. In other words, we proposed a method that seeks a configuration of body parts from different
viewpoints in the global search space, in which the poses most conform to each other. Furthermore, we
point out that some view angles are not suitable to observe some body parts and in consequence may
have a negative influence on the overall pose estimation. We introduce an online assessment technique
that predicts the fitness of a viewpoint for each body part, and control the contribution of each viewpoint
accordingly.
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These contributions are explained and elaborated in Chapter 3 and Chapter 6, and they are evaluated
with experiments in Section 3.5 and Chapter 7, respectively.

As an additional contribution, we implemented a baseline action recognition algorithm that utilize
a spatio-temporal feature descriptor, namely histogram of 3D gradients [135]. This implementation,
of which the details are given in Section 3.5.2, is used for evaluation of the state-of-the-art methods and
assessment of the integrated quality and quantity measurements, which appears in the official publication
of the LIRIS Human Activities Dataset [327].

1.4 Organization

The remainder of the manuscript is organized in two main parts that address the two problems men-
tioned in Section 1.2, and seven underlying chapters. First part, View independent activity recognition,
concentrates on recognizing human activities in a view invariant manner and starts with Chapter 2 where
background on activity recognition is presented along with an analysis of the relevant literature. Chapter
3 introduces our proposition to the recognition problem and Section 3.5 provides experimental results to
demonstrate the capabilities of our contribution.

Second part is entitled Multi-view pose estimation and its main focus is pose estimation scenarios
where multiple cameras are allowed to cooperate. State-of-the-art methods and different approaches
are discussed in Chapter 4, which includes detailed summaries about part based models, deep learning
methods, solutions for multi-view settings as well as 3D pose estimation specifics. Different approaches
were explored beforehand to make a sound decision to follow through for pose estimation; this prelimi-
nary research steps and findings are explained and detailed in Chapter 5. Our proposition and pursuit to
achieve a multi-view pose estimation technique is introduced and thoroughly detailed in Chapter 6. It is
followed by extensive series of experiments in Chapter 7, where introduced method is evaluated and its
capabilities are challenged in terms of performance.

Finally both parts are recapitulated and summarized, and the conclusion is given in Chapter 8.





View Independent Activity Recognition





Chapter 2

Background on Activity Recognition

2.1 Introduction

Action recognition, or activity recognition, is the name of the task whose goal is to determine the action
or the activity of an individual from an observation. Recognizing human activities is an important step in
many applications, such as human-computer interfaces (HCI), health care, smart conferencing, robotics,
security surveillance and many more. In this part of the thesis, we target applications where robustness
to changes in viewpoint are especially important, as for instance in settings involving moving cameras
like mobile robotics.

This is usually a classification task, where an observation is tested against a model (or a database) of
known activity categories to determine which activity (if any) is performed during the observation. There
are various ways to carry out such task, with various modes of observing the scene. For instance, using
a group of sensors is a widely used approach [11, 50, 139], where mobile devices such as smart phones
or other wearable items are used to acquire data from various sensors such as accelerometer [177], light
sensors, audio sensors, temperature sensors, direction sensors, GPS sensors and heart rate sensors. In
some cases, sensor data is first interpreted to determine the context to rule out unlikely activities before
performing the actual recognition task [133, 221]. Using wearable and mobile devices is a popular
approach to determine the human activity and the reader is kindly invited to read this survey [144] for
more details. Furthermore, audio cues are started to be used in action recognition in conjunction with
visual data [179, 184, 331]. However, in this thesis we will focus on human activity recognition with
computer vision techniques.

In vision-based activity recognition the task becomes labeling the image evidence, which is usually
an image sequence, with one of the activity labels that are targeted beforehand. In Fig. 2.1, examples
from several benchmark datasets can be observed. Each dataset has various action labels and offers
different challenges. On the other hand, it is not always required that the image evidence is a complete
video; sometimes poses gathered from some frames [23] or in some cases even local features of a single
frame [166, 242] can be enough to recognize the action performed.

Commonly, the recognition process can be seen as a combination of two successive challenges: First
finding an appropriate representation for the observations, then using these representations for classi-
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Fig. 2.1 Examples from various datasets: a) KTH [244], b) Weizmann [26], c) Inria XMAS [322], d)
UCF sports [225], e) Hollywood human action [142], (Reprinted from [205]).

fication to determine what action is taking place on the monitored scene. The representation of the
observation should ideally be invariant to human-related properties such as clothes and body attributes,
viewpoint, occlusions and self occlusions and other environmental attributes such as lighting and back-
ground. Obtaining an ideal representation would allow to represent a short and heavy man walking on
snow seen from distance and a tall slim women walking in an office corridor seen from a close distance
in the same way. This arguably unrealistic example would be followed with a proper supervised learning
and classification procedure to efficiently label any representation with one of the target activity classes.

Surveys on vision based activity and action recognition propose different taxonomies and different
hierarchies between action analysis and recognition approaches [4, 205, 297, 305, 323]. For instance,
methods can be first classified based on their spatial properties, and then by temporal properties, as done
by [323]. In this thesis, we will initially focus on two kinds of approaches: Global (or holistic) methods
where the action or the actor is represented as a whole; and its counterpart local methods, where a set
of local features are considered to represent the activity. Details and examples are given in Section
2.2 for the former, and in Section 2.3 for the latter. Considering the recent popularity of convolutional
neural networks and recurrent neural networks in vision tasks, Section 2.4 is dedicated to deep learning
methods applied to activity recognition tasks. Unlike the common approaches that are mentioned in
the previous paragraph, deep neural networks are known best for their capability the learn distinctive
features automatically and therefore learn how to represent the images by themselves. Moreover, since
Part 3.5.6 concentrates on this matter, methods that benefits from articulated human poses are particularly
important for this thesis and will be reviewed in Section 2.5. Another essential topic for this manuscript
is view invariance and settings with multiple viewpoints, thus Section 2.6 will examine related methods
and approaches.
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2.2 Global representations

An intuitive way to recognize human actions, is to represent the human body and the performed action
as a whole; hence the alternative name holistic representations. These global models do not need to
locate and recognize the types of body parts, but instead consider moving human body as a single ob-
ject. Temporal analysis and representation of the video sequence is usually established in (i) an ordered
manner, as a sequence of features extracted from successive frames; (ii) a holistic manner, as a single
space-time structure; or (iii) an unstructured, statistics based manner where occurrences of events are
considered. Commonly, global methods require as an input, or as a pre-processing result, a Region Of
Interest (ROI); a bounding rectangle for the human body, from which some features are densely extracted
to represent the activity (see Fig. 2.2 for an example). An early example of global model is for hand
gesture recognition [58], where no features are computed but gesture images are matched with direct
correlation.

Fig. 2.2 Top: Obtained silhouettes within region of interest for running action. Bottom: Dense sampling
of features from the region of interest (Reprinted from [314]).

Global models are generally simplistic in comparison to other types of approaches, which makes
them easier to robustly compute. Although frequently they assume simple, uncluttered background as
well as region of interest around the body as a starting point. Three main groups can be observed in
global methods, for which we will give details in the following paragraphs.

Silhouettes and contours – are actually the outer-shape of the human body, which can be a very
discernible attribute for a performed action [328]. Following [338], [314] takes binary silhouette im-
ages, quantize them into super-pixels where each pixel is enhanced with ratio of black and white pixels
in its neighborhood. This method operates with Hidden Markov Models, whereas [44] uses bag of
key silhouette-based poses for recognition. [28] integrates silhouettes over time to form motion history
images (MHI) with decaying intensities in pixels where the motion is taking place, whereas [1] uses
silhouettes to model trajectories on Riemannian shape manifolds. Similarly, [222] accumulates contours
over the sequence to form motion contours. As well as [322], which takes MHIs to space-time volume
objects, [26, 345] work in a similar fashion, directly with a 3D structured object. Another example of
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contour-based method is [41], where activities are recognized through shape matching.

Since silhouettes and contours depend on background / foreground segmentation, some work ad-
dresses the background subtraction and attempt to improve the quality, for example using chamfer dis-
tance [71, 320] or shape-context descriptors [164, 272, 354].

When provided, silhouettes and contours are not sensitive to color, texture and contrast changes
which makes them a robust source for feature extraction. Furthermore, they usually contain powerful
indications about the performed action. However, they can not deal with self-occlusion and they heavily
rely on a good background subtraction.

Optical flow features – have been utilized for quite a long time [115]. Basically, they reflect the pixel-
wise movement over a given time interval and they have been used for action recognition for decades.
Here, we will focus on use of optical flow features on a global scale. Early work uses flow magnitudes
computed from a grid of non-overlapping bins [204], and motion blobs [52] which are clusters of optical
flow fields and their motion, size and position information serves as features for the recognition task.
[66] splits the optical flow field into its four components: Positive / negative and horizontal / vertical.
These scalars fields of the optical flow vector are then separately matched, and was also utilized in [317].
[75, 132, 143] extend the famous Viola-Jones face detector to action recognition. Rectangular image
features are replaced with spatio-temporal cubes which are computed over optical flow. [295], on the
other hand, combines silhouette and optical flow features and achieve superior results.

Unlike silhouettes or contours, computing optical flow features does not require segmentation of hu-
man body, which liberates this family of methods from background subtraction issues that are mentioned
before. However, the motion is calculated from the change of the pixel intensities over time, which
ignores other possibilities that can cause differences in the image, such as light and contrast change
between the frames.

Gradient features – are commonly used in human detection and often in pose estimation. Nonethe-
less, there are examples that employ gradient features in action recognition. For instance in [349], gra-
dient fields are calculated in spatio-temporal space, and frames are represented with histograms of those
gradients. These histograms are then used for action classification. In [290], an extension of histograms
of oriented gradients (HOG) [55] are used with an emphasis on foreground edges by non-negative matrix
factorization. HOG descriptors suffer from the curse of dimensionality in some cases, [162] employs
principal component analysis (PCA) to reduce the number of dimensions used in HOG feature vectors.
There are some works [142, 143] that propose combinations of gradient and optical flow features to
achieve better recognition results.

An obvious advantage of using gradient features is that the independence from background sub-
traction. Also, unlike optical flow features, these features can detect non-moving parts. In some cases
non-moving parts such as head can provide a strong cue about the action performed. In other cases
though this might become a disadvantage, for the reason that a background object with strong gradient
can be confused with a moving part. Furthermore, gradient features are responsive to material, color,
lighting and texture, which makes them prone to false detections.

To summarize, global models for action recognition are generally much more simplistic, especially
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compared to pose related methods. As a result, they are computationally less expensive. But they are
particularly sensitive to viewpoint, or the view angle, as well as the body size and height of the human
subject. To address this, one should instantiate a large number of different templates, or design appropri-
ate features and matching techniques that can deal with such transformations. Moreover, global methods
usually do not have a natural mechanism to address partial occlusions and self-occlusions. Finally, many
of the aforementioned methods make the assumption of a given ROI centered to the person, with simple
and uncluttered background. As a consequence, the advancement of global methods are firmly coupled
with the progress in other computer vision fields, for instance human detection and tracking.

2.3 Local representations

An important class of action recognition methods are based on local representations of the actions. In
this type of approaches spatial, temporal and spatio-temporal features (similar and akin to ones that we
have seen in Section 2.2) are extracted locally. This means that extracted features are not linked by any
means to image coordinates, body part locations, nor exhibit a relationship between them. Simply put,
an action is represented with a number of occurrences of position-agnostic visual patterns. The same
statistical approach is sometimes extended to temporal layer, ignoring the chronological order of those
occurrences. This is the main difference of local representations compared to global representations
where positions of extracted features are significant, or compared to pose related methods where feature
extractions are closely related to body part configuration. Noticeably, these representations do not require
an explicit body part detection or background subtraction to detect the body whatsoever.

In this family of methods, features can be calculated densely on a whole region [218], or sparsely
[61, 140, 245, 325], centered around interest points. In the sparse case, one would need an interest
point detector to assess which pixels are more relevant than others. An example of spatio-temporal
feature computation can be seen in Fig. 2.3. Usually, after calculating the feature vectors, whether it is
performed densely or sparsely, image sequence is represented as a Bag-of-Words (BoW) model. This
approach requires codewords, i.e. cluster centers of learned feature vectors. In test time, each computed
feature vector from the image evidence is assigned to nearest cluster center, i.e. to a codeword, and
image sequence is represented as a histogram that counts the occurrences of these codewords. The
action recognition task is then reduced to classification of these BoW models, as seen in [244]. It is
immediately seen that BoW models are robust against partial and self-occlusions, but they ignore spatial
relationships between points which cause the lack of structure in the models.

Among the interest point detectors in 3D where third dimension is frequently the time dimension,
Harris3D [140, 141], Cuboids [61], Hessian [325] detectors are the most common ones. Another one is
maximally stable extremal regions (MSER) [168], and employed in [171, 172] along with other detectors
in a complementary fashion. Popular feature descriptors in static images are scale invariant feature trans-
form (SIFT) [161], HOG [55], gradient location and orientation histogram (GLOH) [170] and speeded
up robust features (SURF) [17]. For spatio-temporal features their counterparts HOG3D[135], SIFT3D
[245] and Extended SURF [325] or combination with other features such as Cuboids [61], HOG/HOF
(histograms of optic flows) [142] and motion boundary histograms (MBH) [56] are the most popular
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Fig. 2.3 Left: SIFT3D feature descriptor, illustrated as an extension of SIFT. Right: Computation of
SIFT3D and descriptors before and after the reorientation. (Reprinted from [245])

ones. These interest point detectors and spatio-temporal features descriptors are thoroughly compared in
[310].

Interest point based approaches do not require the person to be detected explicitly for feature ex-
traction purposes, which is a handy advantage. Instead, it is sufficient that interest points are detected
on consistent locations in resembling action sequences. As a drawback, detected interest points are al-
most always unordered and their size often vary. Therefore, geometric and temporal structures are very
difficult to model, which further inspires the wide use of BoW models with local features.

Dense sampling of local action descriptors are utilized in [224], to use in action recognition through
Hidden Markov Models. Dense sampling along trajectories have gained interest lately [308, 309]. Using
optical flow fields, densely sampled points are tracked in multiple spatial scales to form trajectories.
Then, support volumes are constructed around each trajectory, and a combination of HOG/HOF [142]
and MBF [56] feature descriptors are employed to describe the motion in video.

In order to address the missing structure information in local representations several efforts are made.
Graphical models with hidden variables are proposed to describe the relative positions of the local re-
gions [81, 89, 182, 329], activity localization is encouraged based on spatio-temporal relationships of
the interest points [235], or density of interest points were calculated in spatio-temporal context [332].
Similarly, [311] explores the relationship between the interest point by computing contextual densities of
interest points. Another approach to cover structural information to local features is to use multiple lev-
els of hierarchy between local spatio-temporal features [137, 281] and other hierarchical representations
through pyramid matching [96, 146]. [148] also uses hierarchical features and feature descriptors are not
handcrafted, but learned as a unsupervised manner. This conception is very similar to deep learning, and
can be seen as a predecessor to modern methods seen in Section 2.4.

Other methods have been introduced to model spatial and spatio-temporal relationships which are
ignored by BoW models. Examples include pairwise histograms [235, 287], space-time graph-matching
[43, 286], and deformable parts models [291]. These models, originally designed for object detection
and recognition, decompose an entity into different parts and learn filters for each part, as well as their
geometric configuration: anchor positions with respect to the object center and deformation costs.

Local representation of action sequences is quite invariant to occlusions and robust against intra-class
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variations, but BoW models often suffers from lack of discriminative power. To boost recognition capa-
bility, various improvements are proposed such as aiming for a vocabulary that is small but discriminative
[157], or learning optimal codebooks for BoW construction [95, 122]. [120] applies dimensionality re-
duction with local spatio-temporal discriminant embedding, creates a mapping in the manifold between
silhouettes of the same class, and temporal relations are modeled within the manifold subspace. Opting to
use a transformed feature space is proposed in [254], where sparsely calculated features are transformed
via Discrete wavelet transform (DWT), then modeled as BoW.

Some work focuses on spatially local features, but takes their temporal ordering into consideration
[44, 153, 242]. For instance, [210] employs classical SIFT features, combines with Shape Context fea-
tures to represent properties between the points and utilize a Semi-Markov model for inference. Tracking
is also used for action recognition, where local interest points are tracked in spatio-temporal context to
form trajectories and Hidden Markov Models are used for recognition [51]. Similarly, [169] tracks points
using the famous Kanade-Lucas-Tomasi tracker and computes the velocity history for all tracked points
during the image sequence. Features are also augmented with initial and final absolute position data of
tracked points to include spatial information.

There are types of local features that does not require RGB images, but can be computed over a
depth image, such as in [312], where local occupancy patterns are computed to describe actionlets and
an action is represented with an ensemble of actionlets.

In conclusion, local representations are suitable for uncooperated environments and relatively com-
plex scenes where explicit models can be hard to recover. Because, local features and their occurrence
based statistics are more flexible against occlusions and cluttered backgrounds as well as intra-class vari-
ations such as speed differences and body shape diversity. Yet, the lack of spatial and / or temporal
structure affects the discriminative power of these methods even with dense sampling. As a result, local
representations of actions tend to perform best in combination with more structural models. The reader
is kindly invited to read further details on the recent survey [194].

2.4 Methods based on deep learning

This section is divided into two parts: First, a general definition of deep neural networks is given and
they are compared to traditional computer vision methods, following examples from various types of
computer vision tasks. Afterwards, use of deep learning methods in activity recognition will be discussed
and deep learning based action recognition examples will be reviewed.

Deep neural networks

The traditional pattern recognition tasks rely on hand crafted features and extractors, whether it be a
computer vision, speech recognition or natural language processing task. The classical workflow of
the traditional approaches usually consists of engineered low level features such as HOG [55], SIFT
[161] and HOF [16, 56]; mid-level features such as K-means, sparse coding or bag-of-words for sample
representation; and a final classifier or a regressor that is trained in a supervised manner. Some argue
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Fig. 3. Single-scale deep architecture. Individual classifiers are pre-trained for each data modality (paths V1,
V2, M, A) and then fused using a 2-layer fully connected network initialized in a specific way (see Sec. 4).

Azimuth angles provide additional information about the
pose in the coordinate space associated with the body. We
apply PCA on the positions of 6 torso joints. Then for
each pair of connected bones, we calculate angles between
projections of the second bone and the vector on the plane
perpendicular to the orientation of the first bone.
Bending angles are a set of angles between a basis vector,

perpendicular to the torso, and joint positions.
Finally, we include pairwise distances between all nor-

malized joint positions.
Combined together, this produces a 183-dimensional

pose descriptor for each video frame. Finally, each feature
is normalized to zero mean and unit variance.
A set of consequent 5 frame descriptors sampled with a

given stride s are concatenated to form a 915-dimensional
dynamic pose descriptor which is further used for gesture
classification. The two subsets of features involving deriva-
tives contain dynamic information and for dense sampling
may be partially redundant as several occurrences of the
same frame are stacked when a dynamic pose descriptor
is formulated. Although theoretically unnecessary, this is
beneficial when the amount of training data is limited.

3.2 Depth and intensity video

Two video streams serve as a source of information about
hand pose and finger articulation. Bounding boxes contain-
ing images of hands are cropped around positions of the
RightHand and LeftHand joints. To eliminate the influence
of the person’s position with respect to the camera and
keep the hand size approximately constant, the size of each
bounding box is normalized by the distance between the
hand and the sensor.

Within each set of frames forming a dynamic pose, hand
position is stabilized by minimizing inter-frame square-
root distances calculated as a sum over all pixels, and
corresponding frames are concatenated to form a single
spatio-temporal volume. The color stream is converted
to gray scale, and both depth and intensity frames are
normalized to zero mean and unit variance. Left hand
videos are flipped about the vertical axis and combined
with right hand instances in a single training set.
During modality-wise pre-training, video pathways are

adapted to produce predictions for each hand, rather than
for the whole gesture. Therefore, we introduce an additional
step to eliminate possible noise associated with switching
from one active hand to another. For one-handed gesture
classes, we detect the active hand and adjust the class label
for the inactive one. In particular, we estimate the motion
trajectory length of each hand using the respective joints
provided by the skeleton stream (summing lengths of hand
trajectories projected to the x and y axes):

∆ =
5

∑

t=2

(|x(t)− x(t − 1)|+ |y(t)− y(t− 1)|), (1)

where x(t) is the x-coordinate of a hand joint (either left
or right) and y(t) is its y-coordinate. Finally, the hand with
a greater value of ∆ is assigned the label class, while the
other hand is assigned the zero-class “no action” label.
For each channel and each hand, we perform 2-stage con-

volutional learning of data representations independently
(first in 3D, then in 2D, see Fig. 3) and fuse the two streams
with a set of fully connected hidden layers. Parameters of
the convolutional and fully-connected layers at this step are
shared between the right hand and left hand pathways. Our
experiments have demonstrated that relatively early fusion
of depth and intensity features leads to a significant increase

Fig. 2.4 Single-scale deep architecture of ModDrop, a deep learning method for multi-modal gesture
recognition by Neverova et al. [176].

that almost every computer vision application up until 2012 is actually a “glorified linear classifier” or a
“glorified template matching” [151], which are in fact derived from the old notion of perceptron [232].

Deep learning is a newly emerged term and it is often used interchangeably for deep neural networks,
recurrent neural networks, convolutional neural networks (CNN), deep Boltzmann machines, so on and
so forth. The term gained a remarkable attention since some deep learning based methods [59, 64, 128,
138, 147] proved their efficiency; especially when a large amount of training data and proper hardware,
suitable graphical processing units (GPU) are available. The fast learning technique for deep belief nets
that is introduced in [106] also played an important role. As of 2016, deep learning dominates computer
vision domain, and at high level conferences such as CVPR it is extremely difficult to find papers which
do not use deep neural networks. It is not exaggerated to state that deep learning has become a standard
like linear algebra.

The main innovation behind deep learning is that it does not require explicit feature definitions, but
rather captures the properties of the task at hand hierarchically by discovering low-level, mid-level and
high-level features by themselves. Another characteristic is the existence of multiple stages of non-linear
feature transformations, as seen in the example of Fig. 2.4. For instance, an object recognition task in
a deep neural network would usually have several layers where pixels, edges, motifs, parts and finally
objects are conceptualized hierarchically. Any neural network architecture that lacks the hierarchy of
features is not considered as deep [151].

There are two common types of deep architectures: feed-forward deep neural networks where infor-
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Fig. 2.5 Architecture of LeNet-5, one of the first convolutional neural networks introduced by LeCun et
al. [150].

mation flow is directed forward only, without any cyclic connections as in Multi-layer Neural Networks,
Convolutional Neural Networks (see Fig. 2.5), etc. Computationally, such networks perform calcula-
tions on a directed acyclic graph (DAG). Recurrent neural networks are the second family of deep neural
network architecture, where recurrent connections are allowed. These directed cycles between the units
form an internal state for the network and the network manifests temporal behavior. As a result, recurrent
neural networks such as LSTM (Long short term memory) are very suitable for sequential tasks such as
speech recognition and natural language processing. Furthermore, the training protocols for the deep
neural networks can be purely supervised as in most computer vision task; or it can be unsupervised for
each layer, with a supervised layer on top or at the end.

To briefly summarize how an object recognition task is carried out with deep learning approach,
let us review the workflow of Convolutional Neural Networks. In training phase, an input image is
first normalized and then convolved with an arbitrary number of randomly initialized kernels. Each
convolution yields a feature map, that is the response of the full image to the given filter. Feature maps
are then subject a to non-linear transformation, such as ReLUs (Rectified Linear Unit) which applies a
non-saturating activation function of form f (x) = max(0,x). It should be noted that non-linear functions
are vital for expressiveness of the network, otherwise multiple layers of linear functions could have been
replaced by a large equivalent single layer that is the linear combination of those. Following the non-
linear transformation step, a pooling layer comes into action to aggregate each feature map over space or
feature type to eventually subsample the image response to a smaller map. This four step ‘normalization
- filtering - non-linear transformation - pooling’ scheme is repeated depending on the architecture of
the network, and each time with a smaller patch to work on. This “shrinkage” of the patches ensures
the multi-level and hierarchical feature extraction that is essential to the deep learning standard, since
every time the kernel encodes a set of image patches with a different scale. Just before the final layers,
there are usually (but not necessarily) a few fully connected layers where the high-level reasoning in
between the different types of filters is taking place. At the final stage, a linear classifier is typically
employed along with a soft-max function to estimate probabilities for each target class, often used in
conjunction with the cross-entropy loss. The error of the output layer is calculated using a loss function
given the ground truth. The error is then back-propagated and according to the gradient descent, all the
weights are updated proportionally to their contribution to the calculated error. Note that the coefficients
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of the kernels that lie in the filtering steps are also considered as weights, therefore they are subject to
learning as well. This is considered the key aspect of the deep learning [149], layers of features that are
expressed with kernels are not designed by engineers but they are learned. The forward & backward
scheme is repeated until convergence over the training data that is usually split into mini-batches. Size
of the kernels, the amount of stride and other hyper-parameters are usually optimized over a hold-out set.
Once the model is ready, it can be used for testing purposes where the test sample is feed to the network
and probabilities for output labels are obtained.

Action recognition with deep learning

Automatic learning of hierarchical representations, also known as deep learning, has been successfully
applied to numerous problems in recent years, as discussed earlier. Impressive results were obtained
for various fields such as image classification [138], object detection [90], video classification [129] and
gesture recognition [176].

Unlike object recognition or image classification tasks, in action classification there usually is a time
dimension which needs to be considered. That is either established with recurrent neural networks, which
are specialized to serial inputs such as natural language processing tasks; or one can feed a convolutional
neural network with data that contains temporal information. There are four main modes to integrate
information within CNNs: (i) Single frame, where all action information is deduced from a single frame;
(ii) Late fusion, where two frames with an offset is feed to a pair of single frame networks, and fused at
the fully connected layer; (iii) Early fusion, where input layer accepts a set of frames as a spatio-temporal
volume and following layers operates on these volumes; and (iv) Slow fusion, which is a balanced version
of (ii) and (iii), where a set of frames are processed in parallel and computed features are fused slowly
over the layers. Simplified architectures is illustrated in Figure 2.6.

Fig. 2.6 Simplified illustration of integrating temporal information into convolutional neural networks.
Red, green, blue and yellow boxes are convolutional, normalization, pooling and fully connected layers,
respectively. (Reprinted from [129]).

A natural way to employ deep neural networks is to learn spatio-temporal features instead of engi-
neering them, as proposed in [289] with convolutional neural networks. These features are commonly
possess a multi-level hierarchy, unlike the global ones that we have seen in Section 2.2 they are more
robust to viewpoint changes, and in contrast to the ones we have seen in Section 2.3 they manifest
structural properties. Following this insight, [148] proposes to learn spatio-temporal features utilizing
independent subspace analysis, while [13] uses a convolutional neural network (see Fig. 2.7) first to
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learn spatio-temporal features, then employs a recurrent neural network to learn the temporal structure
of image sequences. A similar scheme is adopted in [14], first a convolutional sparse auto-encoder to
learn and extract spatio-temporal features, then a Long Short-Term Memory Recurrent Neural Network to
benefit from temporal evolution of the learned features for classification purposes. In an analogous man-
ner, end-to-end trainable recurrent convolutional neural networks are utilized to process video frames as
well [63]. [344] proposes a new variant of long short-term memory recurrent neural network to label
multiple and simultaneous actions in videos. [119] utilized a deep 3D convolutional neural network to
extract motion features from a series of image frames, and employed a linear classifier for action classi-
fication. On the other hand, [129] demonstrated that a single frame as an input to a deep neural network
can perform equally good as multiple frame input.

Fig. 2.7 A 3D convolutional neural network architecture to extract spatio-temporal features. (Reprinted
from [13]).

Another alternative of providing temporal data to convolutional neural networks is exploiting hand-
crafted features that contains motion information, for example [268] designed an architecture with two
CNNs, and uses raw RGB data for one and optical flow feature map for the other one and learns spatio-
temporal features automatically. Later on, this approach was extended with action tubes for the local-
ization of the action [94, 236]. On the other hand, [250] exploits both RGB and depth data and uses a
convolutional deep shared-specific component analysis network to learn modality-specific features, as
well as relations between features of different modalities.

The amount of information contained in videos is very large, considering the time dimension that
multiplies the amount of data from each frame. Recent approaches resort to attention mechanisms in
order to dynamically select relevant portions of the video with a recurrent trainable mapping [15].

All of the aforementioned method are not explicitly designed for view independence. Being heavily
data-driven, without a doubt they learn features that are view-invariant to some extent, but it might be
insufficient in particular cases. To that end, a deep network for cross-view action recognition is proposed
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in [212], where a set of non-linear transformations are learned from multiple source views, to be able to
transform new observations to a single canonical view, but the transform model in this work is learned
from handcrafted features. On a follow up work, [213] follows a more generative way and creates a
view-invariant representation of human pose with deep convolutional neural network model.

