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A B S T R A C T

The research goal of this work is to develop learning methods advancing auto-
matic analysis and interpreting of human motion from different perspectives and
based on various sources of information, such as images, video, depth, mocap data,
audio and inertial sensors. For this purpose, we propose a number of deep neural
models for supervised classification and semi-supervised feature learning, as well
as modelling of temporal dependencies, and show their efficiency on a set of fun-
damental tasks, including detection, classification, parameter estimation and user
verification.

First, we present a method for human action and gesture spotting and classi-
fication based on multi-scale and multi-modal deep learning from visual signals
(such as video, depth and mocap data). Key to our technique is a training strategy
which exploits, first, careful initialization of individual modalities and, second, grad-
ual fusion involving random dropping of separate channels (dubbed ModDrop) for
learning cross-modality correlations while preserving uniqueness of each modality-
specific representation. Start by exploring different fusion strategies, including per-
frame voting and modeling temporal dependencies with a recurrent model (RNN),
we show that fusing multiple modalities at several spatial and temporal scales leads
to a significant increase in recognition rates, allowing the model to compensate for
errors of the individual classifiers as well as noise in the separate channels. Futher-
more, the proposed ModDrop training technique ensures robustness of the classifier
to missing signals in one or several channels to produce meaningful predictions from
any number of available modalities. In addition, we demonstrate the applicability
of the proposed fusion scheme to modalities of arbitrary nature by introducing an
additional audio channel.

Moving forward, from 1 to N mapping to continuous evaluation of gesture param-
eters, we address the problem of hand pose estimation and present a new method for
regression on depth images, based on semi-supervised learning using convolutional
deep neural networks. An intermediate representation is first constructed based on
a segmentation into parts and is learned from two training sets: one containing la-
belled synthetic training images produced from 3D models by a rendering pipeline,
and a second set containing unlabelled real images acquired with a consumer depth
sensor. Our method does not rely on labels for the real data, and no explicit transfer
function is defined or learned between synthetic and real data. Instead, a loss is de-
fined on these data by extracting geometrical, structural and topological information
related to a strong prior on the intermediate representation, i.e. on the segmentation
of a hand into parts. We show that regression of joint positions is easier and more
robust from a rich semantic representation like a segmentation into parts than from
raw depth data, provided that this semantic segmentation is of high fidelity.

In separate but related work, we explore convolutional temporal models for hu-
man authentication based on their motion patterns. In this project, the data is cap-
tured by inertial sensors (such as accelerometers and gyroscopes) built in mobile
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devices. Having explored existing temporal models (RNN, LSTM, clockwork RNN),
we show how the convolutional Clockwork RNN can be extended in a way that
makes the learned features shift-invariant, and propose a more efficient training
strategy for this architecture. Finally, we incorporate the learned deep features in a
probabilistic biometric framework for real time user authentication.
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R É S U M É

L’objectif de ce travail est de développer des méthodes avancées d’apprentissage
pour l’analyse et l’interprétation automatique du mouvement humain à partir de
sources d’information diverses, telles que les images, les vidéos, les cartes de pro-
fondeur, les données de type «MoCap» (capture de mouvement), les signaux audio
et les données issues de capteurs inertiels. A cet effet, nous proposons plusieurs
modèles neuronaux et des algorithmes d’entrainement associés pour l’apprentissage
supervisé et semi-supervisé de caractéristiques. Nous proposons des approches
de modélisation des dépendances temporelles, et nous montrons leur efficacité sur
un ensemble de tâches fondamentales, comprenant la détection, la classification,
l’estimation de paramètres et la vérification des utilisateurs (la biométrie).