Advancement of deep learning methods and growth of the efforts put into this approach is undoubt-
edly exciting, since the performance of introduced methods are either very successful or very promising
at worst case. It would not be unfair to speculate that all of the prominent research teams are already
investing in deep learning in terms of both research effort and hardware. Considering the momentum it
gained, deep learning approaches seem to continue to be leading paradigm in almost all computer vision
tasks, including activity recognition.

2.5 Pose related methods

A natural way of recognizing activities is through articulated pose, i.e. skeletons, stick figures or other
kinematic joint models of the human body. Body pose and part locations are particularly informative for
performed actions if they can be estimated correctly, as discussed in [342]. In cooperative environments,
articulated 2D and 3D pose can be estimated. Especially with depth imaging and using random forests
[259], real-time estimations are possible. However, action recognition is often required outside of these
cooperative settings.

In this section, the methods that recognize the action based on estimated pose will be reviewed.
Spatial structure of actions are described with respect to the human posture. First subgroup of methods
work with 2D poses that are extracted from RGB images. Second subgroup uses 3D pose, either directly
provided through MoCap or depth data, or calculated and lifted from 2D images. In both cases, the main
idea is to track the movement of the joints through time to calculate a set of discernible features. Some
methods aim for more complex features, where the spatial neighborhood of the joint or pairwise relation
to connected joints is considered as an information source.

Early methods in action recognition based on 2D poses worked with stick figure representations
[99, 183]. Other works followed with coarse representations of 2D human body that tracked blobs and
patches, for instance head and hand trajectories [35, 217, 278], set of body parts [163] or complete body
trajectories [36, 337]. Tracking of body parts are often used in recognition of actions [198, 356]. Unlike
the mentioned methods, [116] proposed a bag-of-postures approach, where occurrences of key poses are
counted and action sequences are represented as histograms of posture occurrences. [192] estimates pose
of two people in 2D, then utilizes those poses to recognize the interaction through hierarchical Bayesian
network. Some methods explored extensions and proposed combining displacement-based features with
appearance based features, for instance with optical flow and shape features [174]. Appearance model
was also exploited in [315], where appearance based features were extracted from a single characteristic
keyframe. To avoid explicit pose estimation, which sometimes is even more difficult than the action
recognition task itself, [166] introduces an appearance based poselet activation vector. This descriptor is
an implicit representation of the underlying stick figure, and action labels can directly be inferred from
this descriptor.
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Fig. 2.8 Top: Joint trajectories in 2D RGB image sequence. (Reprinted from [346]). Bottom: Inter-joint
distance, joint to plane distance and other features calculated from 3D kinematic model. (Reprinted from
[342])

Most of the methods that work with 3D articulated poses strictly divide the action recognition tasks
into successive stages: First one is the 3D estimation of the human posture and the second one is recog-
nizing the action from the movements and displacements of those 3D joints. 3D body models that consist
of cylindrical primitives date back to late 1970s [167], and similar 3D representations were exploited in
other works [109, 228]. Analogous models are introduced with various improvements, such as flexi-
bility with super-quadrics [88] and textured splines as an appearance cue [97]. Tracking of body parts
in 3D provides a view-invariant and distinguishable cues for recognition of activities, as demonstrated
with motion capture markers in [39]. Trajectories of significant body parts, such as head and hand, are
utilized in [35, 38, 326]. 3D joints are arguably very convenient and promising for action recognition,
that 2D observations such as tracked patches are lifted to 3D [117, 216], or disparity maps from stereo
cameras are used to project pose estimations to point clouds [102]. Recent work also work with motion
trajectories of 3D joints, while the learning is performed on Grassmann manifold [270].

A series of articulated 3D poses extracted from each frame is practical, since it provides motion in-
formation of the subject. Furthermore, it can be exploited to compute unary and pairwise features which
may serve in recognition of actions. For instance [342] computes joint-joint and joint-plane distances to
represent an action. [312] introduces actionlets, which are expressed via local depth-appearance based
descriptors, called local occupancy patterns. Histogram of Oriented Joint positions are proposed in [333]
and is extended with 4D normals in spatio-temporal cells [187]. In [348], 3D pose descriptor is aug-
mented with speed and acceleration of the human body to become moving pose descriptor, whereas
combinations of three body parts are selected to calculate fundamental ratios in [256]. It should be noted
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that it is possible to infer 3D body poses from a series of 2D images as demonstrated in [175], where a
combination of features is employed to represent action as a set of action primitives.

To conclude, classifying actions from 2D or 3D pose is very common with various techniques of
inference. It is a structured approach, and invariant to view angle in case of 3D. However, it is obvious
that pose related action recognition methods heavily depend on the performance of pose estimation.
Pose estimation itself is an active field research and is only solved for cooperative settings. There are
still many challenges to overcome, despite the relatively mature body of knowledge which we review in
Chapter 4. More details and datasets can be found in related survey [65].

2.6 View independence

All robust vision techniques rely on certain invariances in order to work in realistic conditions, which in-
clude invariances towards viewpoints, size and morphology of subjects, changes in acquisition conditions
etc. Viewpoint independence is particularly important in this context, and various methods have targeted
this goal with different approaches. In this section, the taxonomy used to review view-independent action
recognition methodologies is inspired from [131], where three families are proposed based on different
strategies: We will first review methods with intrinsic invariance, then we will study methods that involve
transformation to canonical representations, followed by methods that require exhaustive search.

View invariant approaches focus on features that do not explicitly require a transformation, but grasps
various attributes of the action regardless of the recording angle; as well as appropriate matching tech-
niques for such features.

In 2D context, simplest way of acquiring view-invariance against translation and scale variations
would be histogram-based methods, arguably. As seen in Section 2.3, these methods do not extract
features from a fixed grid of a given coordinate system, but collect features independent from pixel
positions and accumulate them to store feature occurrences [349]. Moreover, point correspondences
can be established between two observations, either by known camera parameters or matching enough
landmarks on human body with SURF [17] or similar detectors. For instance epipolar geometry, which
is thoroughly explained in Section 4.4, is often used in action recognition methods [98, 255, 256, 283,
345, 346]. Other methods proposed techniques, apart from epipolar geometry, to determine whether two
points are corresponding, such as matrix factorization and rank constraints [217, 246]. [274] introduced
a multi-chain structured latent conditional model that formulates the underlying structure of the multi-
view image data. Geometrically invariant features that do not change under geometric transformations
[190], or three layered silhouette-based features robust against camera rotation [53] are also introduced
as view-invariant methods. Another view-invariant proposition is based on relative change between the
frames [125], and it was demonstrated that these frame-to-frame changes are reasonably steady against
view angle variations.

3D trajectories of parts can be very useful for extracting view-invariant features such as shift invariant
velocities in cartesian or polar coordinates, as reviewed in [38]. Actions can be represented in a view-
invariant manner with voxel reconstruction and cylindrical 3D histograms [200], with 3D shape-context
and spherical harmonics [112], or with Fourier coefficients in cylindrical coordinates [298, 322]. Holte
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et al. fuse RGB and depth data from a consumer sensor, compute 3D optical flow features and finally
transform them into a view-invariant representations using a spherical coordinate system [111]. In [333],
histograms of 3D joint locations are represented in 3D spherical coordinates to assure viewpoint invari-
ance, whereas [154] uses densely extracted Hankelet features that are view-invariant. [158] proposes to
use high level features called bilingual words and accumulates them to a BoW-like representation. Re-
cently, [211] proposes a spatio-temporal feature that is invariant to viewpoint changes, called histogram
of oriented principal components (HOPC).

View dependent information are discarded in view-invariant methods, which is good in terms of
efficiency compared to exhaustive search on all possible views and also stable under changes in camera
angle. On the other hand, removing view dependent information will mostly result in diminishing the
discriminative power of the features and approaches.

Unlike the view invariant methods, where the presentation itself or the extracted features are view
invariant by nature, some methods require a common pre-processing step, usually to avoid observational
differences due to viewpoint or scale etc. Here, the idea is to find a canonical viewpoint, so that the ac-
tions are manifesting with similar visual properties. This however, requires first finding transformation
from canonical view to current view, then adjusting the current observation with respect to the calculated
transformation. If the transformation is estimated correctly, this operation compensates for global vari-
ations in body size, scale, translation, and body orientation in case of 3D. Further matching techniques
are then executed on this transformed representation.

Based on the knowledge of camera parameters and ground homography, [226] proposes to deduce
the 3D orientation of a person using its walking direction in 2D. The silhouette of person is then adjusted
to a canonical view frame based on the estimated rotation of the body in 3D, then matched to a set
of known canonical silhouettes. Prior based on walking direction to infer 3D rotation is also used in
[29, 54, 198, 356], and in [227] this cue is called dominant motion orientation. Similarly, [251] proposes
to use volumetric intersection of the visual hulls for transformation to canonical orientation. In most
cases, the torso is used as a reference to represent relative orientation of body parts, and body parts are
corrected with respect to this reference point.

Body orientation is a very important information in activity recognition, as it is in pose estimation
and other computer vision tasks. It is easy to calculate if strong cues or a reconstructed 3D body model
are available. Main disadvantage of transformation based methods is that the following matching steps
heavily depend on the transformed representation and the calculation of canonical orientation. As a
result, they are prone to perform poorly if any of these two operation fails.

Apart from finding a transformation as done by aforementioned techniques, or disposing of trans-
formation dependent information as done by view-invariant approaches, a third option to achieve view
independency is doing an exhaustive search over all possible transformations. In 2D context, this is
commonly carried out in setups with multiple cameras that record simultaneously [5, 28, 185]. As a data
driven method, [166] learns multiple patches for each distinctive body part from different view angles
and uses them to estimate 3D orientation of a part from a 2D image. [355] builds an infinite number of
virtual views, then utilizes a virtual view kernel to measure similarities and infer view angle. If a 3D
model of the body is available along with the camera parameters however, one can render any 2D view
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Fig. 2.9 Top: Successive visual hulls are accumulated to motion history volume objects, then view-
invariant features (Fourier coefficients) are extracted in spherical coordinates. (Reprinted from [322]).
Middle: Images from various angles (left) are transformed into canonical representation (right).
(Reprinted from [251]).
Bottom: An exhaustive search method, where each dot in the hemisphere corresponds to a generated
virtual camera. (Reprinted from [342])

by projecting this 3D model. Many proposition are made in such a generative manner, for instance with
synthetic 3D key-poses [126, 164, 174, 321], bag of key-poses [44] and interpolation of key-poses [175].
For gait analysis purposes, 3D poses can be augmented with volumetric primitives and 3D temporal
motion models can be fit [301], or 3D kinematic models can be matched to 2D silhouettes [24]. It is
also possible to find an analytic function that transforms the 3D representation of the human body to a
2D silhouette [275]. Or inversely, 2D features can be computed first, than they can be back-projected
to 4D action shapes [339]. Further multi-view methods and techniques can be found in related surveys
[113, 114]. Recently, [213] proposed a deep-learning approach to use synthetic 3D human models with
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a large number of potential camera angles.
Modern computers made the computation efforts required for exhaustive search affordable and ac-

ceptable. Methods based on exhaustive search does not require the determination of body orientation,
or other transformations which makes them a reliable way to address view independence. Although,
without multi-view datasets and strong priors it is almost impossible to accomplish decent recognition
of actions using view-invariant features.

2.7 Conclusion

In this chapter, several type of approaches for activity recognition were reviewed. The motivation, the
problem at hand and general solutions to this problem, both in computer vision field and otherwise, are
briefly given in Section 2.1. First, global representations for actions are studied in Section 2.2 along with
several examples. Their advantages and disadvantages were assessed and it was found out that they are
prone to occlusions and viewpoint changes, and often require a region of interest detection beforehand.
Following, local representations and bag-of-words approaches were examined closely on Section 2.3.
Various types of features that are extracted locally were reviewed, as well as classification techniques
that build upon those. It was evaluated that this family of methods are robust against cluttered back-
grounds and occlusions, however the lack of structure causes the discriminative power of these methods
to decrease. Afterwards, deep learning approaches were presented generally with an emphasize on action
recognition task in Section 2.4. Despite the short history of these methods, they seem quite successful
and promising in action recognition and video labeling tasks. We then moved to methods that exploit
pose estimations as an intermediate step to activity recognition in Section 2.5. These methods are well
structured and are robust against viewpoints changes if 3D posture is available. On the downside, they
strongly depend on pose estimation method and will most likely fail in case of poorly estimated posture.
Finally, we reviewed methods that tackle view dependence problem which is particularly interesting for
this thesis. Three main strategies namely view normalization, view-invariance and exhaustive search
were inspected and example works were provided.

An arguable side observation would be that, activity recognition method groups become mainstream
for a time period, then slowly lose their popularity. For instance, in late 1990s global methods were
considered most promising, whilst local features were blossomed during the 2000 decade. Pose related
methods seem to have two peaks, once after the popularization of Pictorial Structures [78] and once after
the Shotton’s seminal depth-based pose estimation [258]; which confirms their strong dependency to pose
estimation methods. View invariance can be considered as a parallel field of study, where extensions to
single-view methods and ideas of view independence constantly proposed. One thing is almost certain
though, convolutional neural networks and recurrent neural networks have become the de facto standard
for almost all vision tasks after 2012.

The organization of the remainder of this part of the thesis is as follows: In Chapter 3 our proposition
for the vision based action recognition task will be presented, first by setting our work into broader
context of the state-of-the-art and then by suggesting our mathematical rationale. Then in Section 3.5
we will challenge our method with LIRIS Human Activities dataset, will evaluate results and assess the
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success of our proposition, and finally conclude.



Chapter 3

View Independent Activity Recognition

3.1 Introduction and Overview

In this chapter, a framework is proposed to tackle the action recognition problem in a view independent
manner. The motivation of this work is to recognize complex activities that are performed by one or
more people, in uncooperative environments in a variety from small rooms to long and large hallways,
and possibly outdoors. It should be emphasized that we consider scenarios where viewpoint angles are
unknown and they are expected to change frequently. For instance, a mobile robot equipped with a
camera system is moving in a building while recording videos, would be a meaningful example for our
motivation. Without a doubt, such a scenario raises up the necessity to address ego-motion issues, i.e.
determining the changes in the image due to displacement of the camera and to distinguish these changes
from the actual motion that is related to the activity in scene. However, since the compensation for the
ego-motion is achieved in literature several times [87, 100, 208, 247, 282], we assume it to be solved
and leave it out of the scope of this thesis. Instead, we focus on ways to establish view independence on
account of the targeted scenarios, in which the camera can capture the activity from any angle.

The proposed method takes a global approach (see Section 2.2) on temporal domain inspired by [28]
and its descendants. In order to constitute view independence, we follow a classical viewpoint normal-
ization scheme to canonical orientation (see Section 2.6). Once we achieve a intermediate representation
that is invariant to viewpoint, our pipeline follows a local approach (see Section 2.3) for feature extrac-
tion. As a result, it can be said that the proposed method is a combination local and global activity
recognition methods with view-independence properties: Temporal data is collected in a holistic manner
and has structure in that sense, whereas the feature extraction is carried out locally, making the model
robust against occlusions.

The outline of our method is illustrated in Figure 3.1. First, people are detected in the scene and
tracked, resulting in a sequence of bounding boxes, or tracklets (see Section 3.2.1). Since we also con-
sider activities that may occur between several people, bounding boxes of nearby people are combined
to create larger candidate bounding boxes so that they include all actors involved for an activity. Then,
a robust variant of volume motion templates (VMT) is computed for this tracklet (see Sections 3.2.2
and 3.2.3). Viewpoint independence is achieved through a rotation with respect to a canonical orienta-
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tion, which results in representations where all observations are normalized and equivalent in terms of
viewpoint angle. A spatio-temporal 3D descriptor based on histograms of 3D gradients is then densely
extracted and pooled into a Bag-of-Words model (see Section 3.3). Finally an SVM model is trained from
these features, and activities are recognized through classification. The rest of the chapter is organized
accordingly.

Fig. 3.1 Overview of the proposed method: First, tracklets on depth images are accumulated to compute
robust volume motion templates. These templates are then normalized to a canonical orientation, and
3D features are extracted. Using a codebook that is previously learned during training, these features are
pooled into a bag-of-words model and the action is finally predicted using SVM classification.

3.2 Robust Volume Motion Templates

In this section, robust volume motion templates are described in details. First, the process to obtain
depth tracklets, which are the designated input data for robust volume motion templates, is specified in
Section 3.2.1 Then, the formal definition of volume motion template is given in Section 3.2.2. Finally,
robust volume motion template is proposed in Section 3.2.3 and the rationale behind it is compared to its
ancestor.

3.2.1 Creating tracklets

We create tracklets by employing a human detection method by Ni et al. [181]. People are detected
with the Dalal and Triggs detector [55] employing HoG features and linear SVM on grayscale images.
Bounding boxes are then transferred to depth images and false positives are filtered using features from
the depth image, based on two constraints. The first one is that the ratio of the area to median depth
should be within a given range, i.e. rl  Area(x)

dm(x)  ru, where Area(x) is the area of a detection x, dm(x)
is the median depth value for that detection and rl , ru are the learned lower and upper thresholds, re-
spectively. The second constraint assumes the person to be in the foreground, by comparing the depth
values of the detected region against the narrow stripes on both sides of the detection box. Formally,
dm(x)<dm(lbx),dm(x)<dm(rbx), where dm(lbx) and dm(rbx) are the median depth values for the afore-
mentioned striped regions. These constraints are illustrated in Figure 3.2. After the elimination of non-
conforming detection candidates, the remaining per-frame detections are matched in consecutive frames
with a distance threshold and finally merged into tracklets.
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Fig. 3.2 In order to remove false human detections on grayscale images, features from depth frames
are used. Left, calculation of area and the median depth value dm(x) of the detection is shown. Right,
calculation of median depth values for detection as well as side stripes are illustrated. (Reprinted from
[181]).

3.2.2 Volume Motion Templates

Volume motion templates (VMT) [227] are an extension of motion history images (MHI) [28] to depth
videos (originally obtained from disparity maps of a stereo RGB cameras) whose goal is to describe the
motion history of a scene. In a 3D cube calculated for a given time window, recent movement is repre-
sented with higher intensity voxels, while intensity of earlier movement decays and finally disappears.
Consequently, the motion history of the observation is encoded in a 3D fashion using voxel intensities,
i.e. fading traces of moving objects along the movement trajectory as illustrated in Fig. 3.3b.

A VMT is computed for a given time window [t, t +w] where w+1 is the number of frames, capturing
the motion information for that time window. From a depth image Zt , a human silhouette is extracted by
any form of background subtraction giving a binary image St , which is a binary 2D matrix that describes
the actor on scene. Then a binary volume object Ot is calculated in 3D space for every frame t in the
window as follows:

Ot(x,y,z) =

8
<

:
1 if St(x,y) = 1 and Zt(x,y) = z

0 otherwise
(3.1)

Thus, the binary volume object Ot can be seen as the back-projection of the silhouette to 3D space,
according to depth values Zt at hand, which signifies the position of the person with binary voxels in 3D
space for the time instance t. Repeating the computation for each frame in the time window, w+1 binary
volume objects are obtained.

This sequence of binary volume objects expresses the 3D position of the silhouette of the person
through time. In order to describe the motion, these simultaneous binary volume objects should be
observed chronologically. To that end, consecutive binary volume objects are subtracted one by one:

st(x,y,z) = |Ot(x,y,z)�Ot�1(x,y,z)| (3.2)

which results in a series of volume object differences from st+1 to st+w, where each one specifies the
inter-frame motion information.
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A VMT is then constructed by defining the intensity of each voxel as the “recentness of motion” at
that position. That is, newly appeared voxels are known due to volume object differences st and they are
set to maximum intensity Imax (for instance 255 in 8 bit images). Voxels with no changes are considered
immobile locations, and they are subject to fade away. Again, a VMT is calculated for each t, which
accumulates the historical data from the beginning of the sequence, and last VMT of the time window
represents the historical information about motion for the complete window. More formally,

Vt(x,y,z) =

8
<

:
Imax if st(x,y,z) = 1

max(0,Vt�1(x,y,z)�hµt) otherwise
(3.3)

where µt is the magnitude of motion at time t, which signifies the amount of the motion given the time
instance. h on the other hand is attenuating constant:

µt =
ZZZ

st(x,y,z)dxdydz , h =
Imax �1

Â T
t=1 Â µt

(3.4)

hµt can be interpreted as the disappearing rate, and it is dynamic for a time window in order to ensure
that the VMT captures as much of information from the scene as possible. Without this dynamic mech-
anism, in cases where there are small amount of motion, voxels that are mobile in the beginning of the
time window but immobile shortly after would tend to fade away very quickly; which would result in
missing information about a motion on the final VMT object. In other words, disappearing rate is pro-
portional to the total amount of motion during the observation to guarantee the maximum information is
encoded in the final VMT representation.

3.2.3 Robust VMT

We present a robust variant of volume motion templates in this section, which we call Robust VMT.
Instead of using stereo camera system and a disparity map, we directly calculate the binary volume
object from frames acquired by a depth sensor. The robustness is achieved by three major differences
from the original volume motion template. First, we address the noise that is caused by the acquisition
device; specifically we address the artifacts produced by the imperfection of the depth sensor which
manifest themselves as small but erratic movements between frames. Second, since we do not rely on
background subtraction, the double-counting issue emerges where we need to identify the “shadow” of
the moving voxel in the background which in fact needs to be ignored when considering motion. Finally,
we employ an additional filter to eliminate isolated points that are rather unlikely to be reckoned as
relevant for activity. In the following paragraphs, these differences will be explained in details.

We calculate binary objects Ot directly from the depth image Zt , and since the camera and the back-
ground are stationary for most cases, voxels that correspond to background are quickly faded away due
to lack of movement. The motion information is then attained without need of background subtraction.
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(a) Every 5th frame from the video sequence.

(b) Standard VMT [227].

(c) Proposed robust VMT.

Fig. 3.3 Comparison of standard and robust VMTs. Please not that the VMTs are manually rotated to
emphasize the differences in z axis.q (Best viewed in color).
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Thus, the binary object is calculated as:

Ot(x,y,z) =

8
<

:
1 if Zt(x,y) = z

0 otherwise
(3.5)

We introduce a new robust filter that tackles the noise caused by the lack of precision of the depth sensor
at hand. Even for scenes where there is no movement at all, there is usually a slight noise in depth images
as we observed in our experiments. Put another way, a point in scene may appear on marginally different
coordinates within the successive Ot objects. Although it seems like a negligible glitch to the eye, it
translates as a strong misinformation onto VMT. Furthermore, the variation appears to be proportional
to depth, being more severe in farther points. To that end, we perform a robust difference operation
including a local neighborhood search and ignoring insignificant displacements:

st(x,y,z) = min
x02{x±Dx}

y02{y±Dy}

z02{z±Dz(z)}

|Ot(x,y,z)�Ot�1(x0,y0,z0)| (3.6)

where Dx, Dy and Dz(z) are parameters that define the size of the search space. Dx and Dy are fixed to form
small neighborhood regions, whereas Dz(z) is adaptive and depends on z. We set it as a monotonically
increasing function whose values have been defined from estimations of local depth variances at specific
intervals of absolute depth.

As stated earlier, our method does not rely on background estimation and this makes it less dependent
on any noise from this error prone background estimation process. However, when subtracting successive
volume objects Ot , classically done by Eq. (3.2), differences in depth now directly translate into detected
motion without being masked by the background subtraction process. In particular, an object moving
before background will translate into two different pixels in motion in the binary motion object st for
given coordinates (x,y): a double-counting issue due to an appearance in foreground at one pixel and
a disappearance in background for the neighboring pixel. The variation in background is not the actual
motion and therefore must be eliminated from the differences st . We therefore change the difference
process in order to eliminate the change in background. Formally,

s

0
t (x,y,z) =

8
<

:
st(x,y,z) if 6 9 z0<z : st(x,y,z0) > 0

0 otherwise
(3.7)

where the difference st is defined as in (3.6). So to put it simply, for a given 2D coordinate (x,y) all
non-zero z coordinates are checked, and only the closest one to the depth sensor is kept while others are
discarded.

As our VMTs are calculated on tracklets of varying window sizes and not on full frames, we modify
the calculation of the magnitude of motion so that it is compatible and suitable for spatio-temporal
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volumes of different sizes. Specifically,

µt =
1
V

ZZZ
st(x,y,z)dxdydz (3.8)

where V is space-time volume of the difference object st . Additionally, each robust VMT is further
normalized by scaling along the z axis into [0,2000].

To eliminate additional outliers (i.e. isolated points that are very likely to be irrelevant to the observed
activity), a Statistical Outlier Removal [233] filter is applied to the resulting VMT. This filter computes
the mean distance between each point and its corresponding k-nearest neighbors, then assumes that the
resulting distribution should be a Gaussian, and finally considers points having mean distances outside a
defined interval as outliers. Such points are removed from our VMT to obtain a more clean and compact
representation of the activity.

Figure 3.3 shows an example of standard VMT (top) and the proposed robust version (bottom) of a
walking person. Please note that high intensity points which signifies recent motion are colored to the
blue end of the spectrum, while lowest intensity points are shown in red. The standard version produces
motion in static background areas which is extremely noisy, but these artifacts are almost completely
avoided by our robust version.

3.3 View Invariance

Let us recall our motivation about achieving a viewpoint independent representation of the activity. As
previously seen in Section 2.6 one of the simplest way to achieve this, is to transform the obtained
representation to a canonical view, so that all representations and features extracted from them are com-
parable. In earlier work as stated in the cited section, the walking direction is used as a reference vector
for a canonical view. The authors of [227] are following a similar approach and they consider the dom-
inant motion orientation for a time window, which signifies the average direction and magnitude of the
all movement vectors present in the scene. To that end, moment vectors of first and last volume objects
i.e. Ot and Ot+w of the time windows are calculated as follows:

m(Ot) =
1

Âx Ây Âz Ot(x,y,z) Â
x

Â
y

Â
z

Ot(x,y,z)
����!
(x,y,z) (3.9)

where
����!
(x,y,z) simply indicates that the result is a 3D vector. And the dominant motion vector is defined

as:
~
dt = m(Ot+w(x,y,z))�m(Ot(x,y,z)) (3.10)

Given the dominant motion vector ~
dt , and its projection to x, y and z axes ~Dt(x), ~Dt(y) and ~Dt(z) respec-

tively, the corrective angles are calculated as given below:

a = cos�1
✓

� sgn(y)sgn(z)
||~Dt(y)||

||~Dt(y)� ~Dt(z)||

◆
(3.11)
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b =
2
p

� cos�1
✓

� sgn(z)sgn(x)
||~Dt(z)||

||~Dt(z)� ~Dt(x)||

◆
(3.12)

g = cos�1
✓

� sgn(x)sgn(y)
||~Dt(x)||

||~Dt(x)� ~Dt(y)||

◆
(3.13)

where sgn() is a function that indicates the sign of the input.
In [227] obtained 3D volume object is rotated according to a , b and g , then the obtained object

is projected into a 2D representation, as called Projected motion template (PMT). We argue that this
projection operation may cause loss of information to some extent and avoid the loss by keeping the
motion information in 3D space. Instead, we rotate the VMT w.r.t. canonical orientation using the basic
rotation matrices (see Equations 3.14, 3.15 and 3.16), resulting in a viewpoint invariant 3D representation
from which 3D features can be extracted. The type of the features we employed in our work and their
usage for activity classification is explained in the next section.

Figure 3.4 illustrates the results of transformation to canonical orientation in several examples. Left,
middle and right columns illustrate grayscale sample from video sequence, computed VMT object and
transformed VMT w.r.t. computed canonical orientation, respectively. For the samples that involve walk-
ing (e.g. first four rows) it is clear that all VMT objects are rotated so that the walking action is performed
from right to left (blue pixels signify most recent movement, while reds signify the oldest). Therefore,
all walking motion is encoded in an analogous manner regardless of the view angle. Remaining samples
on the last two rows are shown to provide examples with less obvious cases, where the performed ac-
tion is more complicated and less linear. Nevertheless, the transformation to w.r.t. canonical orientation
provides a standardized reference frame even for these cases.

Rx(a) =

2

64
1 0 0
0 cos(a) sin(a)

0 �sin(a) cos(a)

3

75 (3.14)

Ry(b ) =

2

64
cos(b ) 0 �sin(b )

0 1 0
sin(b ) 0 cos(b )

3

75 (3.15)

Rz(g) =

2

64
cos(g) sin(g) 0
�sin(g) cos(g) 0

0 0 1

3

75 (3.16)

3.4 Feature Extraction and Classification

In this section the activity recognition task is finalized with extraction of features from the spatio-
temporal video sequence representation at hand, and the use of these features for the classification task.

There are several feature descriptor options in literature, as previously seen in Section 2.3, that are
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Fig. 3.4 Examples that illustrate the transformation w.r.t. canonical orientation. Left column: Sample
frame from video sequence. Middle column: Computed VMT. Right column: Robust VMT which is
rotated according to dominant motion vector. Blue pixels signifiy most recent motion, while reds signify
the oldest. (Best viewed in color.)
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designated to use on 3D data. Most of these methods are executed on raw image data which are usually
a spatio-temporal stack of consecutive RGB images, or on integral videos which are frequently used
for decreasing the computational cost. Therefore, there are components of these descriptors that en-
codes motion information via optical flow to describe motion within the observed sequence, either solely
motion information or accompanied with appearance information. Please note that our intermediate
representation, robust VMT, already contains information about motion in the scene. In particular, the
motion information is translated into differences in intensities, which implies that an appearance based
feature descriptor is much more suitable for conveying information about the motion. To that end, the
HOG3D descriptor appears to be a reliable alternative due to its capabilities to express the differences in
intensities as well as the orientations of these differences. Thus, we extract features from VMTs using a
method based on HOG3D descriptors.

In Section 3.4.1 the HOG3D descriptor is explained in details, and in Section 3.4.2 the recognition
scheme using these features is reported.

3.4.1 HOG3D

HOG3D is a local descriptor which is a generalization of well known HOG descriptor [55] to 3D spatio-
temporal volumes, introduced in [135]. Designated input data for HOG3D descriptor is stacked consec-
utive images taken from a video, or most likely 3D regions that is cut out of such volumes.

Each given point is described with multiple 3D gradient vectors that are computed inside a support
region. The computation scheme works on three folds: The support region is divided into cells, and
cells are divided into sub-blocks. In each sub-block, mean 3D gradient vector is calculated. Calculation
of mean gradient is actually straightforward, but considering the number of sub-blocks in a support
region, the total number of support regions and the necessity to handling different scales with a pyramid
scheme, it quickly becomes cumbersome in terms of computation. This gradient vector is then projected
on a regular polyhedron with congruent faces, i.e. polyhedrons where every face has a counterpart
on the opposite side. Each face of the polyhedron is considered as a bin for the histogram, thus the
mean gradient vector is quantized and conveys information about a single sub-block. To roll up, these
quantizations for each sub-block are accumulated into a histogram to portray the gradient data of a
single cell. Such histograms gathered from all cells within the support region are collected and simply
concatenated to one final feature descriptor for the point that was given as an input. Overview for this
procedure is illustrated in Figure 3.5. These support regions are determined either by an interest point
detector or by dense sampling.

Let us recall that robust VMT contains information about motion and nothing else from the obser-
vation. This indicates that only movement is encoded in VMT and allows us to assume that every voxel
in our robust VMT is conveying relevant information about the observed activity. Consequently, we
calculate the descriptor on robust VMT objects by dense sampling, unlike [135]. This is also the main
difference from the approach in [135], the fact that the input data is very different in nature and instead
of stacking RGB frames to form an integral video we utilize robust VMTs that contains motion history
information in 3D.
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Fig. 3.5 Hierarchical overview of HOG3D feature extraction, see text for details of operations on each
level. (Reprinted from [135]).

A note about the way HOG3D descriptors are calculated in this VMT context, is that our robust VMT
objects are sparse point clouds in practice, which makes gradient computation difficult because of the
gaps between the points. We solve this by trilinear interpolation of gaps, using a maximum gap length
threshold which makes the decision of whether points of same intensity values should be interpolated or
not.

Finally, each set of histograms portrays data about a single point as explained above. Since dense
sampling is utilized to determine the points of which features should be extracted, we end up with a
large number of feature vectors for a tracklet. The procedure to exploit these features vectors in order to
recognize the observed action is described in Section 3.4.2.

3.4.2 Classification via Bag of Words

It is clarified in Section 3.4.1 that HOG3D features are extracted locally and each densely sampled point
is described with a set of histograms where each bin is a face of polyhedron that is used for quantization
of the mean gradient vector computed within a sub-block. Consequently, a large collection of locally
extracted feature vectors are obtained for a single tracklet.

Following the classical Bag-of-words approach, a codebook is built using k-means clustering. Specif-
ically, all high-dimensional feature vectors from training set are considered and clustered in a high-
dimensional space. Cluster centers are assigned as codewords of the codebook. Once the codebook is
ready, each tracklet is processed and computed feature vectors are assigned to a closest cluster center,
i.e. codeword. As a result, the tracklet is tranformed to a single histogram where each bin is a codeword
and occurrences of these codewords are counted. Simply put, each tracklet is represented by a bag (i.e.
histogram) of words (i.e. codewords) where it can be observed how many times a codeword appears.

Thus, each tracklet is represented by a Bag-of-words model calculated by projecting densely sampled
features on a codebook obtained by clustering. In order to recognize activities in tracklets, a prediction
model should be utilized. We employ Support vector machines (SVM) model, which is a supervised
learning model. We train a non-linear SVM model, particularly a Gaussian radial basis function with
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a kernel of type K(x,x0) = exp(�g||~x �~x0||2), where x and x0 are samples and g is a positive hyper-
parameter that is learned during validation.

The activities have different lengths in terms of time, even same class of activities can be of variable
duration depending on the person who performs it. To that end, we divide tracklets into runs of sliding
temporal windows of length T = 40 frames and 50% overlap. Temporal windows are classified individ-
ually in our recognition scheme, and classification results are integrated over tracklets through majority
voting. The label with highest number of votes is then assigned to the tracklet as the final recognition
result.

The evaluation of the proposed method is given in Section 3.5, where it is tested on a challenging
activity dataset and compared to a well known baseline method.
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3.5 Experiments

In this chapter we evaluate the method we proposed in Chapter 3 and conduct experiments to demon-
strate the extent of its recognition capabilities. To that end, we selected a challenging dataset, which is
recorded in an uncontrolled environment and contains sequences of interacting people. It should also be
noted beforehand that this dataset is recorded from the perspective of a mobile robot, which conforms
appropriately with our intention to test our method particularly in terms of viewpoint invariance.

Following sections will first thoroughly present the selected dataset and the particular subset that is
most suitable to the proposed method. After that, details concerning the training procedure are disclosed,
as well as the evaluation specifications and metrics. Then experiment results are stated, along with a
comparison to baseline method to indicate the amount of improvement committed by our contribution.
Finally, the activity recognition part is concluded with Section 3.5.6.

3.5.1 LIRIS Human Activities Dataset

LIRIS Human Activities Dataset [327] is a publicly available dataset, which was originally created for
the Human Activity Recognition and Localization (HARL) 2012 competition of 21st International Con-
ference on Pattern Recognition (ICPR). The dataset consists of video sequences that are recorded by
a commercial depth camera (Microsoft Kinect™) which is mounted on a mobile robot, as depicted in
Fig. 3.6. It contains not only simultaneously occurring complex and realistic actions, but also people-
people and people-object interactions. Data is offered in the standard format for the depth camera, which
contains two sequences of 640⇥480 grayscale images and 640⇥480 depth images for each sequence.
Ground truth annotations are provided along with the dataset, formatted as sequences of bounding box
coordinates and class labels. For convenience, calibration parameters between the depth sensor and
grayscale sensor of the depth camera are provided, which may prove useful for methods that require
spatial correspondence between depth and grayscale images. The creators of the dataset also provide
RGB images recorded via a camcorder, but these are not used in our experiments.

Conforming to the operational prerequisites of the employed depth camera, all video sequences are
recorded indoor. Specifically, the recordings take place in a real-life university environment (INSA
Lyon) which includes difficult settings such as narrow hallways and rooms of various sizes. There are
ten classes of action: Discussion between two or more people (DI), give an object to another person (GI),
put / take an object into / from a box / desk (BO), enter / leave a room (pass through a door) without
unlocking (EN), try to enter a room (unsuccessfully) (ET), unlock and enter (or leave) a room (LO), leave
baggage unattended (UB), handshake (HS), typing on a keyboard (KB) and telephone conversation (TE).
Some of the samples are illustrated in Fig. 3.7. All actions were performed by a group of 21 people
of both genders, with varying outfit and personal appearance. In total, dataset offers 305 actions for
training and validation, and 156 actions for test purposes. However the distribution of available videos
are remarkably unbalanced in terms of classes, as there are 110 samples of EN whereas there are only 22
for UB.

1VOIR - Vision and Observation In Robotics, http://liris.cnrs.fr/voir/wiki/doku.php, last accessed on
30/03/2017

http://liris.cnrs.fr/voir/wiki/doku.php
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Fig. 3.6 Mobile robot with a mounted commercial depth camera, which is used for recording of the
dataset. Part of VOIR1platform of LIRIS laboratory.

The video sequences were recorded from various viewpoints, and for some of the sequences the
mobile robot is actually in motion during an activity. Various viewpoints prevent learning actions from
potential background features. The LIRIS Human Activities dataset is considered more challenging
compared to other activity recognition datasets due to its notably high intra-class variation. For instance,
subjects performing DI may be sitting or standing; likewise, EN may involve opening the door or not.
Moreover, there is a remarkable amount of similarity between some action classes: LO and ET actions
include standing in front of a door for a period of time while trying the key to the lock and thus, are
almost identical except for the last part. Similarly, both BO and UB actions may involve putting down an
object and both result in a similar display, but by definition a baggage becomes “unattended” only after a
while. As a result, recognizing some actions requires either a long duration of observation, or additional
steps as object of context recognition. On the other hand the mounted camera can be considered firmly
fixed with respect to the mobile robot, and there is negligible or no tilt / yaw / pitch movement. In other
words, camera is at a constant height and always parallel to the floor.

Our method has a limitation that is discussed in Section 8.2, which makes Volume Motion Template
(VMT) calculation difficult and inefficient for cases with a moving camera. For the sake of this experi-
ment session, we simply work on a subset of the dataset which conforms with our requirements and we
only consider the actions that are fully recorded in a stationary manner, excluding the ones that contains
motion of the camera. This shortcoming may be addressed with compensation for the ego-motion, as
described in Section 8.3, which will enable VMT calculation for such cases.
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Fig. 3.7 Several samples from LIRIS Human Activities dataset, including following activities in each
row: Handshake, unlock and enter, discussion, enter/leave room, telephone conversation, put/take an
object.
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3.5.2 Baseline Implementation for the Dataset

As mentioned earlier, the LIRIS Human Activities dataset was initially created for the HARL competition
in 2012, where over 70 teams attended worldwide. The dataset is a challenging one, and the goal is not
only classification of activities but also localizing them in time and space. 4 teams accomplished the
task at hand and submitted their results. In the publication associated to the database [327] an elaborate
evaluation metric is presented, which is also explained in Section 3.5.4. We applied the metric on as many
methods as possible to demonstrate the the capabilities of the evaluation metric itself, and to position the
participants’ methods with respect to known baselines. To that end, two additional baseline methods
(dubbed Method A and Method B in the article) to the original four submissions were also included
to observe the introduced metric in action, which consequently provide comparison of results among
diversified approaches.

Here we will focus on Method A, which we implemented solely for this purpose, and we will omit
the details concerning all other methods which can be found in the original publication. Method A is
based on the spatio-temporal feature descriptor [135] that we described in Section 3.4.1. Basically, the
method consists of a pre-processing step where tracklets are obtained as described in [181], a HOG3D
feature extraction step applied on depth tracklets, and a classification step where bag-of-words approach
is applied to classify the activities. A primitive version of the feature extraction code is available online2,
but it fails to meet the requirements for this set of experiments. Based on this C++ implementation,
we almost re-implemented the whole pipeline from scratch and supplemented the program with extra
features such as new input formats to support LIRIS Human Activities dataset depth images as well as
image conversion steps, new stream readers to transform XML tracklets into track-file format required
by the feature extractor, experimental gradient computation functions, algorithms to handle dense sam-
pling in space-time sliding windows settings, launcher programs that executes multiple instances of the
implementation on multiple cores to reduce the total execution time and countless other helper tools to
ease the heavy data load involved in the experiment procedure. All written code, helper scripts and used
third party libraries are available on a public repository3, which also includes the code regarding the
VMT calculation and corresponding helper functions.

Once the HOG3D features were extracted from the sliding windows with 50% overlap, we employed
k-means clustering to build a codebook to use bag-of-words method and represented video sequences
as a collection of codewords. These are then used to train a support vector machine prediction model
which is used to finally classify test samples. Details regarding the codebook building and classification
procedure is given in the next section for VMTs, which was essentially similar for this set of experiments.
As a matter of fact, some of the design decisions for the VMT experiments were actually taken based
on the hands-on experience and empirical results that we obtained during the experiments of baseline
method. Details on these methods (as well as on the HARL 2012 competition) can be found on our
journal paper [327].

2Tool for computing 3D descriptors in videos: https://lear.inrialpes.fr/people/klaeser/software_

3d_video_descriptor, last accessed on 24/03/2017.
3GitHub repository that contains code for the first part of the manuscript: https://github.com/emredog/vmt, last

accessed on 24/03/2017.

https://lear.inrialpes.fr/people/klaeser/software_3d_video_descriptor
https://lear.inrialpes.fr/people/klaeser/software_3d_video_descriptor
https://github.com/emredog/vmt
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Fig. 3.8 VMT objects are interpolated to fill the gaps between the voxels, in order to ease the feature
extraction step. Left: before interpolation, Right: after interpolation.

3.5.3 Training

Video sequences consist of various actions, which have diverse lengths even for same activity class and
often occur simultaneously. Working with tracklets overcomes this problem and enables us to focus
only on the performed action. Furthermore, we divide the tracklets into smaller ones of T frames with
50% overlap, which produces a small number of tracklets for actions that take a small amount of time
to complete, and larger number of tracklets for actions that last longer. This may seem like an approach
where a single tracklet might be missing some important proportion of the whole activity sequence,
but since we employ a local feature descriptor, all features accumulate to describe the bigger picture.
It should also be noted that in order to be able to detect activities (as opposed to pure classification),
we also included a No-Action class whose training examples are selected through bootstrapping. In our
experiments we set T to 40 frames, which translates to ~1800 training samples for training and validation
purposes after balancing.

For each depth tracklet, a robust VMT was calculated as described in Section 3.2.3 where noise,
double counting issue and outliers were addressed according to corresponding descriptions. Dominant
motion vector and complementary corrective angles were calculated respectively as indicated in Section
3.3. The obtained VMT, which is a 3D point cloud, was rotated in agreement with canonical orientation.
Let us recall that the mobile robot of the used dataset translates itself only in XZ plane and allowed to
be rotated around its own y axis, therefore it is sufficient to rotate VMTs around y axis for viewpoint
normalization. It should also be noted that our robust VMT objects are sparse point clouds, which makes
feature extraction, i.e. gradient computation, difficult due to fictitious zero values in between. We solve
this by trilinear interpolation of gaps as illustrated in Fig. 3.8, using an arbitrary maximum gap length
threshold.

We applied the HOG3D feature extractor described in Section 3.4.1 to all obtained robust VMT
objects with dense sampling, which enable us to represent each VMT object as a set of 80 dimensional
feature vectors, each of which is a collection of histograms. In order to employ a bag-of-words technique
for classification task, we first needed to build a codebook. A classical k-means [159] implementation
were used for clustering the feature vectors with k = 4000, and was executed for 100 iterations. Cluster
centers were appointed as codewords to assemble our codebook. Each feature vector within a VMT ob-



44 View Independent Activity Recognition

ject was assigned to closest cluster center, or codeword, where we used Euclidean distance as a proximity
measure. Eventually, this allowed us to describe a VMT object as a ‘collection of codewords’, hence the
term bag-of-words.

For the classification task, we trained a support vector machine (SVM) prediction model with a radial
basis function kernel. We employed a publicly available variant called nu-SVM [45, 243] and learned its
hyper-parameters via 10-fold cross-validation as follows: n = 0.18 and g = 0.008.

3.5.4 Evaluation

In our experiments, we employed a classical confusion matrix which is calculated according to the con-
straints described in the official publication of the dataset [327]. We evaluate our method primarily based
on this indicator, since confusion matrices provide a rapid feedback, and the amount of correct detections
can be seen along with false positives and false negatives. For actions that span multiple tracklets of T
frames, which is the case for most samples, our algorithm will produce multiple labels. In those cases a
simple majority vote was performed to identify the performed activity.

Additionally, as a performance metric we refer to the official metric of the dataset which is described
originally in [327] in details. The objective of this metric is to measure the similarity between the
ground truth action labels and the detected action labels while taking the spatial and temporal accuracy
into account. Naturally, the defined metric should penalize two types error: Missing detections, i.e.
deficient detections which temporally or spatially overlook an action; and excessive detections which
label locations or time frames that do not contain any action. The metric is intended to address both
quantitative and qualitative evaluation of any tested method; it should be capable to tell how many
actions have been detected correctly as well as false positives, and how good is the detection quality.

To fulfill these objectives, two spatial and two temporal thresholds are introduced. This thresholds
directly controls the quality of a detection, such that a detection is considered a match, only if it meets
the quality requirements imposed by these thresholds. This is complemented with plots, where scores
are shown as a function of these thresholds. Combined, these two adequately illustrate the dependence
of quantity on quality. In the following, the formal definition of the metric is given.

Basically, it consists of variants of classical Precision, Recall and F-Score metrics which are modified
to include spatial and temporal thresholds acting as matching quality criteria. For set of ground truth
annotations G and set of detections D, recall and precision are calculated as follows:

Recall(G,D) =
Âv Âa IsMatched(Gv,a,BestMatch(Gv,a,Dv))

Âv |Gv| (3.17)

Precision(G,D) =
Âv Âa IsMatched(BestMatch(Gv,a,Dv),Dv,a)

Âv |Dv| (3.18)

where superscripts v and a denotes the indices for video and action, respectively. BestMatch function
works as a selector, and formally, given a single action Xv,a it picks the best possible match from a list of
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actions Y v:

BestMatch(Xv,a,Y v) = arg max
a0=1...|Y v |

2 ·Area(Xv,a \Y v,a0
)

Area(Xv,a)+Area(Y v,a0)
(3.19)

For a ground truth annotation g 2 G and a detected action d 2 D, the binary indicator of correct match is
given as follows:

IsMatched(g,d) =

8
>>>><

>>>>:

1 if NoFrames(g\d)
NoFrames(g) > ttr and NoFrames(g\d)

NoFrames(d) > tt p and
Area(g\d)
Area(g|d) > tsr and Area(g\d)

Area(d|g) > tsp and

Class(d) = Class(g)

0 else

(3.20)

where g|d denotes the set of bounding boxes of the ground truth action g restricted to uniquely the
overlapping frames of detected action d, and d|g vice versa. The four thresholds ttr and tt p, tsr, tsp are
temporal recall and temporal precision, spatial recall, spatial precision, respectively and they constitute
the matching quality criteria. Spatial ones enforce the amount of bounding box overlap, whereas the
temporal ones enforce frame overlap, in percentage with respect to ground truth annotations. Specifically,
these thresholds control the following:

Temporal Recall Threshold (TRT): Minimum quantity of frames that are common in detected action
and ground truth action, with respect to number of frames in the ground truth. In other words, this
threshold enforces that a sufficiently long duration of the action is detected.

Temporal Precision Threshold (TPT): Minimum proportion of frames that are common in detected
action and ground truth action, to the number of frames in the detected action. In other words, this
threshold enforces that duration of detection surplus should be sufficiently small.

Spatial Recall Threshold (SRT): Minimum quantity of overlapping area between the detected bound-
ing box and the ground truth annotation, with respect to the size of ground truth annotation. In
other words, this threshold enforces that a sufficiently large portion of the ground truth boxes are
correctly found.

Spatial Precision Threshold (SPT): Minimum proportion of overlapping area between the detected
bounding box and the ground truth annotation, to the size of detected bounding box. In other
words, this threshold enforces that the amount of detection surplus should be sufficiently small.

Although F-score is calculated classically, as given in Eq. 3.21, please note that it depends on the thresh-
olds that impose on the IsMatched function. Therefore they can be considered as F-score parameters,
influencing on distinct facets of the matching quality: F(ttr, tt p, tsr, tsp). Four measures can be derived
from here, to assess the detection quality from different quality aspects while keeping other thresholds
on a fixed low value, such as e = 0.1, as shown in Eq. 3.22. In practice, integration of matching quality
is calculated numerically with N equidistant samples between 0 and 1; for the reported results, we took
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N = 50.

F =
2 ·Precision ·Recall
Precision+Recall

(3.21)

Itr =
Z 1

0
F(utr,e,e,e)dutr

It p =
Z 1

0
F(e,ut p,e,e)dut p

Isr =
Z 1

0
F(e,e,usr,e)dusr

Isp =
Z 1

0
F(e,e,e,usp)dusp

(3.22)

Finally, theses measures are consolidated into one encompassing measure for ranking convenience by
simply calculating the average:

CombinedPerformance =
1
4
(Itr + It p + Isr + Isp) (3.23)

3.5.5 Results

The test set contains 29 test videos with a total of 375 tracklets, which all conform to the aforementioned
requirements regarding the camera movement. We compared the proposed method to the method de-
scribed in [135], which is based on 3D gradients without VMTs. The rest of the classification scheme is
identical. Please note that we are unable to compare our experimental results to competition participants
that are reported in [327], due to restrictions regarding the stationary camera.

Table 3.1 gives confusion matrices for the baseline method as well as for the proposed method. As
can be seen, the proposed method outperforms the baseline clearly. Most confusion is created around
three very similar activities, which is typical for this dataset (EN=enter/leave room; ET=try to enter un-
successfully; LO=unlock and enter). These actions are characterized by people manipulating doors in
different ways. In the baseline method, the differences between the action instances are dominated by
the differences in viewpoints which makes classification difficult. Extracting the features from a view
invariant representation (normalized robust VMT) helps solving this problem. Note that empty rows in
the confusion matrix are possible if all samples of this class are detected as No-Action, i.e. not considered
as detected.

To further analyze the experimental results, we also provide comparison of Recall, Precision and
F-Score results in Table 3.2 with fixed quality constraint where all thresholds are set to e = 0.1. This
table also indicates the results for integrated measures presented in Eq. 3.22.

It is evident that our method has a much higher Recall of 0.403, as opposed to 0.129 of baseline
method. On the other hand it yields a relatively lower rate of Precision. Derived F-Score results suggest
that our method has a better overall performance if quality constraints are fixed at a small value. Other
integrated measures, namely Itr, It p, Isr, Isp and the CombinedPer f ormance further support this claim
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Table 3.1 Detection results are presented in confusion matrices, as percentages. First matrix is for [135],
second is for the proposed method; GT: ground truth, D: detection. Please note that empty rows signify
the case where all instance of the action are predicted as No-Action, which is not shown in the confusion
matrix.

GT \ D DI GI BO EN ET LO UB HS KB TE
DI 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GI 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0
BO 0.0 0.0 0.0 33.3 0.0 16.7 0.0 50 0.0 0.0
EN 0.0 0.0 40.0 40.0 0.0 20.0 0.0 0.0 0.0 0.0
ET 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0
LO 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0
UB 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0
HS 0.0 0.0 25.0 25.0 25.0 25.0 0.0 0.0 0.0 0.0
KB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0
TE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

GT \ D DI GI BO EN ET LO UB HS KB TE
DI 50.0 0.0 0.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0
GI 50.0 0.0 0.0 0.0 0.0 25.0 0.0 0.0 0.0 25.0
BO 14.3 0.0 0.0 0.0 0.0 57.1 0.0 0.0 28.6 0.0
EN 15.0 0.0 0.0 70.0 10.0 5.0 0.0 0.0 0.0 0.0
ET 0.0 0.0 0.0 33.3 33.3 33.3 0.0 0.0 0.0 0.0
LO 0.0 0.0 0.0 33.3 0.0 66.7 0.0 0.0 0.0 0.0
UB 0.0 0.0 0.0 50.0 0.0 50.0 0.0 0.0 0.0 0.0
HS 0.0 0.0 0.0 40.0 0.0 60.0 0.0 0.0 0.0 0.0
KB 40.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 60.0 0.0
TE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

Table 3.2 Left: Recall, Precision and F-Score results with fixed quality constraint where all thresholds
are set to 0.1. Right: Integrated measures as defined in Eq. 3.22 and the combined performance.

Method Recall Precision F-Score Itr It p Isr Isp Combined
Baseline[135] 0.129 0.290 0.179 0.098 0.132 0.143 0.127 0.125

Ours 0.403 0.125 0.191 0.129 0.116 0.152 0.118 0.128
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that our method performs better in terms of Recall while the baseline has advantage on Precision. This
may be interpreted as our proposition is more sensitive since it produces better amount of true positives
but also causes false negatives as a side effect, whereas the baseline method is more inclined to exhibit
good amount of true negatives, or more specific, but it also misses a notable portion of the actions.

Moreover, comparison of Recall, Precision and F-Score curves are given in Figure 3.9, where each
threshold is varied between 0 and 1, while other thresholds are fixed to e = 0.1. These curves support the
remark we made earlier even further, that our method performs better in terms of Recall, while baseline
method is stronger on precision. It is also observable that our method is more robust and resilient against
variations in spatial thresholds tsr and tsp as illustrated in the figure, both compared to baseline method
and to temporal threshold variations. This is arguably an indicator of VMT representation captures the
spatial features of a motion successfully, whereas the temporal detection of an activity is more fragile.
This is plausibly due to discreet nature of our VMT computation approach, and may be potentially
improved in a future work with smaller T values and various overlap amounts with a trade-off to higher
computational burden.

3.5.6 Conclusion

For the first part of this manuscript, our objective was to propose a framework for activity recognition
task which is particularly invariant to viewpoint changes. We started with Chapter 2, which defines the
activity recognition properly and analyze the existing body of work and focus on the difference of global /
local representations as well as pose related methods, popular deep learning techniques and strategies that
concentrate on view independence. We argue that using deep learning was not a favorable choice in our
setting, due to very limited number of videos in the dataset, which mostly like would cause overfitting.
In agreement with our initial motivation and considering the state-of-the art on view independent activity
recognition, we proposed a robust representation for activities which was complemented with a feature
extractor suggestion and a classification scheme. Details concerning our proposition was explained in
sections 3.1 through 3.4.

In this section, introduced method was evaluated on a subset of a very challenging dataset which
is publicly available. We compared the experimental results to a baseline method that differs from our
method in representation of the actions, but identical in terms of classification procedure. This allowed
us to demonstrate that our proposition is indeed an improvement with regard to representing actions in a
view invariant manner.

To summarize, this part of the thesis introduced a view invariant activity recognition framework and
assessed its recognition capabilities with an empirical study. Weaknesses of our method and potential
improvement ideas are discussed in Chapter 8.
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Fig. 3.9 Recall, Precision and F-Score curves are plotted over indicated threshold, while all other thresh-
olds are fixed to e = 0.1. Left: baseline method[135], Right: ours.
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Chapter 4

Background on Articulated Pose
Estimation

4.1 Introduction

Articulated pose estimation is a classic computer vision task where sensor data is analyzed in order to
identify the positional configuration of the deformable object in the scene. In other words, it is the recov-
ery of the skeleton which conforms to the image evidence. In human pose estimation, deformable parts
become the limbs and estimating the pose become determining the locations of all body parts relative
to coordinate system of the image. The outcome of the task is more detailed information compared to
human / pedestrian detection, where the goal is to determine the existence and the localization of a hu-
man in a relatively large scene, regardless of his / her articulated pose. There are approaches that utilize
human detection and tracking as a starting point for pose estimation; while it increases the estimation
time, this also limits the variety of the possible poses that can be recovered [62]. In terms of scope of
the problem, pose estimation is also different than specialized tasks such as hand gesture recognition or
facial expression analysis; hands and the head are merely body parts to be localized within the scope of
human pose estimation.

(a) An upper body pose estimation
(frame extracted from [69])

(b) A full body pose estimation
(frame extracted from [72])

(c) A depth image based pose estima-
tion (frame extracted from [259])

Fig. 4.1 Pose estimation examples.
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Popular computer vision tasks such as tracking, activity recognition and video indexing often build
on pose estimation. For instance, some tracking methods that track a person with articulation require to
be initialized in first frame where they rely on pose estimation, and then use other tracking techniques.
Some 3D pose estimation methods and some single-frame action recognition methods utilize 2D pose
as an input to their algorithm. Pose estimation is also at the very center of many industrial applications.
Human-computer interaction can be established with posture for entertainment and other end-user sys-
tems, where users move their arms to interact with a video game, or simply control the volume of the
hi-fi system by moving their arms. Mobile robotic systems tracking based security systems are becoming
more and more popular along with advanced features such as anomaly detection among others. Film in-
dustry benefits already from motion capture systems to modulate computer-generated imagery with actor
movements and gestures, where low-budget, markerless pose estimation systems increasingly participate
in the competition.