Premièrement, nous présentons une méthode pour la détection, la classification
et la localisation de gestes humains basée sur le Deep Learning multi-échelle et
multi-modal à partir de plusieurs signaux. Un aspect clé de notre technique est une
nouvelle stratégie d’entrainement, exploitant, d’une part, une initialisation métic-
uleuse des modalités individuelles et, d’autre part, une fusion progressive impli-
quant l’annulation aléatoire («ModDrop») de modalités. Cela permet l’apprentissage
efficace des corrélations inter-modalités tout en préservant le caractère unique de la
représentation spécifique à chaque modalité.

En explorant différentes stratégies de fusion, nous montrons que la fusion des
modalités à plusieurs échelles spatiales et temporelles conduit à une augmentation
significative des taux de reconnaissance, ce qui permet au modèle de compenser les
erreurs des classifieurs individuels et le bruit dans les différents canaux. En outre,
la technique proposée assure la robustesse du classifieur face à la perte éventuelle
d’un ou de plusieurs canaux. Nous démontrons l’extension de la méthode de fu-
sion proposée aux modalités de nature arbitraire en introduisant un canal audio
supplémentaire.

Dans un deuxième temps nous abordons le problème de l’estimation de la posture
de la main en présentant une nouvelle méthode de régression à partir d’images
de profondeur. Basée sur l’apprentissage semi-supervisé à l’aide de réseaux de
neurones profonds, la méthode procède par une fusion des données de profondeur
brutes et d’une représentation intermédiaire sous forme d’une carte de segmentation
de la main en parties. Nous argumentons que cette représentation intermédiaire
contient des informations topologiques pertinentes, fournissant des indices utiles
pour l’estimation des positions des articulations de la main.

Le mapping fonctionnel entre cartes de profondeur et cartes de segmentation des
cartes est appris de manière semi-supervisée et de manière faiblement supervisée à
partir de deux ensembles de données : un jeu de données synthéthiques créé par
un pipeline de rendu, comprenant une annotation dense des pixels; et un ensemble
de données réelles comprenant une annotation des positions des articulations, mais
sans cartes de segmentation.
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Dernièrement, dans le cadre d’un projet séparé (mais lié thématiquement), nous
explorons des modèles temporels pour l’authentification automatique des utilisa-
teurs de smartphones à partir de leurs habitudes de tenir, de bouger et de déplacer
leurs téléphones. Dans ce contexte, les données sont acquises par des capteurs iner-
tiels embaraqués dans les appareils mobiles. Après avoir exploré plusieurs architec-
tures neuronales (RNN, LSTM, Clockwork RNN) pour l’apprentissage efficace des
extracteurs de caractréristiques, nous proposons une variante efficace et invariante
des Clockwork RNN, nommée Dense Clockwork RNNs (DCWRNN).

Nos résultats démontrent que le mouvement humain véhicule des informations
pertinentes sur l’identité des utilisateurs; ces informations peuvent servir comme
une composante précieuse pour les systèmes automatiques d’authentification multi-
modale.
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Part I

M O T I VAT I O N A N D B A C K G R O U N D





«А чем вы занимаетесь?» — спросил я.
«Как и вся наука, — сказал горбоносый. —

Счастьем человеческим».

— Аркадий и Борис Стругацкие,
«Понедельник начинается в субботу» 1

1
I N T R O D U C T I O N

Automatic analysis and interpretation of human motion from visual input, one
of the essential computer vision challenges, has been a decades-long effort resulting
in a vigorous growth of this body of research from the 1970s until the present. As
one could guess, the problem occupies the minds not only as a captivating scientific
puzzle, but also due to its practical importance. Hundreds of existing potential appli-
cations in urgent need of this technology include, to name a few, control, navigation
and manipulation in real and virtual environments, human-robot interaction and
smart homes, telepresence systems, clinical diagnosis and monitoring, elderly sup-
port and systems which aid the hearly impaired, learning applications and games,
engineering and computer-aided design systems, automatic video annotation and
indexing, forensic identification and lie detection.