2D or 3D estimation of the articulated pose can be performed based on RGB or depth input data. The
problem has been almost solved for easy instances [258]. In cooperative settings for example, depth data
proves to be useful and fast. But depth-based pose estimation methods are bound to limitations of the
depth sensors they exploit: Indoor environment, close distance subject, little or no occlusion. To handle
inner-class variations such as different outfits and body types, depth-based methods usually require a
very large training dataset, either synthetic or real, which can be problematic for some scenarios. Other
realistic configurations still present a significant challenge, particularly pose estimation from RGB input
in non-cooperative settings remains a difficult problem. To achieve good performance in such scenarios,
one has to handle all the aforementioned difficulties as well as large variation in scale, color and lighting,
different viewpoints, cluttered background and sometimes foreshortening. In Chapter 5, we present an
empirical study of some estimation frameworks in different settings.

Methods range from unstructured and pure discriminative approaches, up to complex methods im-
posing strong priors on pose; some instances are given in Fig. 4.1. The former are frequently used in
simple tasks on depth data, which allow real-time performance on low cost hardware. The latter are dom-
inant on the more difficult RGB data, but pose estimation with strong priors is also increasingly popular
on depth imagery. These priors are often modeled as kinematic trees (as in the proposed method) or,
using inverse rendering, as geometric parametric models, or even detailed triangular meshes. Let us give
some brief descriptions for those method types, before an exhaustive and elaborate analysis is given in
the following sections.

Purely discriminative methods These methods tend to learn a direct mapping from a feature space
(e.g. silhouettes or edges) to human pose. Compared to generative methods, which commonly
rely on a body model and try to match the image evidence to these models, these methods utilizes
more discriminative estimation techniques such as decision trees. Details on employed features
and example works are provided in Section 4.6.

Parts based models & pictorial structures These methods model the human body as a collection of
parts, and are one of the most popular method family for human pose estimation. Basically, the
objective of these methods are to learn a body model from data to understand how body parts
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look in images and how they can be deformed. With the appearance and deformation models are
obtained, body part candidates are determined from image observation and best (if any) configura-
tion of parts that conforms the deformation constraints are marked as detections. Considering the
gravity of these methods and their influence with respect to work presented on this thesis, broad
description about the approach and underlying formulations will be offered in Section 4.2.

Inverse rendering and optimization Generative models are often used for human pose estimation,
which are frequently proceeded by inverse rendering. Basically, the pipeline consists of rendering
a 3D mesh in case of depth sensor inputs based on the model parameters, and then comparing
the rendering result to the image evidence. Finding a good match between the rendered candidate
object and image input usually requires an optimization over the continuous pose space, which
are mostly solved through particle filtering, particle swarm or similar iterative optimization tech-
niques. Inverse rendering methods are predominantly used with depth sensors due to convenience
of depth data for this task, but RGB methods also exist where binary silhouettes replace the 3D
mesh for rendering output.

Deep learning Deep neural networks, convolutional neural networks and recurrent neural networks are
often quoted as deep learning. In essence, instead of engineering features for a given task, one
employs a neural network with large amount of hidden layers to learn the nature of features that
are more useful represent the scene in the image. In many challenges deep learning related methods
proved to be efficient and accurate. Researchers, engineers and almost all of the computer vision
community have quickly adopted the deep learning approach to almost every image processing
task, so that it would not be a misjudgment to state that deep learning is the widely accepted
standard. Due to its popularity and success, we present a fair amount of study on deep learning in
Section 4.3.

Hybrid methods Approaches that combine discriminative and generative models are usually referred
to as hybrid methods. They aim to compensate for the lack of discriminative power of gener-
ative models and the poor representation capability of discriminative models, by utilizing both
approaches. Oftentimes, this approach consists of a discriminative model to produce pose can-
didates as hypotheses, followed by a generative model to reconstruct image silhouettes (or other
artificial data) given those hypotheses [231]. Consequently, this kind of scheme helps to reduce
the search space from a continuous pose space to finite set of hypotheses.

There are several surveys that propose their own taxonomy and a way to classify the approaches
that tackles pose estimation and recovery problem [196, 197, 215]. Here the categorization is based
essentially on the relevance to the method described in Chapter 6, thus for a more complete list and
different categorizations the reader is kindly invited to read above-stated surveys. In the rest of this
chapter, some relevant categories and corresponding methods will be studied. One of the most common
approach for the task at hand –apart from the recent deep learning trend– is part based models and it will
be reviewed in Section 4.2. 3D methods are particularly significant for this thesis and will be examined
in Section 4.5, since the means to exploit 3D geometry are often similar and comparable. Deep learning
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and related methods have lately gained an immense momentum and are being used in almost every
aspect of computer vision, therefore a dedicated section (Section 4.3) on deep learning methods for pose
estimation is well-deserved. Other methods that worth mentioning but do not fall in the aforementioned
categories will be evaluated in Section 4.6. The chapter will conclude by putting those approaches into
perspective with respect to the contribution of this thesis, in Section 4.7.

4.2 Part based models for pose estimation

Part based models are a dominant family of models, and they are widely used for RGB images. These
models are commonly designed as a collection of body parts or joints, and are often referred to as
constellation based models or kinematic trees. Although the majority of the methods in the literature
contain full body parts, some works address pose estimation and motion analysis in TV shows as well
as videos and restricts themselves to upper body estimation [69, 240]. The first model in the literature is
Pictorial Structures (PS) [83] which dates back to 1973. This model represents the object or the person
as a combination of related parts with deformation costs (Fig. 4.2). The “springs” are in fact enforcing
the parts to be in certain positions with respect to other parts. Parts that form the object in question are
usually represented with an appearance model, i.e. filters learned from features, and their spatial relation
are represented with a deformation model. The matching or recognition problem is then reduced to
finding parts with similar appearance to the model, and within a “reasonable” configuration with respect
to deformation model. Different descriptors for appearance are available such as silhouettes and contours
[173], intensity [55], color, texture [9], depth cues [203] and in existence of successive frames optical
flow [16].

Fig. 4.2 The human face as a pictorial structure: Significant points are represented with parts, deforma-
tions in between the parts are modeled as springs. Figure reproduced from [83]

The rest of this section is organized in three subsections; we first go into details on the statistical
framework of Pictorial Structures in Section 4.2.1, a non-exhaustive summary of recent works that rely on
part based models are given in Section 4.2.2. Then, we focus on a particular case of pictorial structures,
namely flexible mixture of parts in Section 4.2.3.
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4.2.1 Pictorial Structures

For many years the computational complexity to solve the pictorial structures problem was considered
rather unfeasible, therefore the approach was not thoroughly explored and was not applied to recognition
tasks. Instead, model based approaches such as [110, 188] were investigated. In [77, 78, 229] the
model was not only formulated as a minimization problem, but also an efficient minimization method
was proposed utilizing dynamic programming and generalized distance transforms [79]. If the model
structure is acyclic, which is to say it does not contain any ‘loops’, than the optimization procedure can
be carried out exactly and efficiently. More specifically, the object is represented as a graph, G = (V,E)

where vertices V = {v1, . . . ,vn} are the parts, and pairs of connected parts (vi,v j) 2 E constitutes the
edges. The appearance model is defined as a cost function mi(I, li), which measures the matching cost
for part vi in image I at location li. It will yield a lower cost if the image evidence is similar in terms
of appearance, and higher otherwise. The deformation model is written as di j(li, l j) which computes
the deformation cost between locations li and l j for parts vi and v j. Originally di j is introduced as
Mahalanobis distance [165] as:

di j(li, l j) = (Ti j(li)�Tji(l j))
T M�1

i j (Ti j(li)�Tji(l j)) (4.1)

where Ti j and Tji are transformations that normalize the variables, and Mi j is the covariance matrix
between the variables. For cases where variables, or dimensions, are linearly independent, i.e. their
covariance matrix is the identity matrix, then the Mahalanobis distance is equivalent to the Euclidean
distance. In practice, methods that are related to pictorial structures often use Euclidean distance or a
simple variant of it [340]. For the deformation term, if the relative positions of parts vi and v j are in
agreement with the prior information it will produce a lower cost, and higher otherwise. Simply put, this
model seeks a configuration in the image where parts are looking “good enough” and are located “well
enough”. Formally, the optimization function to minimize is formulated as:

L⇤ = arg min
L

 

Â
(vi,v j)2E

di j(li, l j)+ Â
vi2V

mi(I, li)

!
(4.2)

where L⇤ is the set of locations that minimizes the function. The statistical framework behind this model
is given as a maximum a posteriori (MAP) estimation in [78]:

p(L|I,q) µ p(I|L,q)p(L|q) (4.3)

where I is image, L is set of locations li and q = (u,E,c) are model parameters. This equation actually
states that the posterior probability of parts of an object are located at positions L given a model q and
an image I (i.e. p(L|I,q)), is proportional to the product of the likelihood of seeing an image given that
object is configured at L (i.e. p(I|L,q)) and the prior probability that the object would conform to a
particular configuration (i.e. p(L|q)). The likelihood and the prior probability can be expanded for each
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part and can be inserted in Eq. (4.3):

P(L|I,q) µ

 
n

’
i=1

p(I|li,ui) ’
(vi,v j)2E

p(li, l j|ci j)

!
(4.4)

where u = u1, . . . ,un are the appearance parameters and c = {ci j|(vi,v j) 2 E} are deformation parameters
of the model q . This is analogous to the energy function in Eq. (4.2) that we want to minimize, if we
take negative logarithms of the likelihood as mi(li) = � log p(I|li,ui) and di j(li, l j) = � log p(li, l j|ci j) to
represent the appearance cost and deformation cost, respectively.

This optimization task is actually an NP-Hard problem for unrestricted graph structures and arbitrary
mi and di j functions [34]. But as proposed in [78], it can be solved efficiently with two particular con-
straints: (i) the graph G = (V,E) should be acyclic (e.g. a tree shaped structure); (ii) the deformation
function di j should be restricted to a particular form, which is indicated in Eq. (4.1). Given the first
constraint, classical dynamic programming can be applied to decrease and the minimization can be per-
formed in polynomial time O(h2n), where h is the possible locations for each part and n is the number
of parts.

To briefly summarize the minimization procedure, let us consider a tree shaped graph G = (V,E) and
let vr 2V be the root node of the tree. The restricted shape of the graph dictates that each node other than
the root has one and only one parent node and may or may not have child nodes. The nodes that have no
children are called leaf nodes. For any leaf node v j, given its parent vi and location l j, the quality of the
best location can be computed as:

B j(li) = min
l j

(m j(l j)+di j(li, l j)) (4.5)

and the best location for v j is obtained simply by replacing the min with the argmin. Moving up the tree,
for any intermediate node v j which is located at l j, has children vc 2 Cj and their respective best location
qualities Bc(l j) can be calculated according to Eq. (4.5). Then, this intermediate node v j with parent vi

will have its own quality of best location as:

B j(li) = min
l j

 
m j(l j)+di j(li, l j)+ Â

vc2Cj

Bc(l j)

!
(4.6)

Particularly, the equation above indicates that the quality of best location of an intermediate node is
calculated in terms of the location of its parent, and consists of three terms: its appearance cost, its
deformation cost with its parent, and the sum of qualities of all its children. Finally for the root node
vr, the best location is calculated similarly to Eq. (4.6) except for the deformation term, which is trivial
since the root has no parent:

l⇤r = argmin
lr

 
mr(lr)+ Â

vc2Cr

Bc(lr)

!
(4.7)

Following these three Equations (4.5, 4.6 and 4.7) from leaves up to the root to obtain l⇤r in a recursive
manner, and then backtracking from atop through to three down to the leaves, the optimal configuration
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L⇤ can be computed. This computation requires O(h2n) time, because for each possible location of
a parent, it should consider every possible location of the child. While this seems like a remarkable
gain compared to exponential minimization time in the case of unrestricted graphs, it is still unpractical
considering the large amount of pixels in images.

In order to boost the minimization speed even further, it is proposed in [78] to utilize a particular
form of the deformation cost di j that enable us to exploit generalized distance transforms. Distance
transforms are calculated on a grid G with respect to a subset of points B ✓ G. Distance transforms are
often formalized as D f (x) = miny2G(r(x,y)+ f (y)), where r(x,y) is some distance measure between
two points x and y, and f (y) is an arbitrary function. This formulation enables a computation time of
O(h). Originally, f (y) is used as an indicator function for membership of y in B which yields 0 for cases
where y 2 B, and • otherwise. In other words, the transform searches for a y that is both close to x and
has a small value for f (y). With the restriction enforced on di j, quality of best location function B j(li) of
Eq. (4.6) can be expressed as:

B j(li) = D f (x)(Ti j(li)) (4.8)

This can simply be deduced by writing r(x,y) as the Mahalanobis distance in Eq. (4.1), in which case
x = Ti j(li) and y = Tji(l j), and defining f (y) as follows:

f (y) =

8
<

:
m j

⇣
T �1

ji (y)
⌘

+Âvc2Cj Bc

⇣
T �1

ji (y)
⌘

if y 2 range(Tji)

• otherwise
(4.9)

Efficient optimization of pictorial structures enabled this model to be used as a baseline, upon which
many methods are built. Pictorial structures and part based models in general are extensively used in
object recognition, facial recognition and particularly pose estimation tasks, for which we will study
several examples in the following sections.

4.2.2 Extensions and Related Work

Minimizing the energy function efficiently as described in the previous section allowed a vast number
of methods to emerge, which makes preparing an exhaustive list impractical. In this section, we try to
regroup some of the human pose estimation methods which follow the work of [78, 229] based on their
approach to the problem.

2D Models The pose estimation community first focused on improving the 2D pictorial structures with
carefully crafted enhancements and rectifications. The duality of root and part filters is introduced in
[76] which builds directly on pictorial structures. Following the same principle to address deformable
nature of the objects and human body, first a coarse and a large filter are applied to the image at low
resolution to detect the main body of the searched object. Then parts are detected separately in higher
resolution in compliance with the spring-like deformability constraints. [238] extends PS by simply
introducing adaptive pose priors to estimate upper body pose. Another PS-inspired model is proposed in
[134], where parts are replaced by conditional random fields (CRF). With binary random variables for
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each part, they model the presence and absence for every position, scale and orientation. This results in
a very high number of variables, which forces them to opt for approximate inference. To perform pose
estimation and motion tracking, [279] introduces the Sums of spatial Gaussians model, with underlying
color model to represent shape and appearance of the body parts. A large number of parts forms the body
model and each part is expressed as a Gaussian sphere, whose diameter is the radius of the corresponding
variance of the Gaussian. Unlike most of other body tracking methods this method is fast enough to be
considered as a real-time tracking method, but the model is person-specific and should be trained for
each actor. [189] benefits from more recent techniques by first obtaining 2D pose candidates with PS,
then utilizing a deep model to determine the final pose. [307] takes a relatively uncommon approach
to the pose estimation problem by questioning the very structure of the tree model itself. Instead of
asserting a tree structure, they propose to learn it from the data which results in a different collection
of edges between the vertices. Similar to poselets, they learn by clustering combined parts, i.e. sets
of two adjacent body parts that further enriches the tree model. [8] builds on both pictorial structures
and strong part detectors [7], particularly shape context descriptors [170] are used to detect and classify
body parts. [86] tackles the human motion capture problem in videos with a multi-layered model based
approach. The First layer consists of a stochastic global optimization technique that process the images,
extract silhouettes and estimates a preliminary estimate. Then second layer performs filtering and local
optimization to further refine the estimation over time and attains a global minimum for the energy
function, getting more accurate results as successive frames are processed.

Improving the appearance model It is common practice to attempt to enhance a particular aspect
of the pictorial structures framework, such as appearance models. [67] presents a generic body part
appearance model that can be used in conjunction with any Pictorial Structure approach. Their method
is based on two priors: First, a positional prior that assumes the likelihood of body part positions with
respect to other body parts, such as the fact that the torso is usually located below the face. The second
prior relies on the likelihood of color consistence between the body parts, e.g. color of the arms are
either same as the torso (due to clothing) or same as the face color (due to skin). These premises imply
the deduction of appearance of some body part from the appearance of another body part. [10] builds
further more on [7] by employing a discriminative appearance model for pictorial structures. To that
end, they use densely samples shape context descriptors [170], SIFT descriptors [161] and AdaBoost
classifiers. Subsequently, normalized margins of the classifiers are interpreted as likelihoods so that the
marginal posteriors can be computed using belief propagation for each part. Furthermore, relationships
between the parts are modeled as Gaussian relations; in other words, sum-product algorithm [193] for
inference is computed with Gaussian convolutions in joint space, to be eventually re-transformed into
the image space. [57] argues that the HOG features [55] that are trained with linear SVMs are sensitive
to noise. To address this, they employ random forests as part detectors, and considers both appearance
and co-occurrence of the parts.

Poselets and variants Another widely-known term, poselet is introduced by [33] to represent small
groups of body parts. The novelty of this mid-level representation lies in the type of association that
they establish between the tight clusters of appearance and 3D part configuration of the subject in the
image, as seen in Fig.4.3a. [318] extends the notion of poselets first by allowing non-rigid parts, or
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combination of parts in other words. A second extension is made by presenting multi-scale hierarchy
for parts, which can be considered as a nested tree of part combinations that explicitly decompose the
human body into part combinations and then parts, as depicted in Fig. 4.3b. A specialized version of
the poselets, namely ‘armlet’s [91], are introduced to tackle the detection task of the arms particularly
for cluttered scenes. The main contribution of the method comes from the use of various information
such as strong contours, skin color and contextual cues in addition to the standard HOG features, which
leads to a richer representation of the arms. [201] argues the importance of relationships between the
non-adjacent body parts and proposes a fully-connected model. Due to poselets that become tractable
after the observation, their model does not result in a loopy graph structure and can be directly solved.

(a) In appearance and configuration space, clusters
of parts or combination of parts are defined as pose-
lets [33]. From top to bottom examples are frontal
face, right arm crossing torso, pedestrian, right pro-
file and shoulder, legs frontal view.

person should look like as a whole. In contrast, exemplar-
based methods (e.g. [14, 21, 24]) search for images with
similar whole body configurations, and transfer the poses
of those well-matched training images to a new image. The
limitation of exemplar-based approaches is that they require
good matching of the entire body. They cannot handle test
images of which the legs are similar to some training im-
ages, while the arms are similar to other training images.
Our work combines the benefits of both schools. On one
hand, we capture the large-scale information of human pose
via large parts. On the other hand, we have the flexibility to
compose new poses from different parts.

2. Hierarchical Poselet - A New Representation
for Human Parsing

Our pose representation is based on the concept of “pose-
let” introduced by Bourdev and Malik [3]. In a nutshell,
poselets refer to pieces of human poses that are tightly clus-
tered in both appearance and configuration spaces. Poselets
have been shown to be effective at person detection [3, 2].
Variants of poselets have also been developed for solving
other vision problems, e.g. action recognition in static im-
ages [29].
In this paper, we propose a new representation called hi-

erarchical poselets for parsing human poses. Hierarchical
poselets extend the original poselets in several important di-
rections to make them more appropriate for human parsing.
We start by highlighting the important properties of our rep-
resentation.
Beyond rigid “parts”: Most of the previous work in

human parsing are based on the notion that the human
body can be modeled as a set of rigid parts connected in
some way. Almost all of them use a natural definition of
parts (e.g. torso, head, upper/lower limbs) corresponding to
body segments, and model those parts as rectangles, parallel
lines, or other primitive shapes.
As pointed out in [3], this natural definition of “parts”

fails to acknowledge the fact that rigid parts are not nec-
essarily the most salient features for visual recognition. For
example, rectangles and parallel lines can be found as limbs,
but they can also be easily confused with windows, build-
ings, and other objects in the background. So it is inherently
difficult to build reliable detectors for those parts. On the
other hand, certain visual patterns covering large portions
of human bodies, e.g. “a torso with the left arm raising up”
or “legs in lateral pose”, are much more visually distinc-
tive and easier to identify. This phenomenon was observed
even prior to the work of poselet and was exploited to de-
tect stylized human poses and build appearance models for
kinematic tracking [17].
Multiscale hierarchy of “parts”: Another important

property of our representation is that we define “parts” at
different levels of hierarchy to cover pieces of human poses
at various granularity, ranging from the configuration of the
whole body, to small rigid parts. In particular, we define
20 parts to represent the human pose and organize them in
a hierarchy shown in Fig. 1. To avoid terminological con-

Figure 1: An illustration of the hierarchical pose representation.
The black edges indicate the connectivity among different parts.
The structure layout of the graph reflects the message passing
scheme in Sec. 4.

fusion, we will use “part” to denote one of the 20 parts in
Fig. 1 and use “primitive part” to denote rigid body parts
(i.e. torso, head, half limbs) from now on.

We use a procedure similar to [29] to select poselets for
each part. First, we cluster the joints on each part into sev-
eral clusters based on their relative x and y coordinates with
respect to some reference joint of that part. For example,
for the part “torso”, we choose the middle-top joint as the
reference and compute the relative coordinates of all the
other joints on the torso with respect to this reference joint.
The concatenation of all those coordinates will be the vec-
tor used for clustering. We run K-means clustering on the
vectors collected from all training images and remove clus-
ters that are too small. Similarly, we obtain the clusters for
all the other parts. In the end, we obtain 5 to 20 clusters for
each part. Based on the clustering, we crop the correspond-
ing patches from the images and form a set of poselets for
that part. Figure 2 shows examples of two different poselets
for the part “legs”.

Our focus is the new representation, so we use standard
HOG descriptors [4] to keep the feature engineering to the
minimum. For each poselet, we construct HOG features
from patches in the corresponding cluster and from ran-
dom negative patches. Inspired by the success of multiscale
HOG features [6], we use different cell sizes when comput-
ing HOG features for different parts. For example, we use
cells of 12⇥12 pixel regions for poselets of the whole body,
and cells of 2 ⇥ 2 for poselets of the upper/lower arm. This
is motivated by the fact that large body parts (e.g. whole
body) are typically well-represented by coarse shape infor-
mation, while small body parts (e.g. half limb) are better
represented by more detailed information. We then train
a linear SVM classifier for detecting the presence of each
poselet. The learned SVM weights can be thought as a
template for the poselet. Examples of several HOG tem-
plates for the “legs” poselets are shown as the last columns
of Fig. 2. Examples of poselets and their corresponding
HOG templates for other body parts are shown in Fig. 3.

A poselet of a primitive part contains two endpoints. For
example, for a poselet of upper-left leg, one endpoint cor-

(b) Hierarchical representation of pose in [318]
where full body is decomposed in poselets and sin-
gle parts in a tree structure.

Fig. 4.3 Poselets are mid-level representations for cluster of parts or combination of parts. They allow
multi-scale hierarchical decomposition of body into combination of parts, and further into single parts.

Iterative parsing Iterative parsing of images and its descendants are also an important line of research.
[214] tackles the background clutter and body segmentation side of the pose estimation problem by
focusing on low-level image features. They treat visual inference as an iterative process, where an edge-
based deformable model is first matched to get an initial estimate of the body parts. Using color cues,
rough region models are built for each body part, then region based deformable models are re-matched
to these regions; the process is repeated to reach satisfactory part estimations. [69, 80] builds on image
parsing [214] methods to estimate the human pose. Their enhancement consists of imposing strong
priors about the orientations of torso and head, which leads to higher chances of correct estimations for
these parts. But the drawback of this method is that it focuses on upper body estimations, moreover, the
subject should be upright and only front or back viewpoints are supported.
Unifying techniques A multi-task method [343], takes a step further and addresses two objectives at
the same time: human pose estimation and object detection. Interestingly, they turn this seemingly-harder
effort to their advantage by benefiting from context awareness. That is, employing object and human
parts to serve as context for each other, or ‘mutual context’ as they name it. In order to achieve this, they
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propose a unified model that represents activity, object, body parts and their interrelations. A test image
is then scored for each object and body part templates, object detection is achieved by maximizing the
likelihood of the image given the models specific activities and finally inference is carried out with a
compositional inference method [47]. The required amount of training data is another topic that is open
to discussion. For instance, [124] argues that the use of very large and rich datasets is a reasonable way
to address the problem of variation in clothing and posture in human pose estimation task. To remain
feasible, they rely on the crowd sourcing for ground truth annotation. A recent method [145] proposes
a new method to unify several datasets with different annotations, and makes use of powerful deep
architectures to first pixelwise part segmentation [103], then human pose estimation with 91 landmark
[118] and finally 3D human pose estimation from a single image and the obtained landmarks [30].

4.2.3 Flexible Mixtures of Parts

Flexible Mixtures of Parts (FMP) have been introduced by [341]. A similar work [105] has previously
been proposed for object recognition, but its focus was mainly the variation of number of parts instead of
variety of the appearance of each part. On the other hand, [341] proposed mixtures instead of orientations
of parts as depicted in Fig. 4.4, whose components are obtained by clustering appearance information.
Basically, it leverages the idea that appearances of body parts can be grouped for each body part by
some similarity measure, and any of these appearance should be sought in the image evidence instead
of one generic part template. For instance, searching for a possible appearance of a ‘left foot’, with
different articulations for instance, would yield more precise matches compared to locating a match with
a universal template in the image. Please note that estimating the correct appearance type, i.e. mixture, is
not rewarded by the estimation performance metrics but experiments suggest that mixture models yield
better pose estimation performance. Without a doubt, this advantage comes with a trade-off on larger
search space, which inevitably turns into longer inference time. Although, dynamic programming helps
to alleviate this problem by reducing the time spent on searching by passing messages between the parts,
as described in Section 4.2.1.

Such an approach can be considered as more data-driven, because it will capture the common prop-
erties of body parts seen in the training samples. If data contains different orientations of a part for
instance, mixtures most likely will implicitly handle those orientations. In any case, the execution time
of the FMP method is theoretically shorter due to the gain from the reduced search space, unlike other
methods where search for the correct orientation is a burden. A detailed review of the FMP method can
be found in Section 6.2. Several extensions have been proposed to improve the accuracy of FMP. For
instance, [68] first runs the original FMP algorithm on the dataset to obtain initial estimates, to group
them into clusters based on color cues given the foregrounds. This allows to obtain a sensible estimation
for the appearance of people with the similar clothing, used to build a color appearance model for each
cluster. This pixel-based likelihood information is then translated to unary potentials to re-estimate the
human pose with the modified FMP algorithm. In a similar way, [358] proposes a two-staged mixture of
parts model that first detects the upper body and classifies its category, then proceeds to the full body esti-
mation from that knowledge. Another method [292] supplements the FMP framework with a hierarchical
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Fig. 4.4 Flexible mixture of parts model for articulated pose estimation with K = 14 parts and T = 4
mixtures. Top: Local mixtures, bottom: tree structure. Different mixtures have different best scoring
locations with respect to their parents. Here, only four trees are shown, but there are T K possible combi-
nations of mixtures, each admitting a different estimation score. (Reprinted from [341].)

approach, and introduces latent nodes. These nodes are in fact the combination of spatially proximate
parts and they can capture the compatibility of types (or mixtures) of this neighboring parts. Intrinsically,
FMP yields multiple pose hypothesis before the estimation is finalized, from which many works benefit
to increase accuracy. For example [49] proposed to aggregate multiple hypotheses from the same view
using kernel density approximation, essentially introducing a new compatibility term that weighs the part
hypotheses considering their parent parts. Similarly, [267] stochastically explores multiple hypotheses
and relies on geometric and anthropomorphic constraints for disambiguation. Furthermore, [239] pro-
poses to use strong priors on the human posture. Instead of employing different appearance types (as
in [341]), they put forward a structure of graph that has modalities which are learned with clustering
from training data. These modes contain different body configurations such as arm-folded, arm-raised,
arm-down and so on, and the authors report that a setup with 32 modes perform well for human pose
estimation.

[123] leans on the idea of ‘mixture of trees’ [316] model to propose a richer appearance model.
They opt for pose clustering to find out similar postures of the human body, which also reduces the
appearance variation within a single pose cluster. Moreover, they utilize different set of detectors along
with non-linar SVM classifiers for each cluster which eventually favors the implicit capturing of the
correlation in appearance between the parts that belong to the same pose cluster. [202] proposes a two-
fold extension to the Pictorial Structures by both appearance representations and more flexible spatial
models. The former explores the rotation (both absolute and relative) dependent mixtures and pose
dependent - rotation invariant mixtures that are implemented through deformable part models [76]. The
latter considers the additional prior on location, rotation and scale of the adjacent body parts as well as
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mid-level representations such as poselet-conditioned pairwise deformation terms. The work in [46] can
also be considered as a mixture model, but instead of vertices, the edges has different types. Another
fusion of mixture-of-parts and pictorial structures approaches is [105], though main target of this work
is object detection and more specifically recognizing the formations of football players.

Although all these methods and given examples improve and add on the FMP to some extent and
report improved performance on pose estimation accuracy, yet no method incorporates geometrical con-
straints with appearance constraints in a multi-view setting.

4.3 Deep learning methods

In this section, we will focus on human pose estimation methods based on deep learning approaches. For
a review of deep neural networks in general, please refer to Section 2.4.

Although a relatively short period of time has passed since the beginning of use of deep learning in
computer vision, there is a considerable amount of work on object detection and human pose estimation.
Arguably, Krizhevsky et al.’s deep convolutional neural network [138] is among the most pioneering
works in the field, especially in image classification domain. They have a successful record in ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) of 2010 and 2012; with a network that has 60 mil-
lion parameters and 650,000 neurons structured in an architecture of five convolutional layers followed
by pooling layers, three fully-connected layers and a 1000-way softmax as a final layer. Two years later,
same challenge was won by Szegedy et al’s Inception network [284], which is essentially a larger and a
deeper convolutional network with sparse properties and carefully applied dimension reductions to keep
the computational cost at a reasonable level.

Learning the features to extract, in contrast to carefully crafting them by hand has become quite
popular especially when pre-built models and frameworks were introduced with community support.
Namely, OverFeat [248], Regions with CNN features [90] and DeCAF [64] are widely used due to their
publicly availability. For instance, [220] demonstrates that off the shelves features computed by OverFeat
perform better than the handcrafted methods not only for object recognition as it was originally intended,
but also other challenging tasks such as scene recognition, image captioning and others. Similarly, [186]
shows that mid-level image representations that are learned from a large dataset (e.g. ImageNet [60]), can
be transferred to other recognition tasks where available datasets are considerably smaller (e.g. Pascal
VOC [73]). Another example of “task invariance” of the features would be the case of Regions with CNN
features [90], since it is used both for people detection [93], pose estimation and action detection [92].

Pedestrian detection is also carried out with convolutional neural networks, as proven in [249], where
the approach is fairly similar to the aforementioned workflow with exceptions such as layer-skipping
multi-stage features to integrate global shape information with local motif information. In order to deter-
mine various human attributes, a collection of convolutional neural networks are trained in [351], where
each one learns a poselet [32] from a set of image patches. An image is then represented by a collec-
tion of part-based deep representations which are then concatenated to obtain a full representation. The
architecture consists of four stages of convolution - normalization - pooling layers, one fully connected
layer and finally a logistic regression layer, which is utilized as a classifier of linear nature. Poselets are
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commonly used in conjunction with deep convolutional neural networks for people detection [93] and
pose estimation as well [104].

Deep convolutional neural networks are frequently used to tackle the human pose estimation prob-
lem, which is the most important task for this thesis. [189] address the problem by first obtaining 2D
pose candidates with PS, then employing a deep model to determine the final pose. [74] feeds both local
patches and their holistic views into the convolutional neural networks, while [293] propose a new archi-
tecture where a deep convolutional neural network is used in conjunction with Markov Random Fields.
[294] on the other hand, follow a more direct approach and employ a cascade of deep neural network
regressors to handle the pose estimation task. [72] first uses a joint detector [293] which is based on con-
volutional neural networks. The resulting unary potentials for each joint are then treated as constraints
for tracking, where [279] is used as a tracker. [42] introduces a new top-down procedure called Itera-
tive Error Feedback, which allows error predictions to be fed back in the convolutional neural network
to progressively change the initial solution. That eventually causes the model to be self-correcting and
more expressive in terms of features. Belagiannis and Zisserman contributes by introducing a convolu-
tional neural network for pose estimation that combines feed forward and recurrent modules that is able
to suppress false detections progressively [21]. A recent study [180] proposes to apply the convolutions
and pooling steps in a way that allows the image to be processed repeatedly in a bottom-up and top-down
manner with intermediate supervision. [156] proposes to integrate a consensus voting scheme within a
convolutional neural network, where votes gathered from every location per keypoint are aggregated to
obtain a probability distribution for each keypoint location. A 3D pose estimation method [155] has
also been proposed to compute a score given an image and a 3D pose using two separate deep networks
that embed the image and the given pose into a common space. Another convolutional neural network
is trained to infer 3D human pose from uncertainty maps of 2D joint estimates [357]. To estimate hu-
man pose in videos, [199] exploits the ability of convolutional neural networks to benefit from temporal
context which is established by combining information between successive time frames using optical
flow.

The method proposed in [46] is particularly is interesting, since it uses a kinematic tree and an energy
function similar to one in FMP [340]. It consists of both unary appearance terms and binary deformation
terms between the parts. Yet, these binary terms are observation dependent, thus do not rely solely
on anthropomorphic priors. Furthermore, relation between the parts can have different types, based
on their relative location with respect to each other. Types of part relations are learned with K-Means
clustering in the experiments and govern spatial connections between the parts. Since both appearance
terms and relation terms are image dependent, they can share parameters and can be learned with a single
deep convolutional neural network, for which the architecture is illustrated in Fig. 4.5. Output of this
network is a conditional probability distribution for both image dependent terms, which is used in the
energy function and optimized with dynamic programming (again, similar to FMP) to find the best pose
configuration that explains the image evidence.

All the research reviewed in this section and the advances in GPU hardware are pointing to the fact
that deep learning will be the industrial and academic standard for almost all the computer vision tasks,
if it is not already is. But one problem is standing as a drawback: If there is not a very large dataset
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Figure 2: Architectures of our DCNNs. The size of input patch is 36 � 36 pixels on the LSP dataset, and
72 � 72 pixels on the FLIC dataset. The DCNNs consist of five convolutional layers, 2 max-pooling layers
and three fully-connected (dense) layers with a final |S| dimensions output. We use dropout, local response
normalization (norm) and overlapping pooling (pool) described in [10].

5.2 Implementation detail

Data Augmentation: Our DCNN has millions of parameters, while only several thousand of train-
ing images are available. In order to reduce overfitting, we augment the training data by rotating the
positive training images through 360� by steps of size of 10�. This increases the number of training
images by a factor of 36. Although the rotated poses may not be realistic as a whole, each individual
part still realistically interacts with its neighbors. For example, a running person rotated by 180�

may seem strange, but the local patches around elbows, wrists, hips etc. are still fairly suitable for
telling which parts are present and where the neighboring parts should be. These images are also
horizontally flipped to double the training images. We hold out 1000 random pairs of positive im-
ages and their flipped version as a validation set for the DCNN training. Also the weight parameters
w are trained on this held out set to reduce overfitting to training data.

Note that our DCNN is trained using local part patches and background patches instead of the whole
images. This naturally increases the number of training examples by a factor of K (the number of
parts). Although the number of dimensions of the DCNN final output also increases linearly with the
number of parts, the number of parameters only slightly increase in the last fully-connected layer.
This is because most of the parameters are shared between different parts, and thus we can benefit
from larger K by having more training examples per parameter. In our experiments, we increase K
by adding the midway points between annotated parts, which results in 26 parts on the LSP dataset
and 18 parts on the FLIC dataset. Covering a person by more parts also reduces the distance between
neighboring parts, which is good for modeling foreshortening [21].

Graph Structure: We define a full-body graph structure for the LSP dataset, and a upper-body
graph structure for the FLIC dataset respectively. The graph connects the annotated parts and their
midways points to form a tree (See the skeletons in Figure 6 for clarification).

Settings: We use the same number of types for all pairs of neighbors for simplicity. We set it as 11
on all datasets (i.e., Tij = Tji = 11, 8(i, j) 2 E), which results in 11 spatial relation types for the
parts with one neighbor (e.g., the wrist), 112 spatial relation types for the parts with two neighbors
(e.g., the elbow), and so forth (recall Figure 1). The patch size of each part is set as 36⇥36 pixels on
the LSP dataset, and 72⇥72 pixels on the FLIC dataset, as the FLIC images are of higher resolution.
We use similar DCNN architectures on both datasets, which only differ in the first layer because of
different input patch sizes. Figure 2 visualizes the architectures we used. We use the Caffe [8]
implementation of DCNN in our experiments.

5.3 Benchmark results

We show strict PCP results on the LSP dataset in Table 1, and PDJ results on the FLIC dataset in
Figure 3. We also show the PDJ results on the LSP for arms and legs, which are the most challenging
parts, in Figure 4. As is shown, our method outperforms state of the art methods by a significant
margin on both datasets (see the captions for detailed analysis). Figure 6 shows some estimation
examples on LSP and FLIC datasets.

6

Fig. 4.5 Network architecture used in [46]. Both possibilities for input layers are shown, to handle 36⇥36
and 72 ⇥ 72 pixels of inputs. After the classical convolution - normalization - pooling pipeline, three
fully connected layers with dropout are designated give a softmax output to get conditional probability
distribution of an image over parts and connection types.

available for training, these deep networks are cursed with the problem of overfitting, considering the
very large number of parameters.

4.4 Multi-view settings

Humans have two eyes, as most mammals and many other animals do. Without going into details of
the evolution theory, we could speculate that this is the minimum number of visual sensors to fully
comprehend the environment in terms of depth. In other words, a living organism seems to need at least
two eyes to reliably understand how far an object is located. This is due to small differences in what is
seen with right eye and left eye, called disparity. The amount of disparity is high if the object is at a close
distance, and decreases proportionally when it gets farther away. Furthermore, in order to understand
the 3D form of an object one must look at it from different point of views, obviously. These primordial
statements have inspired researchers to investigate stereoscopic vision systems and multi-view settings
in computer vision.

One of the most common use-cases of multiple sensors in computer vision was the depth estimation
and the main area of application was navigation for mobile robotics [85]. Modern depth sensors [353]
use infra-red patterns and observe their deformations to estimate depth; or time of flight cameras [136]
emit a light signal, wait for it to be reflected back and measure the time spent to compute the distance
to the object. But before those technologies were available and affordable, binocular (or stereo) camera
rigs were utilized [195, 207] to estimate depth information from two images by the means of disparity
maps. The reader is kindly invited to read further to understand the task of calculation the disparities
based on dense and accurate correspondences between the images [101, 285].

As well as 3D reconstruction and scene reconstruction that are traditionally carried out in multi-view
settings, other computer vision tasks such as object tracking, object recognition and action recognition
often benefit from multiple sensors. The motivation of using multiple sensors for a task that can be
performed with a single one, is basically to have more information about the scene. A simple example
would be the case where one camera sees a standing still person from right side, in a way the left arm
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remains invisible. If an additional camera is available seeing the same person from another angle, from
the left side for instance, in a way that the right arm is invisible this time as observed in Fig. 4.6.
If correspondence can be established between the images, information gathered from both views can
be integrated to determine the locations of both right and left arms. For images acquired from different
sources to be profitable, some form of correspondence ought to be established; otherwise there will be no
added value in terms of information. To this end, principles of epipolar geometry is commonly exploited
to relate some pixels from one image to sets of pixels, more specifically lines in the other image.

(a) Person seen from left. (b) Person seen from right.

Fig. 4.6 An example of setting from HumanEva [261], where each camera is able to see an arm but not
the other.

Since a large part of this thesis deals with multiple view pose estimation, the rest of this section will
discuss the basics of multiple view geometry. Before starting to review epipolar geometry, let us recall
some basic definitions. In the case of a pinhole camera model, which is the most simplified model, any
point in 3D space is projected to the image plane using the camera matrix or projection matrix, P, see
Figure 4.7. Here, C is the camera center (also known as optical center) that is placed on the origin of the
3D coordinate system, so that the Z axis becomes the principal axis. All rays of light pass from C and hits
the image plane in the camera, which is located at a distance of f (focal distance) to the camera center.
Depicting the image plane in front of the camera center is a common practice to simplify the figures and
calculations. Any point X in space is projected to the image plane at the intersection point x of the image
plane with the line from X to C. Calculating the coordinates of x is fairly easy using the similar triangles
theorem, as can be seen on the right of Fig. 4.7. Thus, a 3D point located at (X ,Y,Z)T is projected to
image plane with following coordinates ( f X/Z, fY/Z, f )T and last coordinate can be ignored since it is
constant. This projection can be expressed in a matrix multiplication form, if we assume that the image
points are represented by homogeneous coordinates:
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Fig. 6.1. Pinhole camera geometry. C is the camera centre and p the principal point. The camera
centre is here placed at the coordinate origin. Note the image plane is placed in front of the camera
centre.

computes that the point (X, Y, Z)T is mapped to the point (fX/Z, fY/Z, f)T on the
image plane. Ignoring the final image coordinate, we see that

(X, Y, Z)T !→ (fX/Z, fY/Z)T (6.1)

describes the central projection mapping from world to image coordinates. This is a
mapping from Euclidean 3-space IR3 to Euclidean 2-space IR2.

The centre of projection is called the camera centre. It is also known as the optical
centre. The line from the camera centre perpendicular to the image plane is called the
principal axis or principal ray of the camera, and the point where the principal axis
meets the image plane is called the principal point. The plane through the camera
centre parallel to the image plane is called the principal plane of the camera.

Central projection using homogeneous coordinates. If the world and image points
are represented by homogeneous vectors, then central projection is very simply ex-
pressed as a linear mapping between their homogeneous coordinates. In particular,
(6.1) may be written in terms of matrix multiplication as
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The matrix in this expression may be written as diag(f, f, 1)[I | 0] where
diag(f, f, 1) is a diagonal matrix and [I | 0] represents a matrix divided up into a 3× 3
block (the identity matrix) plus a column vector, here the zero vector.

We now introduce the notation X for the world point represented by the homoge-
neous 4-vector (X, Y, Z, 1)T, x for the image point represented by a homogeneous 3-
vector, and P for the 3×4 homogeneous camera projection matrix. Then (6.2) is written
compactly as

x = PX

which defines the camera matrix for the pinhole model of central projection as

P = diag(f, f, 1) [I | 0].

Fig. 4.7 Pinhole camera model geometry, as depicted in [101]. C is the camera center that is placed on
the origin.

However, the origin of the coordinate system in the image plane is not necessarily placed at the principal
center p. Therefore Eq. 4.10 should be adjusted as follows:
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where (px, py)T are the coordinates of the principal point. Let us write K for the 3⇥4 matrix in Eq. 4.11,
which is called camera calibration matrix and it is defined with respect to the internal parameters of the
camera. Moreover, another adjustment is required to handle the cases where the camera is not located
at the origin 3D coordinate system, also known as world coordinate frame. Additionally, the camera is
likely to be rotated so that its principal axis would not be parallel to the y axis. The rotation is defined by
a 3⇥3 matrix, R and translation along three axes is defined by a 1⇥3 vector t. Rotation and translation
of the camera is called the external parameters of the camera, since it is subject to change every time a
camera is placed somewhere and oriented in some direction. By convention, the projection matrix that
maps a 3D world point to the corresponding point in image plane considers both internal and external
parameters and expressed as follows x = PX where P = K[R|t]. In this thesis, we will not get into the
details additional parameters that handles various distortions such as skew and radial distortion, but they
are usually plugged in into camera matrix, since they are mostly intrinsic properties of the camera lenses.

All of the internal and external parameters of a camera are generally determined with an estimation
process called camera calibration [280, 296, 324]. Most of the popular computer vision tools [31] and
frameworks uses a calibration plate, a special plate with carefully measured patterns on it, that looks like
a checkerboard. Multiple images of the calibration plate are captured and expected points are detected
with basic matching algorithms. Then these points and their detected projections on the image plane are
used to solve a system of equations of type Eq. 4.11. This calibration scheme is introduced in [352] and
studied in detail in [101], [85] and [285].

In the case of two cameras that are pointed to the same scene, epipolar geometry and fundamental
matrices are used for determining the correspondences between the views. Epipolar geometry is the
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projective geometry between two views, that depends on the internal and external parameters of the
cameras [101, 330]. It is often illustrated with a point X in the scene and its projections x and x0 to two
views as in Fig. 4.8a. Optical centers of views, C and C0 along with the point X form a plane, namely
epipolar plane p . The intersection points of the image planes with the line between C and C0 are called
the epipoles and denoted as e and e0.

240 9 Epipolar Geometry and the Fundamental Matrix
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Fig. 9.1. Point correspondence geometry. (a) The two cameras are indicated by their centres C and
C′ and image planes. The camera centres, 3-space point X, and its images x and x′ lie in a common
plane π. (b) An image point x back-projects to a ray in 3-space defined by the first camera centre, C,
and x. This ray is imaged as a line l′ in the second view. The 3-space point X which projects to x must
lie on this ray, so the image of X in the second view must lie on l′.
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Fig. 9.2. Epipolar geometry. (a) The camera baseline intersects each image plane at the epipoles e
and e′. Any plane π containing the baseline is an epipolar plane, and intersects the image planes in
corresponding epipolar lines l and l′. (b) As the position of the 3D point X varies, the epipolar planes
“rotate” about the baseline. This family of planes is known as an epipolar pencil. All epipolar lines
intersect at the epipole.

Supposing now that we know only x, we may ask how the corresponding point x′ is
constrained. The plane π is determined by the baseline and the ray defined by x. From
above we know that the ray corresponding to the (unknown) point x′ lies in π, hence
the point x′ lies on the line of intersection l′ of π with the second image plane. This line
l′ is the image in the second view of the ray back-projected from x. It is the epipolar
line corresponding to x. In terms of a stereo correspondence algorithm the benefit is
that the search for the point corresponding to x need not cover the entire image plane
but can be restricted to the line l′.

The geometric entities involved in epipolar geometry are illustrated in figure 9.2.
The terminology is

• The epipole is the point of intersection of the line joining the camera centres (the
baseline) with the image plane. Equivalently, the epipole is the image in one view

Fig. 4.8 Epipolar geometry and point correspondences as illustrated in [101]. Two views are portrayed
with their image planes and optical centers, C and C0.

Assuming that the relative positions of cameras and their internal parameters are known, a strict
constraint can be computed from one view. As in Fig. 4.8b, knowing plane p and x is sufficient to limit
the location of the x0 to a single line, called epipolar line that is denoted as l0. In order to calculate the
epipolar line, we need an algebraic representation of the epipolar geometry, which is called fundamental
matrix, F . Using this matrix, mappings from points in one view to corresponding epipolar lines in the
other views, e.g. x 7! l0 and x0 7! l can be computed in both directions. The fundamental matrix can be
derived algebraically from projection matrices P and P0 as proven in [335]. Once the fundamental matrix
is derived, it can be used for correspondence of points from two views with the equation x0T Fx = 0.
The following should also hold for epipoles: Fe = 0 and FT e = 0, since all epipolar lines must pass
from the epipole in that image plane. But the most handy correspondence of all, which we exploit
intensively throughout our multi-view pose estimation scheme, is the one that maps points from one
view to corresponding epipolar lines in the other view:

l0 = Fx
l = FT x0 (4.12)

This correspondence between the views proves to be useful in many applications such as tracking
[300], pose estimation [6, 108] and action recognition tasks [44, 313]. The relation between a specific
point and its respective epipolar line in the second view, for instance a detected location of a particular
object, can be used to modify pixel-wise probabilities or energy function of some task in the second view,
and can eventually lead to a more precise result. Additionally, knowing both projection matrices, two 2D
points from separate views that is known to be correspondent can be triangulated [101] to estimate the
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objects 3D coordinates in world coordinate frame. More applications and their details are investigated in
Section 2.6 for activity recognition and Section 4.5 for pose estimation.

4.5 3D Pose Estimation

3D pose estimation is a special case of human pose estimation, where locations of joints and body parts
are estimated in 3D world coordinates. In comparison to 2D pose estimation, this is considerably more
challenging since one have to estimate also the distance from the camera using real world metrics. As
seen in Section 4.4 3D information about the observed scene is often achieved from multiple images,
either from same or different viewpoints. Other ways to obtain 3D data are also possible, such as 3D
sensors that provides depth images or other dedicated 3D sensor hardware that exploits laser technologies
and so on.

Articulated pose estimation in 3D has popular applications such as markerless motion capturing.
A group of techniques focus on the extension of pictorial structures and two examples are shown in
Fig. 4.9. Several works [18, 262, 265, 266] proposed a generalized version of pictorial structures,
which also exploits temporal constraints. They employ graphs spanning multiple frames and which
are inevitably loopy. Inference is performed with non-parametric belief propagation. 3D extensions
of pictorial structures were explored, and the burden of the unfeasible 3D search space is handled by
reducing it with discretization [37], supervoxels [241], triangulation of corresponding pairs of body
parts from different viewpoints [19] or by using voxel based annealing particle filtering [40].

Additionally, using a 3D model allows to use priors such as “body parts must not share the same
space” unlike 2D models, where the subject can be self-occluded and more than one part can occupy
the same image space. With this kind of prior one can avoid self-intersections, or in other words so-
called double counting errors. [241] propose another 3D pictorial structures model, and address the high
complexity and intractable dimensions problem by reducing the search space. To this end, they take the
discretization-by-segmentation approach by applying supervoxels to the 3D model.

Recently, [359] proposed a strategy similar to 3D pictorial structures, but with a more realistic body
model, and inference is carried out with particle-based max-product belief propagation. [6] introduced
a scheme where pictorial structures are employed to estimate 2D poses, then incorporates these poses
to obtain a 3D pose with geometrical constraints as well as color and shape cues. Inferring 3D pose
from multiple 2D poses is rather common, with various underlying strategies such as hierarchical shape
matching [107], random forests [130] and optical flow [209].

Quantization of possible human postures to build a codebook of 3D human poses is used by [257].
Then the 3D representation of the test voxels is compared and matching to the nearest pose in the code-
book is performed. Since this codebook of available human postures is very large, they also propose an
extension of parameter-sensitive hashing [252] to complete the matching procedure in an efficient way.

The 3D pose estimation problem can be tackled by transforming the data acquired by multiple RGB
cameras into a 3D representation [127] in a way that depth-based techniques, such as [259], can be
exploited. To do so, first they extract the 3D visual hall by non-parametric background subtraction [70].
First the orientation of the human body is estimated similarly to [257], then an extended version of
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make the problem computationally tractable, they impose a
simple body prior that limits the limb length and assumes
a uniform rotation. Adding a richer body model would
make the inference much more costly due to the computa-
tions of the pairwise potentials. Consequently, the method
is bound to single human pose estimation and the extension
to multiple humans is not obvious. The follow-up work of
Kazemi et al. [17] introduces better 2D part detectors based
on learning with randomized forest classifiers, but still re-
lies on the optimization proposed in 3D pictorial structures
work [8]. In both works, the optimization is performed sev-
eral times due to the ambiguity of the detector to distin-
guish left from right and front from back. As a result, the
inference should be performed multiple times while chang-
ing identities between all the combinations of the symmet-
ric parts. In case of multiple humans, either having sepa-
rate state spaces for each person or exploring one common
state-space, the ambiguity of mixing symmetric body parts
among multiple humans becomes intractable. Both papers
evaluate on a football dataset that they have introduced and
it includes cropped players with simple background. We
have evaluated our approach on this dataset. Another ap-
proach for inferring the 3D human body pose of a single
person is proposed by Amin et al. [2]. Their main contribu-
tion lies in the introduction of pairwise correspondence and
appearance terms defined between pairs of images. This
leads to improved 2D human body pose estimation and the
3D pose is obtained by triangulation. Though this method
obtained impressive results on HumanEva-I [22], the main
drawback of the method is the dependency on the camera
setup in order to learn pairwise appearance terms. In con-
trast, our body prior is learned once from one camera setup
and is applicable to any other camera setup.

Finally, similar to our 3DPS model, the loose-limbed
model of Sigal et al. [24] represents the human as a proba-
bilistic graphical model of body parts. The likelihood term
of the model relies on silhouettes (i.e. background subtrac-
tion) and applies only to single human pose estimation. This
model is tailored to work with the Particle Message Passing
method [27] in a continuous state space that makes it spe-
cific and computationally expensive. In contrast, we pro-
pose a 3DPS model which is generic and works well both
on single and multiple humans. We resolve ambiguities im-
posed by multiple human body parts. Additionally, we op-
erate on a reduced state space that make our method fast.

2. Method
In this section, we first introduce the 3D pictorial struc-

tures (3DPS) model as a conditional random field (CRF).
One important feature of the model is that it can handle mul-
tiple humans whose body parts lie in a common 3D space.
First, we present how we reduce the 3D space to a smaller
discrete state space. Next, we describe the potential func-

Figure 2: Graphical model of the human body: We use 11 vari-
ables in our graph to represent the body parts. The kinematic con-
strains are expressed in green (rotation) and yellow (translation)
edges, while the collision constrains are drawn with blue edges.

tions of the 3DPS model, emphasizing on how this model
addresses challenges of multiple human 3D pose estimation
in multi-views. Finally, we discuss the inference method
that we employ to extract 3D human body skeletons.

2.1. 3D pictorial structures model

The 3D pictorial structure (3DPS) model represents the
human body as an undirected graphical model (Figure 2). In
particular, we model the human body as a CRF of n random
variables Y

i

2 Y in which each variable corresponds to a
body part. An edge between two variables denotes condi-
tional dependence of the body parts and can be interpreted
as a physical constraint. For instance, the lower limb of
the arm is physically constrained to the upper one. The
body pose in 3D space is defined by the body configuration
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(a) 3D PS model from [18], where additional con-
straints that act as a deformation prior for 3D parts
are shown. Rotation, translation and collision con-
straints are depicted in green, yellow and blue, re-
spectively.

(b) Stitched Puppet [359], is a realistic 3D body
model with a graphical structure of separate body
parts, which can handle body deformations with
stitching cost, i.e. multiple springs between the in-
terface points of parts.

Fig. 4.9 3D extensions examples of pictorial structures.

shape context [22] features are extracted in 3D in the human centered reference frame. Segmentation
of the 3D visual hull is then performed using the pixel-wise classification of as in [259] and finally
joint locations are detected with mean-shift mode finding. Three dimensional stereoscopic videos are
exploited to address the human pose estimation task in some cases [160], where two images for each
scene is captured from very close cameras, implicitly simulating the human eyes. This setup allows for
calculation of the disparity maps, thus the depth information becomes available and the subject body is
segmented from background. Then an extended version of pictorial structures is applied to compute the
body part configuration probability given image evidence from two cameras and the previously calculated
disparity map.

The 3D human pose problem is sometimes dealt with discriminative methods, such as conditional
mixture of Bayesian experts [27] or silhouette based techniques [2, 3]. Although these methods are
usually fast for feed-forward 3D prediction, they tend to be inefficient to train with large amount of
training data. Discriminative methods are reviewed in detail in Section 4.6.

Multiple cameras are not mandatory for 3D pose estimation, instead multiple frames from a monocu-
lar camera can be used to estimate the 3D pose. For example [9] infers 3D pose from monocular camera,
where first 2D pose is estimated to form tracklets for body parts and and tracked over a time period. On
the other hand, [302] argues that bone lengths and absolute depth values can not be estimated through
rigid constraints to torso and hip with a finite number of frames.

Alternatively the missing depth information can be supported with strong priors to yield multiple
hypotheses of 3D pose from a single 2D pose estimation. [306] presented a method to estimate 3D
pose from single image where they use FMP and camera parameter estimation, in conjunction with
anthropomorphic constraints. Or, several works [86, 223, 267, 319] start from 2D estimation of human
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pose and densely back-project it to 3D to form a high number of hypotheses. By iteratively imposing
geometric and kinematic constraints, or by other means of filtering the ambiguity is resolved and a final
3D pose is obtained. Alternative ways of inferring 3D pose from a collection of 2D poses are investigated
frequently, using kinematic jump processes [273], convolutional neural networks [357], implicit mixture
of Conditional Restricted Boltzmann Machines [288] or supervised spectral embedding [347]. A recent
method [30] exploits deep convolutional neural networks to obtain 3D pose estimation from a single
image, by first obtaining a 2D pose, then estimating a 3D mesh of the body and projecting back to 2D,
and finally minimizing a cost function which penalizes the projection error between the 3D joints and
detected 2D joints.

Methods also focus on dealing with multiple subjects for 3D pose estimation [18, 19]. To achieve
this, they model the 3D pictorial structure as a conditional random field (as in [134]), and they explicitly
model the kinematic constraints with rotation, translation and collision components. In a follow-up work,
temporal constraints are also incorporated [20]. Inference on the graph that is no longer a tree, and is
achieved with a loopy belief propagation algorithm [25], which is actually an approximation.

4.6 Other methods

Methods that are worth mentioning but do not fall into the previous categories will be reviewed in this
section. One group would be tracking-related methods, or more specifically methods that use temporal
relationships between successive frames. Temporal strategies are commonly used both for pose esti-
mation and articulated tracking in videos. Tracking is often employed in order to establish coherence
between the poses over time; whether all parts are tracked separately or an arbitrary body center is
tracked. Using spatio-temporal links between the individual parts of consecutive frames seems promis-
ing, but intractability issues arise for graph-based methods since the number of connections increase very
rapidly. To this end, [48] opt for approximation with distance transforms [79]. [350] reduce the graph
by combining symmetrical parts of human body and generating part-based tracklets for temporal con-
sistency. [334] uses a spatio-temporal And/Or Graph to represent poses where only temporal links exist
between parts. [336] perform articulated tracking with particle filtering while [152] avoid an explicit
body model but estimate the pose using a visual hull instead. Recently, [191] proposed synthesizing
hypotheses by simply applying geometrical transformations to initially annotated pose and match next
frame with nearest neighbor search. As seen in Section 4.5, consecutive frames can even be used for
pose estimation in 3D, although some disagreements have arisen [302].