Application-driven by definition, human motion analysis has been explored in
parallel by different research communities and from different perspectives. Today,
it has evolved into collection of isolated standard tasks, ranging from interpreting
subtle facial expressions to crowd motion analysis. Numerous taxonomies have
been proposed for this domain, but the majority of existing works consider group or
individual activities, primitive actions or gestures. Apart from differences in scale
and level of abstraction, each subproblem can be viewed as a variation of one of two
classical computer vision challenges, namely Recognition or Reconstruction.

1. “What are you working on?”, I asked. “As with all science – the happiness of man”. (Arkady and
Boris Strugatsky, "Monday Begins on Saturday”)
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4 introduction

Figure 1 – Directions of human motion analysis explored in this thesis: gesture recognition,
hand pose estimation and user validation from motion.

The first formulation, purely discriminative in spirit, aims on triggering events
associated with one or another type of visual inputs. Action (such as walking or
running), hand gesture or emotion recognition are typical examples of this area of
research.

The reconstruction task, which is typically more challenging computationally and
algorithmically, requires, in turn, higher quality of visual input and better under-
standing of the processes behind it. It also requires more sophisticated models,
e.g. structured output. In the context of human motion analysis, reconstruction
challenge is formulated as pose estimation and tracking (of a full body or a single
hand).more sophisticated models (e.g., structured output) In this thesis, we mainly

focus on interpreting near-range human activities, where body parts are clearly vis-
ible and articulated, i.e. gestures.

Numerous gesture taxonomies have been proposed, but there is little agreement
among researchers on what gesture characteristics are the most discriminative and
useful. In this work we focus on intentional gestures, bearing communicative func-
tion and targeting enhancement of the communicative value of speech by doubling
or conveying additional semantic information. Depending on the application, their
functional load may be more significant than simply augmenting the audio channel:
in robot-computer interaction, for example, gestures often play the primary role.

Conversational gestures, i.e. hand movements accompanying speech, may convey
semantic meaning, as well as information about a speaker’s personality and cultural
specifics, momentary emotional state, intentions and attitude towards the audience
and subject at hand. Interestingly, a number of psychological studies (e.g. [249]) sug-
gest that motor movements do not only aim at illustrating pronounced utterances,
amplifying their emotional impact or compensating for the lack of linguistic fluency,
but, in turn, influence the process of speech production allowing the speaker to pro-
duce more complex and vivid verbal descriptions. Therefore, an ability to recognize
and interpret non-verbal cues coupled with verbal information would be a natu-
ral step towards understanding and plausible simulation of human behavior and,
consequently, making human-machine communication truly effortless and intuitive.

In this work, we approach the problem of gesture analysis from both the recogni-
tion and reconstruction perspectives, exploring classification and estimation of pa-
rameters of movements with an ultimate goal to create a generalized motion under-
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standing framework for human-robot and human-device interaction. In particular,
we are interested in multi scale and multi level models, capable of jointly interpret-
ing both subtle finger movements and full body motion (see Figure 1).

For completeness, we additionally explore an inverse problem of motion analysis
for user validation (Figure 1). While the gesture recognition task naturally requires
invariance with respect to inter-person differences between subjects performing ges-
tures, here the target of discrimination and the invariant are swapped such that the
person is recognized regardless of tasks or types of gestures he or she is performing.

In spite of the existing extensive body of research, the problem of gesture analysis
remains an unsolved challenge when it comes to many real life applications. State-of-
the-art touchless interfaces based on precise finger tracking have a limited working
range of distances (typically 0.5-1.2m) or require that the subject wear special mark-
ers or other attire, such as colored gloves or t-shirts [310]. They are therefore often
impractical, while full body skeleton-based models typically require unnatural ex-
aggerated articulation, have a very limited vocabulary and therefore lack expressive
power.

1.1 applications

The research which we present in this manuscript was initially motivated and
funded by two joint industrial-academic projects, namely Project Interabot and Project
Abacus, which we briefly describe in this section.