A second group would be discriminative approaches, where a direct mapping from feature space
to pose is learned, often by avoiding any explicit body models (although models cannot be integrated).
This body of work has been explored for many years, some of popular researches are dating back to
early 2000’s. Silhouettes [2, 3] and edges [27] are frequently used as image features in conjunction with
learning strategies for probabilistic mapping. There are several examples that use regression [3] and a
non-linear supervised learning model called specialized mappings architecture [230], as well as Gaussian
Processes [299], nearest-neighbor [206, 253] and mixtures of predictors such as Bayesian Experts [260],
density propagations [271] and its conditional counterpart [264]. These approaches are usually compu-
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tationally efficient and perform well in controlled environments according to various researches, while
they are highly dependent on the training data and therefore may generalize poorly in unconstrained
settings.

More recent studies usually do not take a fully discriminative approach, but favor generative models
in conjunction with discriminative classifiers and similar elements. For instance [72] combines a dis-
criminative deep-learning detector [293] with a generative tracking method [279]. The former is based
on convolutional neural networks and operates as a monocular joint detector while the latter tracks the
resulting joints with sums of spatial Gaussians. Combination of generative and discriminative models
are commonly used for tracking with depth data [12] and hand pose tracking techniques [276]. Picto-
rial structures are also used in combination with discriminative approaches such as randomized decision
forests [57] or a non-linear support vector machine [123] where the pose space is clustered and a pic-
torial structure is assigned for each cluster center. The combination of discriminative approaches and
generative ones are usually motivated by the need of better separation between the object classes, but
arguably they fall short in terms of generalizing and tend to perform worse if training data is diverse and
extensive.

4.7 Conclusion

In this chapter, we have reviewed several classes of approaches for the human pose estimation problem.
First, we started with the definition of the problem and initial motive to achieve the solution. Given RGB
input, pictorial structures are the most classical and famous model that we reviewed. Then other pose-
related methods that follow the light of pictorial structures were explored considering their novelties and
estimation performances. Following that, it was inevitable to mention deep learning methods since they
are becoming the industry standard for almost every pattern recognition task. Some deep convolutional
and recurring neural networks were reviewed according to their relevance to our work. Seeing that
our work is essentially a multi-view method for pose estimation, it seems imperative to give the basic
background about camera geometry models and multi-view geometry in particular. The section was then
substantiated with some examples of applications where multiple sensors are involved, in order to base
a comparison to our contribution. Following that, we investigated the cases where 3D information is
obtained with various techniques. Examining the works that infer 3D information from a monocular
camera was nonetheless required, since they constitute alternatives to what we are trying to achieve,
and it is important to understand in what conditions they are insufficient and inadequate. The final set
of models was mentioned in the last section, that is to say temporal strategies and some discriminative
approaches. All of the aforementioned techniques were studied both in terms of theory and in terms of
applicability to scenarios which we aim to propose a solution.

It should be quite apparent by now that human pose estimation is a very popular and competitive
field of study and a great body of work was published in the last 20 years. This chapter was intended
to i) Give highlights and point out to the inspirational works that become a real building block that is
accepted by the research community ii) Portray the state-of-the-art of the human pose estimation problem
with respect to our contribution.
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In the following chapters of the manuscript, the preliminary tests of our contribution to human pose
estimation will be described in detail (Chapter 5). Following that, our proposition to tackle the estimation
problem will be explained in detail (Chapter 6) and our approach will be evaluated with two popular
benchmarks later on (Chapter 7).



Chapter 5

Preliminary Experiments

In Chapter 4 it has been substantiated that human pose estimation is an exceptionally active field of
research and new methods -or extensions of existing methods- emerge very frequently. Each one of those
methods has an advantage over the others; either it addresses a scenario where others fail to handle, or
it boosts the estimation accuracy by proposing a novel representation of the human body, or a clever
technique for energy optimization etc. In this chapter, we conducted a series of preliminary experiments
to assess advantages and disadvantages of certain types of methods. We start by stating the motivation of
these preliminary work and continue with the details of the experiments, where the data that we recorded,
the methods that we tested and the results that we obtained will be discussed. Finally, we will conclude
the chapter with an analysis of the experimental results. In fact, this conclusion reveals the rationale
behind our decision regarding the path to follow on the pose estimation task.

5.1 Motivation

Human pose estimation can be achieved under various conditions, and numerous application areas
emerge accordingly. Different family of methods have different operational requirements, and have
advantages in certain scenarios. Here, we target situations with mobile robots; specifically indoor, large
public spaces such as airports, hospitals, museums, shopping malls, hotels, office spaces etc. Figure 5.1
depicts a few examples of mobile robots in such environments.

A common property of these environments is the large, open, publicly accessible space. In this case,
a freely roaming robot will most likely to encounter with people and is able to see humans from any
distance. Additionally, we are motivated to propose a human pose estimation method that would form an
intermediate step for activity recognition in a multi-robot environment. To this end, every method that
we consider ought to be tested with various proximity settings.

A related criterion to consider, would be input modality of the data. Most common data for computer
vision tasks are either RGB or depth streams; obviously, former is easier to obtain while the latter requires
special hardware. The two modalities produce very different types of data, which require particular
families of methods to process. Depth imagery has been noticeably popular in the last years and have
both advantages and disadvantages in terms of pose estimation. Moreover, depth sensors are known
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Fig. 5.1 Examples of assistive mobile robots in large, indoor public spaces. Left: SPENCER1 at Schiphol
Airport, Amsterdam; right: HOSPI2 at Changi General Hospital, Singapore.

to have hardware limitations with regard to operational distances and environments, e.g. they do not
work well with sunlight nor in cases where subject is located farther than a few meters. On the other
hand, RGB images are not subject to such limitations, but they also do not provide easily exploitable
3D information about the scene. As a result, RGB methods require some degree of prior information
to estimate an articulated pose in most cases. Considering the benefits and inconvenience of these two
modalities, it is reasonable to evaluate pose estimation techniques of both alternatives.

In Chapter 4, a non-exhaustive list of various approaches for pose estimation task was reviewed.
Discriminative methods and inverse rendering based techniques are well suited for depth input, and usu-
ally exhibit decent results in short execution times [258], given that reliable depth data can be provided.
Also, these methods are often robust against occlusions due to their non-holistic natures and pixel-wise
classification schemes. However, these methods are heavily dependent to the quality of the input data
and will inevitably fail when the designated operational conditions are not met. On the other hand, part
based models, and methods based on kinematic trees in particular (as seen in Section 4.2.1), are more
appropriate to perform with RGB input. This is essentially due to local appearance models, which re-
quire RGB data to measure the visual similarity. But this kind of visual input is not sufficient alone,
thus is accompanied with a strong prior, e.g. a body structure model. The strong prior on articulated
pose, or the expectation to observe a certain type of body part configuration, compensates for the lack
of 3D information and enables RGB methods to compete with depth-based techniques in pose estima-
tion task. Furthermore, RGB methods do not require specific hardware and therefore are not limited to
aforementioned operational requirements, which practically makes these methods more convenient for
uncontrolled environments. Thus, it is a good practice to experiment with both discriminative and part
based models to assess their estimation capabilities in various settings.

Short execution times are always desirable, especially on real-time systems such as mobile robots in
public spaces, since they require to infer information about their surroundings as they go. On account
of execution time, depth based methods have superiority for two reasons: First, modern depth sensors
execute a considerable portion of their code directly on the hardware, which yields real-time stream of
depth images. Second, employed discriminative methods for pose estimation are intrinsically faster com-
pared to generative models. As for part based models that use RGB images, computational complexity
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of the employed algorithm directly translates into execution time. The concerns about large search space
for optimization algorithms and faster inference techniques such as dynamic programming and distance
transforms, are discussed in Section 4.2. Furthermore, some algorithms are more appropriate than others
in terms of parallel implementation, which can then be executed on multiple cores or GPU. Therefore,
runtime requirements and ability of quick inference should also be a criterion in our experiments.

Finally, and most importantly, we should evaluate whether a method is compatible for extension to
multi-view schemes. This decision is tightly coupled with the nature of our contribution on the collabo-
ration of multiple images. As a principle, we seized upon the idea of early fusion of information between
the views. In other words, we envisaged a system where some information is acquired from a view
should be transferable to the other view in a useful format, so that this second view can benefit from that
initial finding. Additionally, we intended to propose a scheme, an iterative one possibly, to further profit
from the enhanced results in the second view by transferring them back to the first view, and so on. To
this end, generative models that employ pixel-wise energy functions or probabilistic maps appear to be
more suitable, because information from one view can be translated into another as additional score or
increased probability on certain locations, while other locations can be implicitly labeled as “less likely”.

In order to evaluate methods and techniques in the light of these criteria in a reasonable manner,
conducting preliminary experiments are imperative. We selected three methods, three distances and
three cases for occlusion, then we carried out the experiments with two subjects.

5.2 Experiments

In this section, the preliminary experiments are described in details. First, the content of the recorded
data is covered where modality of the data and what challenges we introduced are discussed. Then, we
will present our exploratory review of a selection of existing methods and what final three methods are
chosen to utilize in the experiments. The section will be finalized with the reports on performance of
these three methods with the small amount of data we recorded.

5.2.1 Recorded Data

A classical first generation Microsoft Kinect [353] was selected as an hardware, since it is capable of
recording both RGB and depth images of size 640⇥480 pixel simultaneously. It should be noted that ac-
quired depth data is actually at 320⇥240 pixels and upsampled via underlying hardware. The restriction
towards operating systems and the lack of open source compelled us to not to use the original Kinect
SDK, but to use OpenNI3 instead for data acquisition. In order to make evaluation and assessment of the
methods, we wanted to cover as many scenarios as possible with limited resources and within a limited
time. To that end, we diversified the recordings with following variables and properties:

1SPENCER - Social situation-aware perception and action for cognitive robots, a European research project - http://
www.spencer.eu/, last accessed on 18/04/2017

2HOSPI - A multi-purpose, commercial autonomous delivery robot. Related article: http://news.panasonic.com/
global/topics/2015/44009.html, last accessed on 18/04/2017

3OpenNI SDK and PrimeSense™Sensors SDK which includes the NITE algorithms are discontinued, but latest builds and
documentation are available to download on http://structure.io/openni, last viewed on 22.06.2016

http://www.spencer.eu/
http://www.spencer.eu/
http://news.panasonic.com/global/topics/2015/44009.html
http://news.panasonic.com/global/topics/2015/44009.html
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Distance: First variable is the distance of the subject to the camera. We decided that three separate
distances, specifically close-range (~2 meters), mid-range (~7 meters) and long-range (~10-12
meters), are reasonable to assess both method and imaging modality performances. This variable
enables us to evaluate a pose estimation approach in terms of proximity to the recording device.

Orientation: Second property to consider is the orientation of the subject with respect to the camera.
Again, most of the existing methods excels their performance if the subject is facing the camera,
but we wanted to assess a case of observation from side and back of the subject. Since our con-
tribution will cover a multi-view scenario, it is very likely to that some of the viewpoints will be
seeing the person another angle than en face.

Occlusion: An additional challenge is introduced by placing objects in the scene to cause occlusions
to the human body. Each recording has three versions, one with occluded legs, another one with
right or left half of the body is occluded and a clean shot without any occlusion. This variable
enables us to assess a method in terms of robustness against partial visibility. The results are
especially significant for scenarios where camera attached mobile robots are roaming in a real life
environment.

Intra-class variation: Ideally, in order to properly evaluate a pose estimation technique in terms of
generalization there should be numerous test subjects with different gender, physical appearance,
clothing, skin color etc. In our experiments however, the shootings were performed with two dif-
ferent people for convenience. Nevertheless, it further increased the variety of the image collection
to some extent.

Naturally, we did not simply recorded every possible combination of the stated variables and skipped
recording the combinations that are not meaningful, such as “recording from side while left of the body
is occluded” and similar, and instead ended up with 48 sets of sequences in total. We believe that this
amount is sufficient to conduct preliminary experiments and to have a general idea about the method
families.

On Figure 5.2 samples from the recorded data are depicted. The first column is recorded from close-
range, the second is from mid-range and the third is from long-range. The first two rows are frontal
views, where first row has no occlusion while a vertical half of the body is occluded on the second row.
In the following two rows the subject is seen from side, where the third row has no occlusion while the
fourth row has a noticeable occlusion on both legs. Images on the last two rows are recorded from the
back. Again, the fifth row has no occlusion while both legs are occluded on the sixth row.

5.2.2 Tested Methods

Considering our motivation stated in Section 5.1, we decided that it was acceptable to choose at least
one part based method that operates on RGB data, at least one discriminative method that estimates the
pose from depth data and one supplementary method as a control basis. Before starting the tests we
were certain that we would use the methods with pre-trained models and avoid perform any training, in
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Fig. 5.2 Example of recorded data, only RGB images are shown. Please see Section 5.2.1 for details.
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Table 5.1 Potential part-based methods for preliminary tests.

Method Title Language # of joints Test duration per image
Flexible Mixture of Parts [341] MATLAB 26 ~14 secs

Tree models in HPE [307] MATLAB 14 ~20 secs
MODEC [239] MATLAB 12 ~28 secs

order not to unnecessarily lose time. At that point, we supposed the premise that the good generalization
of a method is also an indicator of its good qualities; therefore if method performs well with the pre-
trained model on our preliminary dataset, it should be acceptable and promising after a proper training
procedure.

For the discriminative model, the work of Jiu et al., who is a former Ph.D. student of our laboratory
LIRIS, [121] was a convenient choice. Basically, it is a randomized decision forest method that relies on
pixel-wise classification, akin to Shotton’s seminal work [259] which also exploits depth data; but Jiu’s
model is also augmented with RGB cues for edge detection and it features a spatial learning technique
which exploits neighborhood relationships between parts. Thus, it is not a skeleton based model, nor
involves kinematic trees; but proceeds with segmentation of body parts and then infers the body pose.
The method is already implemented and included in the computer vision toolset called Starling, which
is publicly available4.

Choosing a model with kinematic trees was particularly harder due to abundance of related methods
in the literature, as we review to a certain degree in Sections 4.2 through 4.6. Considering the multi-view
compatibility, we focused on part based methods and their descendants. After discarding the methods
that were introduced prior to 2010 (such as [67]) we reduced the candidate methods to the list seen in
Table 5.1. All methods in the table are part based approaches as described in Section 4.2, specifically
descendants of Pictorial Structures.

All implementations of the mentioned methods were downloaded and compiled if necessary. Test
durations for a single image are measured on an Ubuntu PC with 2.4Ghz QuadCore processor and 8 GB
of RAM. Observing the comparison in table 5.1, Yang and Ramanan’s model [341] seems to be faster
than others. Furthermore, the model in [307] is an extension of flexible mixture of parts (FMP), but it
does not provide a prominent improvement considering the additional execution time. On the other hand,
the multi-modal approach proposed in [239] indeed provide some improvements on certain body parts at
the expense of twice the execution time. But this approach is less suitable for multi-view extensions due
to its complexity which is increased with mode selection steps. As a consequence, we decided on FMP
as the part based model to use in our preliminary experiments.

As for the control method, the tracking algorithm that was integrated to the OpenNI SDK seemed
practical and sufficient. User has to initially stand in front of the camera to perform initial estimation,
then he/she has to open his/her arms wide to perform calibration so that the skeleton is fully detected and
ready for tracking. Please refer to next section for preliminary test results.

4GitHub page for the Starling project: https://github.com/liris-vision/starling, last accessed on
01.05.2017.

https://github.com/liris-vision/starling
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Table 5.2 Comparison of three pose estimation methods under different conditions. Qualitative results are
shown for different working distance and occlusions in columns, while rows indicate different methods
and subject orientations.

Close range Mid range Long range
Method View Clear Occluded Clear Occluded Clear Occluded

NITE
Face Good Good - - - -
Side Good Good - - - -
Back OK OK - - - -

RDF-C
[121]

Face OK Poor Poor Poor - -
Side Poor Poor Poor Poor - -
Back OK Poor Poor Poor - -

FMP
[341]

Face Good OK Good Poor Good Poor
Side Good Poor Good OK OK Poor
Back Good OK Good OK Good OK

5.2.3 Test Results

In this section our findings about the preliminary tests are presented. The selected methods of Section
5.2.2, namely NITE SDK5 (abbreviated as NITE for convenience), randomized decision forests with
color cues of Jiu et al. [121] (abbreviated as RDF-C for convenience) and flexible mixture of parts
of Yang and Ramanan [341] (abbreviated as FMP for convenience) were tested against all recordings
described in Section 5.2.1. All evaluation was carried out manually and qualitatively, because we argue
that normalizing the output of various algorithms, proposing a quality metric and comparing them would
be extravagant for a preliminary test. Figure 5.3 gives the results of selected algorithms in close-range.
First column are the results of NITE tracking algorithm, second column is RDF-C and the FMP results
are on the last column; rows are organized similarly to Fig. 5.2.

For the mid-range tests, where algorithms were tested on images that are recorded from ~7 meters,
we noticed that NITE stops working as it was suggested in the implementation notes. Estimation results
of RDF-C and FMP are given in Fig. 5.4, where the first column is RDF-C and the second column is
FMP. Row organization is the same as in Fig. 5.2. Please note that images of size 640⇥480 were divided
into four regions before the tests for improving test performance. The model provided with FMP had
been trained on the PARSE dataset [214], where people occupy most of the image space, contrary to our
recordings of mid-range and long-range, where the subject occupies very little image space.

Finally, for the long-range tests RDF-C also stops given any meaningful output; as the operational
specifications of Kinect [353] states that depth measurement becomes more and more uncertain after 8
meters and eventually is indefinite. As a result, only results of FMP is presented on Fig. 5.5. While the
rows are organized as in the previous figures, this time each column is allocated for a subject.

The qualitative comparison of the results and our final verdict on the selected algorithms is shown on
Table 5.2 and further discussed on the next section.

5Prime Sensor™NITE 1.3 Algorithms notes, Version 1.0, PrimeSense Inc. 2010, http://pr.cs.cornell.edu/
humanactivities/data/NITE.pdf, last viewed on 30.03.2017

http://pr.cs.cornell.edu/humanactivities/data/NITE.pdf
http://pr.cs.cornell.edu/humanactivities/data/NITE.pdf
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Fig. 5.3 Qualitative results for close-range preliminary tests. Please refer to text for details.
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Fig. 5.4 Qualitative results for mid-range preliminary tests. Please refer to text for details.



84 Preliminary Experiments

Fig. 5.5 Qualitative results for long-range preliminary tests. Please refer to text for details.
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5.3 Conclusion

As explained in Section 5.2, we recorded a relatively small dataset, selected three implementations of
different families of methods and executed them on our dataset. In this section the output of these three
algorithms will be evaluated qualitatively and our justification for choosing the method as a starting point
will be presented.

Let us start with the close-range partition of our experiments which is seen in Fig. 5.3 and in the
first column of Table 5.2 . It appears to be the ideal working distance for the available depth camera.
NITE algorithm performs body tracking very well, even for cases with occlusions and different body
orientations; except for the last row where it double-counts the right leg. It should be emphasized that
NITE relies on body tracking but not body pose estimation, and initial pose estimation is always neces-
sary before the person was occluded by objects. The output of RDF-C is as expected, where some of
the body parts are classified correctly even before post-processing. Leg and body occlusions degrade the
classifications only for the occluded part, since the underlying method is pixel-based and only considers
a small amount of neighboring pixels. Estimations of FMP are at least as good as the others; it is almost
flawless in cases without occlusion regardless of the body orientation, a few double-count error in some
occluded cases and one very faulty detection on fourth row. For this distance, it is safe to suggest that
all three methods have very similar estimation performance. It also should be added that depth-based
methods are remarkably faster compared to RGB methods, in this case FMP.

Moving away from the camera, results for the mid-range experiments are shown in Fig. 5.4 and in
the second column of Table 5.2. As mentioned earlier, NITE did not yield any meaningful detection
for this distance and is consequently excluded from the figure. We believe that it would be fair to
claim that classification output of RDF-C does not seem very promising in cases where the body is
seen without obstruction. It gets worse with occlusion, whether it be for legs or half of the body. The
poor performance of the RDF-C is mostly because of the long distance, which is merely in the allowed
operational distances for the depth sensor. On the other hand, FMP does not seem to have any trouble
for cases where no occlusion is present. Even with the occluded scenes, a considerable part of the body
is estimated correctly. As stated before, to avoid re-training and also speeding up the experiments we
divided the VGA images into four parts and executed FMP separately. As a result, we observe many
false positives in the partitions where no human is present. As seen in Chapter 6, underlying algorithm
of FMP yields the global maximum for the pose, hence it is reasonable to anticipate that these false
positives will have less score than the correct one and will be discarded when FMP runs on a full size
image. Arguably, FMP performs better on mid-range experiments compared to RDF-C.

Finally the farthest ones, results of the long-range experiments are presented in Fig. 5.5 and in the
third column of Table 5.2. A distance of ~10-12 meters exceeds the limits of our depth sensor, therefore
only the results of the RGB method are shown. It is clearly seen that estimation results are worse than
the results of mid-range experiments. The number of false positives is considerably higher, and in many
cases of occlusion not a single part is detected. That being said, a remarkable number of body parts are
estimated correctly in cases without occlusion.

According to our motivation that is stated in Section 5.1, our goal is to establish a system that is
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able to operate on a setting that is multi-agent (i.e. multi-view) that may or may not be located on a
large environment. To this end, methods that use depth data are demonstrated to be inefficient after a
certain distance, while FMP is not subject to such constraints. On the other hand, like almost any other
RGB based method, FMP imposes strong prior on pose. This is because the RGB input is less suited for
pose estimation task, compared to depth input, which makes the problem in RGB settings much more
difficult. Consequently, methods that use solely RGB input are inherently slower compared to their depth
counterparts. Yet, methods from pictorial structures and particularly FMP is intrinsically more adaptable
for multi-view extensions, as mentioned earlier.

All experiments considered, the qualitative evaluation of the candidate methods points to following
conclusions:

1. Discriminative methods on depth images are faster than kinematic trees on RGB images.

2. Estimation performance of FMP is comparable to, if not better than, NITE and RDF-C in short
distances.

3. Depth based methods can not operate in long distances, whereas RGB based methods seem promis-
ing in such settings.

One issue is remaining open to discourage us to use FMP as a starting point in our research and
that is the execution time of the algorithm. Nonetheless, implementation of FMP that are used in this
chapter is written in MATLAB, which is known to be rather slow. We address this lack of execution
speed by porting the implementation to C++ and CUDA6 for partial parallel execution on GPU, and the
implementation details can be found in Section 7.4. Our verdict was that the FMP was indeed the best
available option present at that time.

In the following chapter, our single-view and multi-view pose estimation methods that follow the
lights of Yang and Ramanan’s FMP are described in detail.

6CUDA is the proprietary parallel computing platform of NVIDIA: https://developer.nvidia.com/cuda-zone,
last accessed on 01.05.2017.

https://developer.nvidia.com/cuda-zone
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Multi-view Pose Estimation

6.1 Introduction

Throughout Chapter 4, background and state-of-the-art on human pose estimation are presented and
prominent works were cited accordingly. We discussed about existing methods with various approaches,
body models and inference techniques. In Chapter 5, we put forth our motivation in this thesis and
presented our preliminary experiments to validate our methodological choice for our contributions.

In this chapter, we propose our multi-view proposition to tackle the human pose estimation task.
In the remainder of this section, our stance towards the problem is explained and the overview of our
method is presented. In the following sections, we first describe the single-view model for pose estima-
tion in details and develop our multi-view solution with reference to single-view one. To that end, we
introduce two novel constraints that are only applicable in a multi-view setting, which are elaborated in
sections 6.3.1 and 6.3.2. Moreover, in a multi-sensor environment not always all sensors can provide
equally useful data to solve the problem, therefore their influence to the solution can be balanced to max-
imize the quality of the estimation. The concept of adaptive viewpoint selection is discussed in Section
6.4. Thereafter, the training procedure of the proposed model is discussed in Section 6.5. Finally, the
inference technique and our iterative scheme for pose estimation is described in Section 6.6.

6.1.1 Overview

We consider a multi-view setting with two or more calibrated cameras visualize a scene where a person
is present. Cameras can be installed on simple tripods or they can be mounted on mobile robots; but
the robots are assumed stationary within the scope of our research. Additional topics such as automatic
camera calibration and compensation for ego-motion are planned as future work and discussed in Section
8.3.

In a multi-view setting, it is anticipated that one of the cameras will have a relatively better position-
ing compared to the other cameras, with respect to the orientation of the human body that is targeted for
pose estimation. The fact that one of the cameras has a better potential to observe the person was our
impetus to establish a medium to share information between the viewpoints. In other words, we were
motivated to form a way of transferring the information between the cameras to eliminate the disadvan-
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tages, such as self-occlusions due to certain point of view. For instance, let us imagine a scenario where
a camera sees a person from some angle in a way that only some parts of the body is visible. If there is
another camera that sees the same person from different angle so that it can observe the missing parts, it
can help the other view to collaboratively produce a better pose estimation. Fig. 4.6 depicts an example
for this case.

In order to fulfill this information transfer, we take advantage of two constraints that we impose
and we introduce an iterative scheme to perform incremental estimations that gradually improve. The
overview of this scheme, also illustrated in Fig. 6.1, is as follows for a two-view setting:

1. Two initial estimations are produced in a single-view manner, with corresponding confidence
scores.

2. The pose with the higher score is marked as the support pose, which acts as the information
provider for the first iteration.

3. Based on the support pose, two different constraints are enforced to the next estimation step:

(a) Body part based geometric constraint encourages some locations in the target image for each
part, while penalizing other locations that are unlikely to found the parts.

(b) Appearance constraint promotes certain appearances for each part given an appearance of
parts in the support view.

4. The estimation is carried out on the target image with these two additional information acquired
from the support pose.

5. At the end of each iteration, the newly estimated pose is assigned as the new support pose and the
estimation is repeated on the other view with switched support / target roles.

To put it another way, given a part position and appearance in one view, we are able to infer proba-
bilities of locations and appearances in the other view. We argue that this additional information allows
us to obtain better pose estimations from both images. This iterative scheme tends to stop at the global
maximum that is supposed the be the point where two poses are at their best, but we also utilize some
stopping conditions for the rare cases that it oscillates between two local maxima.

6.2 Single-view pose estimation

Along the lines of [341], an articulated pose in a single 2D image is modeled as a flexible mixture of
parts (FMP). Related to deformable part models introduced by [76] which is actually a star shaped model
for object recognition, part based models for articulated pose estimation are classically tree structured.
Respecting the same principles, our model is a kinematic tree on which a global energy function is
defined including unary terms where image evidence is attached, and pairwise terms acting as a prior on
body pose. The underlying graph is written as G = (V,E), where vertices are body parts and edges are
defined on adjacency between parts. In traditional methods, the body model consists of part templates
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INITIAL POSES

VIEW B

FMP

VIEW A

FMP

FINAL POSE IN 
VIEW B

(b)

OPTIMIZE FOR COHERENCE BETWEEN VIEWS

...
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SUPPORT POSE SUPPORT POSE

FINAL POSE IN 
VIEW A

OPTIMIZED POSE

OPTIMIZED POSE SUPPORT POSE OPTIMIZED POSE

(c)

SELECT 
POSE  

(a)

Fig. 6.1 Method overview: (a) initial pose estimation running the single-view model on each view sep-
arately. The pose with the highest score is selected as the support pose; (b) joint estimation loop with
geometrical and appearance constraints. The newly obtained pose becomes the support pose at the end
of each iteration; (c) After convergence, the last two poses are returned as the final results.
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which are searched in test stage with different orientations. In this model however, a local mixture of
small, non-oriented parts are used to model the articulation instead of family of warped templates. By
using local mixtures of parts, the change in appearance of body parts are captured and resulting model
is adept to represent different articulations of the body. The mixture of small parts tend to facilitate
capturing contextual co-occurrence between parts and permit better encoding of the spatial relationships
in between body parts, in a way that local rigidity of the human body can be implicitly represented by
the model.

Let pi = (x,y) be the pixel coordinates for part i 2 {1, . . . ,K} in image I. We would like to determine
the position of each part in the image, which is equal to optimization over the values of pi for each i.
Additional latent variables ti with i 2 {1, . . . ,T} model a type of this part, which allows to model terms
in the energy function for given types. This introduces supplementary content to the pose estimation and
effectively creates a powerful mixture model, where both location and type for each body part should
be considered for the optimization. Three possible appearances of part right foot are illustrated on
Fig. 6.4, where different part templates would yield different appearance scores for each case. Ideally,
a configuration of conforming part types for each body part should produce the maximum score, for
instance types where all parts are seen from left side, therefore finding the best match given the image
evidence. In practice, the part types are learned during training, and they are set to cluster centers of
appearance features and the related position of each part with respect to its parent part.

In the single-view version, the energy function corresponds to the one given in [341]. This energy
function is defined over a full pose p = {pi}, latent variables (or part types) t = {ti} and for the input
image I with the following formulation:

S(I, p, t) = Â
i2V

wti
i f(I, pi)+ Â

i j2E
wti,t j

i j y(pi � p j)+ Â
i2V

bti
i + Â

i j2E
bti,t j

i j (6.1)

The expression in the first sum corresponds to data attached terms, where f(I, pi) are appearance features
extracted at pi from the image I (HOG in our experiments, see Section 7.2). Note that the corresponding
trained parameters wti

i depend on the latent part type ti. In other words, each position of the image
is evaluated for every part and part type in terms of appearance similarity. For instance, some position
might yield a high score for a clenched right fist (a part type), whereas the score calculated at a completely
different position might be similarly high for a stretched right hand (another part type).

The pairwise terms in the next expression model the prior over body pose using a classical sec-
ond degree deformation between adjacent parts y(pi � p j) = [dx dx2 dy dy2]T where dx = xi�x j and
dy = yi�y j. They control the positions of the parts with respect to their parents and this terms act as a
“switching” spring model where the switching controlled by the latent part types ti.

The last two sums define a weak prior over part types. First one is a unary part type bias bti
i which

signifies that some part types are more likely then the others. Second one is a pairwise part type term
bti,t j

i j that put emphasis on some combinations of types of different parts, for instance, an upwards hand
is most likely to see in combination with a vertical lower arm.

Although scale information is not specified in the equations, a pyramid is built from the image in
the implementation and features are extracted from every level of this pyramid. This is to address the
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various sizes of the subjects in the image. Inference in this model (and in our generalization to multi-view
problems) will be addressed in Section 6.6.

6.3 Multi-view Pose Estimation

In this section, we generalize the single-view model that is presented in Section 6.2 to multiple views and
show that both geometrical consistency constraints and appearance based constraints can be leveraged
to improve estimation quality. These constraints are explained in details in Sections 6.3.1 and 6.3.2,
respectively. Without loss of generality, let us fix the number of views to two for the remainder of this
chapter, and please note that formulations with three or more viewpoints are straightforwardly derivable.

We consider a setup with calibrated cameras where internal and external parameters of the cameras
are known. A global energy function models the pose quality over a pair views A and B, where input
images IA and IB are acquired respectively. This energy function seeks to estimate pose variables pA and
pB, position of body parts in local coordinates of view A and view B, while additionally optimizing over
latent part types tA and tB which are the types of the parts that are observed in corresponding views. This
global energy function is formalized as follows:

S(IA, IB, pA, pB, tA, tB) = S(IA, pA, tA) + S(IB, pB, tB)

+a Âi2V x (pA
i , pB

i ) +b Âi2V l (tA
i , tB

i )

(6.2)

Here, S(IA, pA, tA) and S(IB, pB, tB) are the single pose energy functions from equation 6.1. The two
additional terms x and l ensure consistency of the poses over the two views and their descriptions are
given in the following sections.

6.3.1 Geometric Constraints

The principles of epipolar geometry, as we described in Section 4.4, are exploited to encourage spatial
consistency between the views for the pose estimation task. Assuming temporal synchronization, images
IA and IB show the same articulated pose from two different viewpoints. Given calibrated cameras, points
in the first view correspond to epipolar lines in the second view as depicted for right shoulder part in Fig.
6.2.

In practice, for each estimated part in the support view, an energy map can be computed from the
corresponding epipolar line. Locations that are near to the epipolar line should have higher energy, since
it is more likely to find the part there; other locations should have decreasing energy as the distance from
the epipolar line increases. This energy map can then be plugged into the target view to encourage some
positions while penalizing others for the part estimation process. The procedure of adding the energy
map to the appearance feature responses for a single part is portrayed in Fig. 6.3.

This additional geometric constraint can be integrated to the global energy function to strengthen
consistency between the views and it works in both ways. The geometric term x from equation 6.2
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(a) (b)

Fig. 6.2 Detected part in view A shown on (a) in magenta. Epipolar line in view B is calculated based on
the center point of the bounding box, shown on (b).

leverages this constraint as follows:

x (pA
i , pB

i ) = �d(pA
i ,e(A, pB

i ))�d(pB
i ,e(B, pA

i )) (6.3)

where e(A, pB
i ) is the epipolar line in view A of point pi in view B and d(·, ·) is the Euclidean squared

distance between a point and a line. In other words, for a given part position pA
i in view A, this term

x prioritize the locations that are close to the corresponding epipolar line e(B, pA
i ) in view B, inclining

the energy function towards this locations, since in view B that same part is more likely to appear in this
neighborhood.

6.3.2 Appearance Constraints

The geometric constraints described in the previous chapter are imposed on the solution targeting the po-
sitions pi. The term l (tA

i , tB
i ) of equation 6.2 adds additional constraints on the latent part type variables

ti, which further pushes the result to consistent solutions. Recall that the latent variables are clusters in
feature space, which implies that they are related to types of appearance. Appearances might of course
be different over views as a result of the deformation caused by viewpoint changes; for instance appear-
ance of a facing forwards head is different from the appearance of a side view of a head. However, some
changes in appearances will likely be due to the viewpoint change, whereas others will not. Intuitively,
we can give the example of an open hand in view A, which will certainly have a different appearance in
view B; however, the image will not likely be the one of a closed hand. Let us give another example that
is depicted in Figure 6.4: A foot seen from front is quite different then its appearance from left and from
right. Assuming that the part types are conforming with these appearances, which may not be true all the
time, one can expect to see a left pointing foot from the left-side viewpoint and right pointing foot from
the right-side viewpoint.

We suggest that this changes in appearance are coherent between the viewpoints. We propose that
they can be exploited to improve body pose consistency between the viewpoints, by prioritizing some
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=+

Fig. 6.3 Top: Epipolar energy map (center) is added to the initial feature response map (left), where final
energy map for part estimation is seen on the right. Bottom left: Estimated position for the part, without
the geometric constraint. Bottom center: Close up display of displacement of the part position towards
the magenta epipolar line, where old position is marked with a green cross and new position is marked
with a yellow circle. Bottom right: Part position is estimated jointly, this time considering the geometric
consistency.

(a) (b) (c)

Fig. 6.4 Right foot seen from front-side viewpoint (6.4a), from right-side viewpoint (6.4b) and from
left-side viewpoint (6.4c).
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(a) (b) (c)

Fig. 6.5 Illustration of the multi-view consistency term over latent appearance (part types). The HOG
filter pair (6.5a)—(6.5b) is highly compatible, whereas compatibility of pair (6.5a)—(6.5c) is low.

part types over the other with respect the viewpoints. Particularly, given a part type and a viewpoint,
some part types are more likely to occur than others in another specific viewpoint. Our aim is to benefit
from these co-occurrences of the part types and learn their compatibility to reach more accurate part
estimations in a multi-view manner.

We model these constraints in a non-parametric way as a discrete distribution learned from training
data, i.e. l (tA

i , tB
i ) = p(tA

i , tB
i ) (see Section 6.5). Figure 6.5 illustrates this term using three filter examples

shown for the learned model of part right shoulder. The value of l term, that is their compatibility, is
high between (6.5a) and (6.5b), but low between (6.5a) and (6.5c). Intuitively, (6.5a) and (6.5b) look like
the same 3D object seen from different view angles, whereas (6.5a) and (6.5c) do not.

6.4 Adaptive viewpoint selection

Geometric and appearance constraints rely on the accuracy of the initial single-view pose estimates as
seen in Fig. 6.1. In certain cases, the multi-view scheme can propagate poorly estimated part positions
over views, eventually deteriorating the multi-view result. To solve this problem, we would like to
estimate beforehand, whether an additional view can contribute, i.e. increase performance, or whether it
will deteriorate good estimations from a better view.

We propose an adaptive viewpoint selection mechanism and introduce a binary indicator vector (over
parts) that switches on and off geometric and appearance constraints for each part during inference. If an
indicator is switched off for a part, then the support pose does not have an effect on the optimized pose
for this part. The binary indicator vector a is given as follows:

ai =

(
0 if si(pA,q) > ti or si(pB,q) > ti

1 else
(6.4)

where ti is a threshold obtained from median part errors on the training set and si(pA,q) is a function
with parameters q that estimates the expected error committed by the single-view method for part i,
given an initial estimate of the full pose pA. The binary indicator vector, a integrates into Eq. 6.2 as
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follows:
S(IA, IB, pA, pB, tA, tB) = S(IA, pA, tA) + S(IB, pB, tB)

+a Âi2V aix (pA
i , pB

i ) + b Âi2V ail (tA
i , tB

i )

(6.5)

We implemented s as a mapping that is learned as a deep convolutional network taking image tiles
cropped around the initial (single-view) detection pA as input. Training the network requires to minimize
a loss over part estimation errors, i.e. an error over errors, as follows:

min
q

|| s(pA,q)� e ||2 (6.6)

where e is the vector of ground truth errors obtained for the different parts by the single-view method,
and || · ||2 is the L2 norm which is here taken over a vector holding estimations for individual parts.

We argue that such a network is suitable to anticipate whether an individual part is useful for multi-
view scheme, by implicitly learning multi-level features from an image tile. For example, self-occluded
parts or other poor conditions would most likely to be associated with high error rates, whereas unob-
structed clean views would yield low errors. Thresholding the output of the network, namely the error
estimations si, can provide the decision whether the support view has an influence for part i or not.

6.5 Training

In this section, the learning procedures of the single-view and multi-view models are described. First, the
training process for the single-view is explained including the learning of the latent part type variables.
Then, determination of the multi-view parameters such as the part type consistency parameters and such
is specified.

6.5.1 Single-view parameters

The parameters related to the single-view (appearance coefficients wti
i , deformation coefficients wti,t j

i j and
part type prior coefficients bti

i and bti,t j
i j ) are learned as in [341]: We proceed by supervised training with

positive and negative samples, In, pn, tn and In, respectively. The optimization of the objective function is
formulated as a structural SVM, similar to proposition in the seminal work of Felzenszwalb et al. [76]. To
benefit from their formulation, let us merge part type and position variables into a new one, zn = (pn, tn).
Also, it should be noted that single-view scoring function from equation 6.1 is linear in terms of model
parameters b = (w,b), therefore we can formulate the scoring function as S(I,z) = b ·F(I,z). Then the
model that we aim to learn can be written as follows:

arg min
w,zi�0

1
2

b ·b +CÂ
n

zn

subject to 8n 2 pos b ·F(In,zn) � 1�zn

8n 2 neg,8z b ·F(In,zn)  �1+zn

(6.7)
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where zn are the slack variables that are used for penalizing the violations of the above constraints, which
simply impose that positive samples should score higher than 1 and score of the negative samples should
be less then -1 for all part positions and part types. For structured prediction task a negative training
set is not necessary, but a trained model with negative samples as well includes an implicit “detection”
component into the model, where model produces high score on ground-truth poses and low score for
images with no people in it. The learning problem described above, which is a structured SVM, can be
solved with appropriate solvers such as [76, 82].

In practice, part type coefficients are learned with respect to their relative positions to their parents by
clustering. This mixture of parts approach ensures the diversity of appearances of part types where their
appearance is associated with their placement with reference to their parents; for example a left-oriented
hand is usually seen on the left side of an elbow, while a upward facing hand is likely to occur above an
elbow.

6.5.2 Consistency parameters

Other than the single-view parameters that must be learned for the single-view model, three others pa-
rameters are ought to be learned for the multi-view pose estimation method. First and the most inter-
esting one is the consistency parameters between the part types which capture the compatibility amount
between the part types with respect to viewpoints.

The discrete distribution l (tA
i , tB

i ) = p(tA
i , tB

i ) related to the appearance constraints between views
is learned from training data as co-occurrences of part types between the viewpoint combinations. We
propose a weakly-supervised training algorithm which supposes annotations of the pose (positions pi)
only, and which does not require ground truth of part types ti. In particular, the single-view problem
is solved on the images of two different viewpoints and the resulting poses are checked against the
ground truth poses. If the error is small enough, the inferred latent variables ti are used for learning.
The distribution p(tA

i , tB
i ) is thus estimated by calculating histograms of eligible values for tA

i and tB
i . In

practice, the single-view method is executed for each view separately, and part types for the resulting
poses are recorded for every training sample. After that, all the obtained pose estimations are verified
against the ground truth poses. If the estimation of a part is not within the acceptable error margin, it
is discarded. Remaining poses are considered good estimations given their positions, so their part types
are accounted for parameter learning. An histogram is formed each part type and viewpoint, where bins
are all the part types for that part. This histogram is then normalized for further use in the inference.
Figure 6.6 shows an example of all learned filters for lower right arm and their compatibility is given in
table 6.1. Please note the symmetry around the diagonal for part types 6.6b and 6.6c: The second row of
the table should be interpreted as follows: the most likely part type for the lower right arm is the 6.6c in
view B, given part type 6.6b in the view A. And vice versa for third row. It should be also noted that in
this example view A and view B are the viewpoints that the person is seen from its left and right sides,
and filters 6.6b and 6.6c seem like the view of the lower right arm from corresponding angles. This dual
interpretation is also valid for part types 6.6d and 6.6e.

Other two parameters, namely a and b from equation 6.5 are the amount of the contribution for their
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Table 6.1 Part type compatibility matrix for lower right arm. Every row is probability distribution of a
part type in view B, given the part in view A.

Part type in Fig. 6.6 6.6a 6.6b 6.6c 6.6d 6.6e 6.6f
6.6a 0.000 0.019 0.000 0.600 0.025 0.356
6.6b 0.037 0.090 0.875 0.000 0.000 0.000
6.6c 0.000 0.651 0.256 0.000 0.000 0.093
6.6d 0.238 0.000 0.000 0.091 0.671 0.000
6.6e 0.002 0.000 0.000 0.721 0.223 0.054
6.6f 0.454 0.000 0.515 0.000 0.031 0.000

respective constraints. These parameters are learned and fine-tuned with simple grid search approach
using the validation set.

6.5.3 Neural network weights

As seen in Section 6.4, s is a mapping that estimates error of a single-view pose estimation, given
an image tile cropped around the bounding box. To determine s , we use regression of the expected
error and train a deep convolutional neural network. In practice, it is rather uncommon to train a deep
convolutional neural network from scratch, that is, initializing the weights randomly and learning these
on a very large dataset with a backpropagation scheme of choice. Instead, common practice is to make
use of a scientifically acclaimed convolutional neural net, such as AlexNet [138], ResNet [103], VGG-16
[269] or similar, that is pre-trained on a very large dataset, such as ImageNet, as a starting point for the
task at hand. This procedure is often called transfer learning, and involves either using the pre-trained
network as-is, i.e. employing it as a fixed feature extractor; or fine-tuning the convolutional neural net,
i.e. replacing the classifier / regressor part of the network with a suitable top model, fixing the lower
parts of the convolutional network (or freezing them) and allowing the higher parts of the convolutional
network to be updated with backpropagation along with the top model, according the dataset at hand.
It is theoretically possible to fine-tune the network completely by not freezing any part of it, but due to
overfitting concerns it is strongly discouraged. The underlying motivation for such an approach is the
observation that lower layers of a convolutional neural network usually involve low level features such
as edges, corners or color cues while the higher parts of the network tend to learn dataset specific high
level features. Furthermore, the training of unfrozen layers and the top model is usually conveyed with
a small learning rate and usually simple backpropagation algorithms such as stochastic gradient descent
to prevent substantial changes that are caused by large loss produced by the unseen data. Therefore, it is
a reasonable and popular strategy to maintain the low level features as they are and slightly modifying
the high level ones for the specific task requirements.

Here, we use a VGG-16 network [269] pre-trained on ImageNet. After removing all the top fully
connected layers we replace them with a single small hidden layer for regression. We fine-tune the
last convolutional block of VGG and learn the weights of the newly added fully connected layers with
augmented data. Further details regarding the data augmentation, architecture of VGG-16, modifications
thereof such as the appended top model and the procedure of fine-tuning are discussed in Section 7.2.
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(a) (b) (c)

(d) (e) (f)

Fig. 6.6 Learned HOG filters for all part types of lower right arm.

6.6 Inference

Inference of the optimal pose pair requires maximizing S(IA, IB, pA, pB, tA, tB) from equation (6.2) over
both poses pA

i and pB
i and over the full set of latent variables tA

i and tB
i for views A and B. Whereas the

graph G = (V,E) for the single-view problem, which is the graph underlying equation (6.1) is a tree and
can be solved exactly, the graph of the multi-view problem contains cycles. This can be seen easily, as
it is constructed as a union of two identical trees with additional edges between corresponding nodes
which are due to the consistency terms. This multi-view graph is illustrated in figure 6.7 where blue
nodes are the body parts, black edges are the relations between the parts in single-view variable space,
and red edges are relations between the viewpoints that are governed by the consistency parameters.

In the single-view model, the maximization task is carried out efficiently, similar to the well known
dynamic programming technique described in [78]. Basically, it is an optimization method where score
of each node of the tree is expressed in terms of sum of its individual score and scores of its children. The
objective here is to compute scores for every possible parent location for every possible child location in
the discrete space. This takes exponential time for each part. Instead, the idea is to establish a message
passing scheme where score of a child is transmitted to its parent via a computed message. This message
contains several terms, such as the score of the best scoring child and relative position of the child to
the parent that is being computed. The computation of the spatial term can be performed with distance
transform [78], delivering further efficiency to the global optimization task. The complete optimization
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Fig. 6.7 Illustration of the multi-view model for two subjects of 26 parts. Vertices are body parts, black
edges are single-view relations, red edges are the multi-view relations that are governed by consistency
parameters.

in the single-view model can be summed up as follows: The score of a leaf node is calculated for every
possible location and part type, and the location - part type pair that yields the maximum score is used
to compute the distance transform map. Then the bias terms are added to obtain the final value of the
message. Moving up through the tree, the score of the parent node is simply a sum of its individual score
(filter response in our case) and the sum of the messages that it receives from its children. This process
is repeated until the root node is reached, which yields root scores for every locations and part types.
For every root candidate that is above a threshold, one can obtain a configuration of parts that can be
retrieved by tracking back the argmax indices of all nodes. Using non-maxima suppression, it can be
deduced whether the maximized configurations belong to the same person or multiple people.

Unlike the single-view problem, the maximization cannot be carried out exactly and efficiently with
dynamic programming anymore since the graph is not a tree but a loopy graph. Several strategies are pos-
sible to maximize the multi-view scoring equation (6.2): approximative message passing (loopy belief
propagation) is applicable for instance, which jointly optimizes the full set of variables in an approxima-
tive way, starting from an initialization. We instead chose an iterative scheme which calculates the exact
solution for a subset of variables keeping the other variables fixed, and then alternates. In particular,
as shown in figure 6.1, we optimize for a given view while keeping the variables of the other view (the
“support view”) fixed. Removing an entire view from the optimization space ensures that the graph over
the remaining variables is restricted to a tree, which allows to solve the sub-problem efficiently using
dynamic programming as described in the previous paragraph.

In order to formalize the multi-view inference, let us write kids(i) for the child nodes of part i. The
score of a part location pi for a given part type ti and the message that part i passes to its parent j is
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computed as follows:

scorei(tA
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As mentioned, one of the two sets A and B is kept constant at each iteration. Messages from all children
of part i are collected and summed with the bias term and filter response, resulting in the score for
that pixel position and mixture pair. As classically done in deformable parts based models, the inner
maximization in 6.9 can be carried efficiently with min convolutions (a distance transform, see [79]).

The algorithm is initialized through by solving the single-view problem independently for each view-
point. The viewpoint with the highest scoring pose is chosen as initial support pose, the other pose of
the other viewpoint being optimized in the first iteration. Afterwards, the optimization result is set as the
new support pose and the initial support pose –which is now the target pose– is optimized again with
this new support pose. The iterative process is repeated on until convergence or a maximum number of
iterations is reached. Optimizing each sub-problem is a classical approach, where the message passing
scheme iterates from the leaf nodes to the root node. After thresholding to eliminate weak candidates and
non-maximum suppression to discard similar ones, backtracking obtains the final pose in each viewpoint.

In the next chapter, first two public datasets are presented. Then, training and evaluation of the
proposed method are detailed and the results are given with respect to relevant metrics. Additionally,
implementation details are disclosed for faster inference.
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Experiments

7.1 Introduction and datasets

In this chapter, we evaluate the method proposed in Chapter 6 and aim to demonstrate its capabilities on
different image datasets. For this assessment to be as general and broad as possible, two datasets were
selected. These two sets, which will be presented in detail in the following sections, provide different
people as subjects, various number of visual sensors and assorted activities which in some cases include
interactions with surrounding objects.

After the presentation of datasets, details concerning the training phase are given in Section 7.2.
Additionally, methods for assessment and chosen evaluation metrics are explained. Thereafter, the results
of experiments on the presented data are disclosed in Section 7.3 and the implementation details are
reported in Section 7.4. Finally all findings are analyzed and discussed in Section 7.5.

7.1.1 HumanEva

First, we evaluated our work on the well known HumanEva I Dataset introduced in [261] and its technical
details are revealed in [263]. This large dataset has been shot using seven calibrated cameras, their
positioning as well as sample images acquired at a certain time are depicted in figure 7.1. There are
four black and white cameras (abbreviated as BW1 through BW4) and three color cameras (abbreviated
as C1 through C3), which provide images of size 640⇥480 and 684⇥484 pixels recorded in 60 frames
per second, respectively. Calibration data is provided as plain text files and images are available as
compressed video (AVI) files. Ground truth data is recorded using an industrial motion capture system,
called ViconPeak1 and 20 markers. Although the authors have provided an extensive MATLAB code
to demonstrate the dataset and access the ground truth joint location data, the underlying third party
libraries to extract frames from compressed videos are quite outdated and not straightforward to run in
Linux systems. Therefore, we opted for using the third party image converting tool called FFmpeg2 to
extract images with the indicated frame rate. Then the provided MATLAB code was modified to use the
images that we extracted instead of the video files, since this code manages the synchronization between

1Details can be found on http://www.vicon.com/, last accessed on 01/07/2016
2Accessible at http://ffmpeg.org/, last accessed on 01/07/2016.

http://www.vicon.com/
http://ffmpeg.org/
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the image stream and the motion capture stream. As a side note, we also extracted the ground truth data
and recorded the position of each joint in each frame in an arbitrarily formatted comma separated values
(CSV) files for further use.

Another detail is that background images are provided with the dataset, but our method does not
need these images since we do not rely on background subtraction or any other localization technique.
As described thoroughly in Chapter 6, our method takes a global approach to search the entire image
space. The only occasion that we used those background images is in training as negative samples, as
described in Section 6.5.

In our experiments we only used color cameras. As seen in the Fig. 7.1, C1 records the subject
facing forward while C2 and C3 are located at right angles. It should be noted that our method does not
necessarily require RGB images since we use gradient features, whose details are explained further in
Section 7.2. Therefore our choice of the camera subset is not based on camera type, but camera position:
We think that three camera with right angles, with one of them directed from the front is a sufficient setup
to demonstrate our capabilities and difficult enough challenge our approach. It should also be noted that
in our setup two cameras, namely C2 and C3, are pointed to each other which causes an exceptional
situation where the epipoles reside within the 2D images (see Section 4.4 for further details.). In this
case the epipolar lines intersect within the image, which induces a further challenge for multi-view pose
estimation task.

There are four actors, and each one performs different activities such as walking, boxing, jogging,
gestures and throw-catch at a time. Ground truth joint locations were recorded with a motion capture
system, with 20 joints. There are three takes for each sequence, with the following configuration for the
first three subjects: First trial is divided into training and validation subsets, second trial is for test but the
joint information is withheld, third trial is also for training but the video is withheld, only motion capture
is shared. Fourth subject is purely for testing, meaning that video is available but not the ground truth.
It should also be noted that subjects are varied in appearance, composition of the actors consists of one
female and three males, with different clothing and various body properties.

7.1.2 UMPM

As a secondary dataset, Utrecht Multi-Person Motion (UMPM) benchmark [303] was selected to further
evaluate our method and its technical details are available in [304]. UMPM dataset has been shot with
four cameras that are located in various heights and in a manner that no camera can be seen in the scene
by other cameras. The placement of cameras and their field of views can be observed in Fig. 7.2.

There are four color cameras (abbreviated as C1 through C4), which provide images of size 644⇥484
pixels recorded at 50 frames per second. Images are provided in uncompressed AVI format and offered
without any post-processing, therefore we transformed them to PNG format, using FFmpeg. Calibration
data is provided in C3D file format and the authors offer sample C++ code snippets and hyperlinks to
relevant libraries in the project site3. Similarly to HumanEva, ground truth data is recorded using a Vicon
system, but with 15 markers and at a rate of 100 frames per second.

3C3D helpers page on project site http://www.projects.science.uu.nl/umpm/c3d.html, last accessed on
10/03/2017.

http://www.projects.science.uu.nl/umpm/c3d.html
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Fig. 7.1 Top: Placement of the seven calibrated cameras as described in [263]. C1 through C3 are color
cameras, BW1 through BW4 are black and white cameras. Subject is always recorded in the designated
area. Bottom: Acquired images from these cameras.
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3 Acquisition

This section describes how the UMPM benchmark has been acquired. First the hardware
and software configuration (camera types, speed, resolution, etc.) used to capture the data is
discussed in detail. Next, the requirements on the subjects and the scene are given. Finally,
a description of the recorded scenarios is presented.

3.1 Hard- and software description

The UMPM benchmark captures both color video images and motion capture data simul-
taneously by using hardware synchronization. To have a compete insight in the acquisition
of the data, the details of the color cameras, the motion capture system, and the hardware
synchronization are given here.

Color cameras

To capture the video sequences, the room is equipped with 4 Basler PiA A640-210-gc color
cameras with a resolution of 644 ⇥ 484 and a frame rate of maximal 210 fps1. The video
output type is Gigabit Ethernet (GigE Vision compliant) and is triggered by an external
trigger coming from the Ultranet HD (see hardware synchronization). The capturing speed

1See http://www.baslerweb.com/beitraege/unterbeitrag en 48536.html for more specifications.
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4C

Figure 1: Top-view of the camera placement of the four monocular color cameras (left) and
the camera views (right).

6

Fig. 7.2 Left: Placement of four color cameras, C1 through C4. Right: Corresponding field of views.
Reprinted from [304]

Various types of actions are offered in the dataset and these are performed by an individual or a group
of individuals. Among actions are triangle where subjects are walking following a triangle, chair where
subjects sit down and stand up, table where subjects walk and lean against and lie on table, grab where
subjects grab various objects from a table, orthosyn where subjects are performing predefined gestures,
etc. Other actions are also available, but only provided for multiple-subject scenarios. Following [241],
we conducted our experiments on video sequences with only one subject. Nonetheless, 52856 distinct
images that are captured from four cameras were used for training, validation and test purposes.

Interaction with objects, especially unusual activities such as leaning or lying on a table suggest this
dataset is arguably more difficult than HumanEva in terms of pose estimation. Therefore, we believe that
using UMPM along with HumanEva is an adequate evaluation approach that appropriately challenges
our proposed method.

7.2 Training and Evaluation

For HumanEva set there are three takes for each sequence, used for training, validation and test. Since
the creators of HumanEva favor online evaluation, the original test set does not contain ground truth
joint positions. We divided the original training set into training and validation sets and used the original
validation set for testing purposes, as it is done in [6] for walking and box actions. But we consider
jogging and gestures actions as well. Specifically, there are a little less than 7000 instances in the original
training set for three subjects which sums up to almost 21000 images from three viewpoints. To perform
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the training, we took only 100 frames of the first subject (S1) only with equal time intervals for every
activity from three cameras, which sums up to 1500 images and the remainder of the data is assigned as
our validation set. The ratio of training / validation seems a little low, but considering the single-view
model were originally trained on only 100 images of the PARSE dataset [214], we find it sufficient. All
hyper-parameters have been optimized over our validation set.

For UMPM set, we only considered all available sequences with one subject (P1), which includes
interactions with objects such as sitting on a chair, picking up a small object, leaning and lying on a table.
The training, validation and test partitions were manually divided using 60%, 20% and 20% of the all
available data, respectively. While dividing the partitions, we carefully considered the rightful division
of activities; i.e. each partition contains at least a full occurrence of each activity. In terms of numbers,
the HumanEva test set consists of 4493 images per camera, while UMPM test set has 6074 images per
camera. The number of distinct images used in the tests sums up to 13479 and 24296, respectively.