1.1.1 Project Interabot

A majority of the work described in this thesis was conducted collaboratively be-
tween of several industrial and academic partners brought together under the um-
brella of project Interabot lead by the robotic company Awabot (Lyon, France), which
aims to create a low-cost mobile domestic robot-companion, bearing entertaining
and social functions for children and adults and serving as personal assistant for
elderly people. As a part of a smart home environment, such an assistant could, for
example, process spontaneously expressed requests for regulating temperature and
lighting, watering plants, turning on and off various devices. At the beginning of
this project, our colleagues from LIG, Grenoble [11] have demonstrated that elderly
people naturally tend to perceive a moving controller, performing such actions by
request, as a companion, rather than a service robot.

At the beginning of this chapter, the reader can see an early prototype of a do-
mestic companion, developed under this project and named Emox. In its current
implementation, each Emox robot is equipped with a number of sensors, among
which are RGB and depth cameras, accelerometer and a microphone. Its basic func-
tionality includes navigation while avoiding obstacles, object and face recognition
and scene segmentation allowing for a "following” mode. Furthermore, each robot
has a built-in picoprojector and speakers enabling such applications as interactive
games, karaoke and videoconferencing.

Thus, the initial motivation of this work was to develop a visual human-robot
interaction system that could be used in unconstrained indoor environments for
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Figure 2 – An example of a gesture (come close to me), as viewed from the front and from
above (figures by our partner from GIPSALab, [115]).

human action and gesture recognition, in real time and on a multi-sensor mobile
robotic platform.

Using the wizard of oz technique, our partners have collected a large amount of
samples of real-life gestures naturally performed by elderly people in different con-
texts while interacting with the robot and expressing various requests. By sorting
and clustering several hours of video recordings, we have defined a hierarchically
organized vocabulary of navigational gestures with all typical variations correspond-
ing to each gesture type. As example of such a gesture is shown in Figure 2.

This vocabulary has been used for collecting of a large amount of training data
for the gesture recognition system. In each case, RGB, depth and skeleton data,
provided by the robot sensors, have been recorded.

All of these preparatory research and data collection steps allowed us to build a
platform for creating a robot-based multimodal gesture-recognition system which
will be one of the main subjects of this thesis.

1.1.2 Project Abacus

The research described in Chapter 6 has been conducted as a part of project Abacus
in collaboration and under the guidance of Google, Inc. (Mountain View, USA).

Generally, project Abacus aims at eliminating the necessity of entering passwords
on smartphones and shifting the burden of authentication from the user to the de-
vice itself. Accordingly, the research goal of this project was defined as studying
the possibility of active authentication of smartphone users from multimodal data
provided by built-in sensors.
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Specifically for this project, Google ATAP has organized and performed a large
scale multi-modal data collection. To facilitate the research, we worked with a third
party vendor’s panel to recruit and obtain consent from volunteers and provide
them with LG Nexus 5 research phones which had a specialized read only memory
(ROM) for data collection. Volunteers had complete control of their data throughout
its collection, as well as the ability to review and delete it before sharing for research.
Further, volunteers could opt out after the fact and request that all of their data be
deleted. The third party vendor acted as a privacy buffer between Google ATAP and
the volunteers.

This study included approximately 1,500 volunteers using the research phones as
their primary devices on a daily basis. The data collection was completely passive
and did not require any action from the volunteers in order to ensure that the data
collected was representative of their regular usage.

The data corpus consisted of 27.62 TB of smartphone sensor signals, including
images from a front-facing camera, touchscreen, accelerometer, gyroscope, magne-
tometer, GPS, bluetooth, wifi, cell antennae, etc.

Our role in this project was to explore the perspective of user authentication from
built-in inertial motion sensors, such as accelerometer, gyroscope or magnetometer.
This task, while being relatively new and approaching the idea of exploiting human
movements from a completely differently perspective, falls naturally into the general
domain of human motion analysis we are exploring in this work.