The data attached terms f(·, ·) in this work were based on HOG features from [55]. Specifically,
the features that we are using are intensity features and in our implementation only the channel with the
strongest gradient is considered. Other features are possible, in particular learned deep feature extractors
as in [46] or [178]. This does not change the setup, and in the context of a low amount of training data,
deep learning does not necessarily provide any advantage.

Parameters of the single-view model (Equation 6.1) are learned on all activities of first subject, S1.
As stated before, we used 1500 positive samples and as for the negative samples, background images
from HumanEva-I and UMPM were used in addition to the INRIAPerson Database from [55]. The
remainder of the data was set as the validation set and used to learn hyper-parameters a and b , equation
(6.2). All hyper-parameters have been optimized over our validation set.

There is a shift in data definition between two datasets we used: HumanEva is recorded with 20
joints, whereas UMPM is recorded with 15 joints. Since our model is trained with 26 parts, we used
linear functions to convert 20 joint locations to box centers for training purposes for HumanEva set, and
transform back the box centers to the 20 joint locations for evaluation. The correspondence is given in
Table 7.1, where first two columns are the model examples for HumanEva (HE) and single-view flexible
mixture of parts (FMP) model. It is stated in [263] that the following joint locations are considered
the same for tree structured models: 1&19, 4&5, 8&9, 12&13 and 16&17. The third column is the
conversion from HE to FMP for converting the ground truth data for training. Please note that the 2nd

joint is assigned to the middle point of the 10th and the 22th box centers. The fourth column is the inverse
transformation which is used in evaluation. The final column (marked ratio) is the transformation detail
which indicates the position of the FMP box center with respect to HE joint locations. For example, 8th

box of the FMP is between the 15th and 7th joints, closer to the 7th joint by 1/3 of the distance between
15th and 7th. It should be noted that we employed a very similar linear transformation for UMPM dataset
as well, where provided 15 joint locations are translated to 26 box centers and vice versa.

The parameters of the single-view model (Eq. 6.1) are learned on all activities of first subject S1
for HumanEva. We took 100 frames with equal time intervals for every activity from three cameras for
training, which sums up to 1500 images. The remainder of the data was set as the validation set. For
UMPM, nearly 400 consecutive frames for each sequence were used as positive samples. As for the
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Table 7.1 Conversion between the 20 joint HumanEva (HE) skeleton model and 26 joint FMP model,
in two direction. ‘10&22’ signifies the middle of these points in the first conversion. In the second
conversion, ratio indicates the proximity to the second box center. See text for detailed explanation.

HE FMP HE to FMP FMP to HE (ratio)
1&19 2 1 20
2 10&22 2 1
3 15 3 7
4&5 17 4 8&7 1/10
6 19 5 8
7 3 6 8&10 1/2
8&9 5 7 10
10 7 8 15&7 1/3
11 22 9 15&7 2/3
12&13 24 10 15
14 26 11 16&15 1/5
15 10 12 16
16&17 12 13 16&18 1/2
18 14 14 18
20 1 15 3

16 4&3 1/10
17 4
18 4&6 1/2
19 6
20 11&3 1/3
21 11&3 2/3
22 11
23 12&11 1/5
24 12
25 12&14 1/2
26 14

negative samples, background images from corresponding datasets were used in addition to the INRIA
Person Database [55]. Hyper-parameters a and b of equation (6.2) were learned on validation sets.

To learn the weights of the error estimating convolutional neural net si(·), training data sets were
augmented with horizontal flip, Gaussian blur and additive noise. As mentioned earlier, we used a fine-
tuned version of VGG-16 [269] model using pre-trained weights on ImageNet to estimate the part based
error of the single-view pose. We removed all the top fully connected layers and introduced our own top
model with a hidden layer of 1024 nodes, an output layer of K nodes and parametric ReLU (PReLU) as
non-linearity. Architecture specifics are depicted in Fig. 7.3, along with output dimensions for each con-
volutional block. To fine-tune the VGG-16 network, we followed a two-stage approach. First, weights
of the complete VGG-16 network were frozen so that they are unaffected by the backpropagation and
weights of the top model were roughly learned with a high learning rate. Then as a second stage, the
top model were initialized with these weights, and the last convolutional blocks (namely the last three
conv3-512 layers) were unfrozen for fine-tuning. We preferred stochastic gradient descent as optimiza-
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tion algorithm with small learning rate to ensure that the weights of the last convolutional block are
marginally updated. To prevent overfitting to augmented data sets we applied strong regularization and
also employed Dropout [277] with probability of 0.5. In terms of training time, 20 epochs of top-model
training and 100 epochs of fine-tuning yielded satisfactory results.

162x44x64

81x22x128

40x11x256

20x5x512
10x2x512

1x2560

1x1024

1x26

162x44x3

Convolution + ReLU (frozen)

Convolution + ReLU

Max pooling

Flatten

PReLU

Batch normalization

Dropout

Output

Fully connected

5x1x512

Fig. 7.3 Fine-tuned version of VGG-16 and along with our top model. Dimensions of layer outputs are
indicated above each block. Each max pooling layer halves the output dimensions. First convolutional
block consists of 3x3x64 convolutions, second one consists of 3x3x128 convolutions, third and fourth
ones consist of 3x3x512 convolutions. Note that frozen layers are not updated during backpropagation.
(Zero-padding layers are not shown for simplicity.)

For each multi-view arrangement, i.e. pair combinations of available cameras, two pose estimations
are produced. Since each view belongs to several multi-view arrangements, we end up with several pose
candidates for the same viewpoint, e.g. we obtain two pose candidates for C1, one from the C1-C2
pair and one from the C3-C1 pair. These candidates are simply averaged and the obtained 2D poses are
triangulated non-linearly to obtain 3D pose for a single time frame. Following the literature on 3D pose
estimation [37, 241] we use the percentage of correctly detected parts (PCP) in 3D, which is calculated
as

kŝn � snk+kên � enk
2

 gkŝn � ênk (7.1)

where sn and en are the estimated start and end 3D coordinates of the n’th part segment, and ŝn and ên

are the ground truth 3D coordinates for the same part segment. By convention we take g = 0.5 in all our
computations, unless specified otherwise.

7.3 Results

In this section, results of the experiments are presented to demonstrate the capabilities of the proposed
method. First, we evaluate our multi-view approach against the single-view method given in [341].
Table 7.2 shows 3D PCP scores on train subject S1 only and over all subjects; while table 7.3 shows 3D
PCP scores on UMPM test set. We provide three versions of our method: geometric constraints only,
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Table 7.2 HumanEva – PCP 3D scores of our model trained on subject 1, evaluated on subject 1 and
all subjects combined, with PCP threshold 0.5. Performance is compared to Flexible Mixture of Parts
(FMP) [341] method.

Test set Sequence FMP [341] —————— Ours ——————
Geometric +Appearance +Adaptive

S1 Box 77.34 82.70 83.87 85.31
S1, S2, S3 Box 67.14 69.45 70.23 71.57

S1 Gestures 78.91 84.27 84.08 88.14
S1, S2, S3 Gestures 74.68 77.38 78.81 80.34

S1 Jog 84.91 86.75 86.70 86.86
S1, S2, S3 Jog 77.52 80.16 79.84 80.97

S1 Walking 84.65 86.71 86.50 87.68
S1, S2, S3 Walking 78.49 81.69 81.96 83.17

S1 Overall 82.02 85.43 85.49 87.24
S1, S2, S3 Overall 74.86 77.62 78.11 79.40

geometric and appearance constraints combined, and both constraints with adaptive viewpoint selection.
It is clear that in all cases and both data sets, the multi-view scheme significantly improves performance.
Depending on the performed action, gains can be significant up to 9.2% in HumanEva and 10.1%
in UMPM. The last columns of tables 7.2 and 7.3 show that the additional coherence terms and their
adaptive control further decrease the error. Fig. 7.5 demonstrates that this error is distributed over all
different parts of the body: we improve most on wrists and elbows, which are important joints for gesture
and activity recognition, as seen in table 7.4. Plots for overall PCP 3D curves with respect to various
PCP thresholds are also given in Fig. 7.6.

Fig. 7.7 depicts 4 histograms where each one depicts the error difference between single-view and
multi-view methods. Negative difference signifies that multi-view error produced a pose with a higher
error, thus a ‘deterioration’ of the single-view pose. Correspondingly, a positive difference signifies an
improvement over the single-view method. The top row histograms are calculated on HumanEva, while
bottom row ones are calculated on UMPM. On the left column, methods were executed without the
adaptive viewpoint selection, while on the right column they were executed with the adaptive viewpoint
selection. It is clearly evident that the number of deteriorations (red parts of the histograms) are sub-
stantially lower with the adaptive viewpoint selection scheme. This can be interpreted as ‘preventions’
of badly detected parts over views. However, these preventions are not always directly translated into
‘improvements’, but instead remain exactly the same as the single-view part estimations. Nevertheless,
it is apparent that the adaptive viewpoint selection helps with the overall performance of the proposed
method.

Fig. 7.4 depicts intermediate poses and epipolar lines throughout the course of algorithm while
Fig. 7.8 shows several examples from the test set where faulty poses are corrected with the multi-view
approach. Note that limbs are in particular subject to correction by geometrical and appearance based
constraints, since they are considerably susceptible to be mistaken for their respective counterpart. Some
extreme cases are indiscernible in the tables. We achieve an improvement rate of 55% on 390 frames of
the Gestures action performed by S1 and evaluated on C3 with support of C2. Similarly, improvement
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Fig. 7.4 Illustration of the iterative optimization process. The first and last columns are two respective
viewpoints, the middle column shows epipolar lines overlaid over the respective viewpoint. Diagonal
arrows show the pose that the epipolar lines are based on. Each row is an iteration and horizontal arrows
shows the resulting pose and epipolar lines used in joint estimation. Final poses are marked with green
borders.
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Table 7.3 UMPM – PCP 3D scores on all sequences with PCP threshold 0.5, compared to Flexible
Mixture of Parts (FMP) [341] method.

Sequence FMP [341] —————— Ours ——————
Geometric +Appearance +Adaptive

Chair 74.72 78.09 77.54 79.94
Grab 74.23 76.25 77.18 81.92

Orthosyn 72.47 74.65 75.22 76.48
Table 70.30 73.49 74.18 77.86

Triangle 73.69 77.26 77.81 83.81
Overall 73.07 75.91 76.37 80.04

Table 7.4 PCP 3D scores (%) for all limb parts with PCP threshold 0.5, compared to FMP[341] on
UMPM and HumanEva datasets.(U-L: upper left, U-R: upper right, L-L: lower left, L-R: lower right)

Configuration U-R Arm U-L Arm L-R Arm L-L Arm U-R Leg U-L Leg L-R Leg L-L Leg
FMP[341]

on HumanEva 88.4 83.4 51.8 61.4 100 100 73.6 67.9

Ours on HumanEva 94.5 88.3 76.1 71.5 100 100 82.7 73.6
FMP[341]

on UMPM 50.6 50.7 31.3 28.6 99.4 98.6 78.4 64.6

Ours on UMPM 69.8 63.6 45.2 35.6 99.6 99.5 84.4 75.1

rate is above 27% on 416 frames of Gestures performed by S2 that and evaluated on C1 with support of
C3. On the other hand, a few cases may lead to deterioration of one the two views.

We also compare our work to Schick et al.’s voxel carving based 3D pictorial structure method [241],
apart from the original FMP [341]. For HumanEva dataset and for all sequences of S1 and S2, they
report 78% PCP score, and for UMPM dataset for all sequences of P1, they report 75% of PCP score.
For the same settings, our PCP scores are 83.42% and 80.04%, respectively.

(a) HumanEva, subject 1, all sequences (b) UMPM, all sequences

Fig. 7.5 PCP 3D scores for individual parts obtained by FMP[341] (red) and ours (green) on both datasets.
(U-L: upper left, U-R: upper right, L-L: lower left, L-R: lower right)
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(a) HumanEva, subject 1, all sequences (b) UMPM, all sequences

Fig. 7.6 PCP 3D curves as a function of threshold g from Eq. 7.1, obtained by FMP[341] (red) and ours
(green) on both datasets.

Fig. 7.7 Breakdown of differences of errors for each part, compared to FMP[341]. Negative differences
(red) indicates cases where our method performs worse than FMP, zero difference (yellow) indicates
same poses were estimated and positive difference (green) indicates our method yielded a better pose.
Top row: HumanEva, bottom row: UMPM, left column: without adaptive viewpoint selection, right
column: with adaptive viewpoint selection.
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SINGLE-VIEW MULTI-VIEW SINGLE-VIEW MULTI-VIEW

Fig. 7.8 Qualitative comparison of all three subjects performing various activities from different view-
points. First and third columns: poses obtained with the single-view model. Second and fourth columns:
poses obtained with multi-view pose estimation.
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7.4 Fast implementation

Before implementing the multi-view code, we first investigated the single-view code in details, which
is publicly available4. The code is written in Matlab, and takes 3 seconds for small images (150⇥200
pixels) and takes up to 30 seconds for full VGA images on an ordinary personal computer. Our final
goal is to achieve 500ms for each image with a good accuracy level.

Reducing the search space. As explained in Section 6.2, execution time increases exponentially
with respect to the image space, or pixel locations in other words. To that end, we experimented with
some pre-processing techniques to overcome the burden of large search space in order to end up with a
smaller region of interest for executing our single-view pose estimation algorithm. Most practical and
appropriate technique to determine a region of interest that would surround a person in an image would be
the popular HOG for human detection[55], considering that its implementation is available in OpenCV5

for a long time. It works fast on CPU (and would be considerably faster on GPU), specifically 135ms
for 640⇥480 images and 30ms for half the size, which could leverage the execution time for single-view
pose estimation. But reducing the search space with a people detector means that we heavily rely on the
accuracy of region interest, which might be problematic in some cases. To assess whether this approach
is reliable or not, we conveyed a small experiment simultaneous to the preliminary experiments described
in Chapter 5. We used 258 samples from all cases, using samples three different distances which means
different area occupancy of a person in terms of pixels. Furthermore, since our method is an eventually
multi-view method which aims to overcome occlusions, samples with different occlusion settings were
tested. We executed the built-in people detector in OpenCV with a pre-trained model on different scales.
Experiment results were not promising. For 101 images, people detector did not found the subject in
the image. Among 157 detections, 33 were false detections and 30 were partially correct. 94 detections
were correct, which concludes the accuracy of this test to 36%. It should be noted that false detections
and partial detections were mostly for samples that are in close setting (2-3 meters from the camera)
and in the presence of occlusion. Needless to say, we abandoned the idea of determining the region of
interest with a people detector method, and carried on to other ways of decreasing the execution time of
single-view pose estimation algorithm.

Another way to speed up the single-view algorithm is using less levels in the feature pyramid, which
in fact means searching the image spaces in less different scales for a person. This is obviously a trade-
off between the speed and generalizability of the algorithm, since lesser pyramid levels mean lesser
flexibility for the distance of the person to the camera. Although we hacked the model and decreased the
interval levels in development stages for fast prototyping, we always used full pyramid intervals in the
reported experiments.

Code optimization. Finally, we decided to port the Matlab/C++ code to pure C++ for both single-
view and multi-view pose estimation algorithms. Our multi-view implementation is based on our port of
the Matlab/C++code from the single-view method by [341] to 100% pure C++, where crucial parts have
also been ported to GPU processing using NVIDIA’s CUDA library. This sped up runtime from 3000ms

4Available at http://www.ics.uci.edu/~dramanan/software/pose/, last accessed on 17/07/2016.
5Available at http://opencv.org/, last accessed on 15/07/2016.

http://www.ics.uci.edu/~dramanan/software/pose/
http://opencv.org/
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per frame to 880ms per frame on a computer equipped with a 2.4Ghz Xeon E5-2609 processor and an
NVIDIA 780 Ti GPU for the single-view algorithm (runtime given for a 172⇥224 image with 32 levels of
down-sampling). The multi-view algorithm is slower, because 5.73 iterations are performed in average
before the results are stable. We are currently working on additional optimizations of computational
complexity using approximative parallel implementations of the distance transform on GPUs.

7.5 Conclusion

In this part of the thesis, our goal was to propose a pose estimation method that would benefit from the
information obtained from multiple viewpoints. In Chapter 4 state-of-the-art was given to portray the
current research activities and trending approaches in pose estimation task. After that, the procedure that
helped us choose the appropriate were described in Chapter 5. These preliminary tests suggested that
using global RGB method was the best way to build a multi-view pose estimation method. Therefore, we
developed a such method that optimize coherence between the single-view pose estimations in an itera-
tive way by exploiting geometric and appearance based constraints. Formal description of our method
was given in details in Chapter 6.

In this chapter, we evaluated our multi-view method and compared to the single-view counterpart to
demonstrate that pose estimation task can benefit from information obtained from multiple viewpoints.
The results state that in some cases, such an approach improves the accuracy by up to 27.7%.

On the other hand, we argue that performance of our multi-view method depends on the errors of
single-view FMP estimations. If both single-view estimations are erroneous, shared information between
the views are unlikely to be practical to correct the initial poses. Or in an even worse case, those errors
are likely to propagate between the views resulting in a further deteriorated pose at the end. However
if one or both of the poses are accurate, the shared information between the views is more likely to be
correct which culminates both pose estimations, which is supported by the results that we report in this
chapter.

All things considered, in this part of the manuscript we proposed a multi-view articulated human
pose estimation method and demonstrated its improvement compared to the single-view counterpart by
tangible and concrete results.



Chapter 8

Conclusion

This last chapter constitutes a summary of efforts carried out within the scope of this thesis. First, the
main contributions of this thesis will be recapitulated and the essential results will be outlined. Then, the
limitations of the proposed methods will be discussed along with the potential improvements that can be
made. Afterwards, possible future work will be introduced as well as prospective research goals. Finally,
a list of scientific publications that are associated to this manuscript will be provided.

8.1 Summary of Contributions

In this thesis, we have dealt with the problems of viewpoint independence and multi-view observations
of scenes, especially for human activity recognition and articulated pose estimation tasks, respectively.
These two separate but related problems may in fact be consolidated under the broader notion of ge-
ometrical flexibility for computer vision tasks. We considered the questions of view invariance and
improvements for multi-view settings individually, providing proposals for both of them.

For the first part, our goal was to establish a method where the location of the camera carries minimal
or no impact on the performance of human activity recognition task. To fulfill this goal, we envisioned an
intermediate representation of a video sequence, that can be view-invariant intrinsically. In other words,
we aimed to establish an operation that takes a video sequence recorded from any view angle as input,
and outputs a standardized representation. Ideally, the goal was to achieve the same representation for a
particular action sequence that is for instance recorded from different viewpoints.

To that end, we first analyzed the action recognition literature and reviewed existing approaches
toward representation of action sequences. We have been inspired by motion history images [28] and
volume motion templates [227] to consequently propose a robust variant that is constructed from depth
video sequences. The robustness of the proposed method lies in the additional operations such as noise
reduction, not relying on background subtraction and outlier removal. Moreover, in order to build a view
invariant model we applied viewpoint normalization, which is actually a rotation operation that trans-
forms any volume motion template to a canonical orientation. Corresponding angles for the rotation are
calculated with respect to the dominant motion direction of the observed activity, which is a character-
istic property for most action types. Obtaining a robust and normalized volume object is not sufficient



116 Conclusion

to accomplish the classification task, since the volume object can still be considered as raw data. After
investigating several spatio-temporal (3D) feature extraction techniques, we employed HOG3D features
[135] to finally represent action sequences as a collection of feature vectors. Classification task was
carried out with the classical bag-of-words approach. We evaluated our proposition on the LIRIS hu-
man activities dataset, which contains a medium amount of realistic and complex activities and obtained
significant recognition performance gain compared to the baseline method.

As for the second part, our motivation was to establish a framework that can leverage image data
acquired from different viewpoints and to use those in a collaborative manner to accomplish the pose
estimation task efficiently and accurately. For this reason, we first studied and reviewed the state-of-
the-art methods on articulated pose estimation. We evaluated the available methods based on various
criteria such as input modalities, runtime requirements and particularly compatibility with multi-view
extensions and conducted a preliminary research. According to the findings, flexible mixture of parts
[340], which is basically a tree shaped graph representation of the human body, was considered the most
suitable and adaptable one that fits our needs. We modeled the pose estimation problem with multiple
graphs that are associated to each other by several constraints, and the inference problem was treated as
a global optimization problem. We imposed strong prior on this problem, both by classical geometrical
constraints and by the novel appearance constraints. Essentially, appearance constraints are modeled as
latent variables which reward some appearance combinations (sets of appearance filters) for a part, while
penalizing others. The inference problem, which consists of loopy graphs due to additional constraints
between the viewpoints, is handled with an iterative scheme where parameters from all viewpoints are
fixed except for one on each iteration. Evaluation of this method was completed on two publicly avail-
able datasets, namely HumanEva [261] and UMPM [303] and we determined that in both datasets our
proposition provides 3-4% gain in the designated metrics, compared to the baseline method.

Additionally, we argued that such a method can yield even better pose estimation results if it is pos-
sible to evaluate the adequacy of individual viewpoints to support the consistency during the execution
time. Therefore we were further motivated to investigate such a technique that will enable us control
over the part based contributions of each viewpoint. Thus, we employed a convolutional neural network
based approach to roughly estimate the expected error of a single-view estimation for each viewpoint.
This allowed us to cancel out the multi-view constraints, i.e. geometric and appearance, in certain cases
where a view angle provided poor visuals of a particular part. Consequently, we prevented propagation
of erroneous data of poorly estimated part and improved the global pose estimation quality. This addi-
tional step, dubbed adaptive viewpoint selection, granted us an additional 2-4% of gain on both datasets
and a total of 5-7% of improvement over the baseline method. Moreover, we compared our framework
to another multi-view method and observed 5% of improvement on both datasets.

8.2 Discussion

In this section, we discuss the limitations of the proposed methods and identify the potential shortcom-
ings under certain conditions.
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Our first proposition takes depth imagery as input, acquired by commercial depth sensors. Even
though they are affordable and made a great amount of research available widely, they have well-known
limitations. Depth sensors can only operate in indoors and produce the best result under specific dis-
tances; acquired data quickly becomes unreliable once the conditions are no longer met. Furthermore,
our method can only perform when the camera is stable and stationary. This is because the procedure to
construct the volume motion template is highly sensitive and responsive on the any kind of movement
in the scene, therefore the movement of the background with respect to moving camera will inevitably
be translated into the point cloud. Currently, our method is not able to distinguish the ego-motion (the
movement of the camera) from the motion of the individuals, as a consequence, we are limited to scenar-
ios where the camera is absolutely immobile. This issue can be resolved by estimating the ego-motion
from the video sequence and compensating it, as will be discussed in next section.

The second method that we proposed on the other hand, operates on RGB images and is not limited
to indoors nor specific proximity requirements. However, it assumes calibrated cameras which may
not be trivial in scenarios where the cameras are unstationary, such as when they are mounted on a
mobile robot. Unlike the cases where cameras are pre-installed to an environment and are fixed, movable
cameras requires to be calibrated before our method can perform. This is mainly because of the geometric
constraints that we impose on the multi-view pose estimation scheme, where it is imperative to know the
extrinsic parameters (position and direction of the cameras) in order to establish an association between
cameras and their respective field of views. This can be achieved thorough self-calibration once the
cameras are stable, even for a short period of time. Or, an alternative would be to perform calibration
jointly with pose estimation by solving a joint (either discrete or continuous) optimization procedure.

This section drew attention to the limitations of the methods that we proposed in this manuscript and
remarked the possible scenarios where they may be inadequate. In the following section, we will propose
potential solutions corresponding to these limitations.

8.3 Future Work

We would like to point out potential research tracks to follow the ideas presented in this thesis and to
carry the scientific findings one step further. Thus, this section will first propose possible future work to
address the limitations that are mentioned above, and imagine new related challenges.

Addressing the Limitations

Here, we raise two propositions to address the issues that are discussed in Section 8.2. The first one focus
on the action recognition part, where the procedure to build volume motion template can be improved for
the cases where camera is mounted on a mobile robotic platform. As mentioned earlier, the movement of
the camera causes an undesirable artifact, that is, the otherwise fixed background is recorded as evolving
and advancing. Volume motion template representation requires to encode solely the motion of the
person for best recognition results, and therefore we ought to compensate for this movement of the
background. In order to accomplish this, the movement of the camera, also known as ego-motion, needs
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to be determined first. There is a rather large body of work about estimating the ego-motion, which
is reviewed and discussed in this survey [219]. Once the ego-motion is estimated, calculated volume
motion template can be modified and adjusted according to obtained vector field, so that the movement
of the camera is ignored.

Secondly, the assumption for the known calibration parameters ought to be avoided in order to ex-
pand the application areas of the multi-view pose estimation scheme. Let us consider a scenario where
several cameras are mounted to corresponding mobile robots which are freely roaming in a bounded
environment to temporarily stop and observe a person from various viewpoints. Each time the robots
are stationary, the calibration parameters, particularly the extrinsic ones, ought to be recalculated so that
the proposed geometric constraints are applicable. It is possible but ill-favored to rely on known coordi-
nates of the robots (via mechanical encoders or other positioning techniques) as well as pitch, yaw, roll
movements of the mounted cameras. Instead, these parameters can be estimated by purely image based
methods, even for the cases that lack special markers such as chess-board patterns or calibration plates.
Such parameter estimation can be carried out with a well known iterative scheme [101] based on auto-
matic homography estimation between two images: First, numerous interest points are detected on both
images, commonly using SIFT [161] or SURF [17] feature descriptors and putative correspondences are
computed. Then, using Random Sample Consensus (RANSAC) [84] and some additional optimization
steps the homography can be estimated. For alternative camera calibration methods, reviews and accu-
racy evaluations please refer to this survey [237]. Regardless, on-the-fly calibration of available cameras
would require extra execution time, but the method would be relieved from the burden of fixed cameras.

Possible Extensions

In this section, we will mention some new ideas as possible extensions to the methods proposed within
the scope of this thesis, but somewhat more demanding (in terms of time and resources) to implement
compared to the improvements indicated in previous section.

Hand crafted appearance features are less and less used in all computer vision tasks. They are re-
placed by features extracted by convolutional neural networks, where hierarchical features are automati-
cally learned on large datasets. Accordingly, this work may adopt a similar approach toward the extrac-
tion of appearance features, namely the f term in Equation 6.1 which are computed using the older HOG
[55] features in our experiments. Such extension may improve the precision of the appearance features
and subsequently yield better overall performance for multi-view pose estimation.

Another plausible idea, which is relatively less related to the approaches proposed in this manuscript,
would be further exploiting a deep convolutional neural network to learn the multi-view relations between
the poses obtained from separate view angles. An arguable workflow would consist of the following
steps: For each viewpoint, single-view pose estimation would be carried out classically first. A multi-
branch convolutional neural network would take each image and corresponding part coordinates as input,
to ultimately regress the 3D position of the person in the scene. Experiments to evaluate several fusion
strategies would be conducted to to determine what kind of fusion (early, late or slow) works best to infer
the 3D part locations of the individual. Alternatively, the single-view pose estimation step might be com-
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pletely abandoned and another convolutional neural network architecture might be designed to simply
take images from multiple viewpoints as inputs, and regress 3D part positions as outputs. Arguably, this
sort of end-to-end learning approach would require a very large amount of data and considerable training
time, but might significantly shorten the inference time in test stage.
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[323] Weinland, D., Ronfard, R., and Boyer, E. (2011). A survey of vision-based methods for action rep-
resentation, segmentation and recognition. Computer Vision and Image Understanding, 115(2):224 –
241.

[324] Weng, J., Cohen, P. R., and Herniou, M. (1992). Camera calibration with distortion models and
accuracy evaluation. IEEE Trans. Pattern Anal. Mach. Intell., 14:965–980.

[325] Willems, G., Tuytelaars, T., and Gool, L. (2008). An efficient dense and scale-invariant spatio-
temporal interest point detector. In ECCV, pages 650–663.

[326] Wilson, A. D. and Bobick, A. F. (1999). Parametric hidden markov models for gesture recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(9):884–900.

[327] Wolf, C., Lombardi, E., Mille, J., Celiktutan, O., Jiu, M., Dogan, E., Eren, G., Baccouche, M.,
DellandrÃl’a, E., Bichot, C., Garcia, C., and Sankur, B. (2014). Evaluation of video activity localiza-
tions integrating quality and quantity measurements. CVIU, 127:14 – 30.



140 References

[328] Wolf, C., Taylor, G. W., and Jolion, J.-M. (2010). Learning individual human activities from short
binary shape sequences. Technical Report RR-LIRIS-2010-010, LIRIS UMR 5205 CNRS/INSA de
Lyon/UniversitÃl’ Claude Bernard Lyon 1/UniversitÃl’ LumiÃĺre Lyon 2/ÃL’cole Centrale de Lyon.
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