1.2 key methodogical aspects and contributions

As mentioned earlier, this manuscript introduces a number of contributions to dif-
ferent aspects of human motion analysis in its different sub domains. In this section,
we would like to emphasize a number of key ideas which we believe are important
in the context of this work and which will guide and motivate a number of crucial
strategical decisions in the following chapters. Furthermore, here we summarize our
main contributions proposed for several different applications and attempt to draw
parallels between corresponding computer vision and machine learning problems
to show what unites them.

— First of all, as explicitly stated in the title of this manuscript, each problem ap-
proached here is in one way or another associated with the automatic analysis
of human motion. We begin our exploration journey from the top level by look-
ing at the problem of gesture analysis in its general formulation and then zoom
in on hands and focus specifically on their articulation. Even though these two
applications are conventionally considered separately by the computer vision
community, the tight connection between them is apparent: an exact hand pose,
for example, can serve as an intermediate representation for recognition of ges-
tures and estimation of their parameters, while the predefined gesture class per
se can be seen as a prior in the task of reconstruction of hand joint positions in
3D space.
Finally, to abstract away from semantic meaning of hand gesticulation, we look
at the third problem, formulated as user recognition from their hand motion
patterns, where the input data is non-visual and thus hardly interpretable.
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Figure 3 – Summary of our contributions represented as a set of key words, which charac-
terize applications considered in each part of this thesis.

— Regardless of a practical objective, each application in this work is considered as
a instance of a machine learning problem. Therefore, in the following discus-
sion to better identify and highlight important aspects and make contributions at
different stages of the learning pipeline, we will stick to the generalized problem
structure represented as a table in Figure 3. At each step, the chosen color encod-
ing indicates key words specific for each of the considered applications (gesture
recognition, hand pose estimation and user validation from motion). As the
reader may see from the top part of this table, the learning problem formulation
itself differs depending on the application. In the gesture recognition setting, our
objective is to perform simultaneous gesture detection, recognition and accurate lo-
calization, while the hand pose estimation is formulated as a regression task with
intermediate segmentation of a hand into parts. Finally, user validation also in-
volves an intermediate step of discriminative feature learning with a classification
training objective.

— An important conceptual priority of this work is data-driven learning of static
and dynamic data representations, as opposed to designing hand crafted de-
scriptors specific to a given type of the input. Therefore, a particular class of
models which will interest us in this work is a group of connectionist approaches
commonly referred to in modern literature (somewhat abusively) as deep learn-
ing. In our context of human motion analysis, we explore both spatial and tem-
poral strategies for feature learning and propose a number of fully connected,
convolutional and recurrent deep learning architectures.
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— Furthermore, in an attempt to gain a larger view on the problem, we aim to
develop generalized modular models built on composable blocks, with compos-
ability meaning both pluggable data channels as well as spatial, temporal and
semantic scales of data processing. We would like to stress though that the idea
of creating high level composable black boxes which can further be used for en-
gineering purposes is what represents the practical goal of the present research
rather than our research methodological strategy per se: on the contrary, devel-
oping truly universal algorithms, as a rule, requires deep understanding and
thorough analysis of their underlying properties and dynamics.

— In particular, throughout this thesis, we have explored various data modalities,
both visual and non-visual, which include color video and depth maps, full body
motion caption data, audio signals as well as measurements performed with iner-
tial motion sensors, such as accelerometer and gyroscope sensors. Naturally, we
also pay special attention to fusion aspects in multimodal deep learning architec-
tures and increasing of robustness of developed multimodal models to missing or
corrupted signals during test time in real world conditions. In the gesture analy-
sis part of this manuscript, we thoroughly analyze the role of each data channel
and, even more importantly, the dynamics of fusion process and its effectiveness
and efficiency as a function of the training strategy. In this context, we propose
a multimodal training technique (called ModDrop) which ensures robustness of
the classifier to missing signals in one or several channels to produce meaning-
ful predictions from any number of available modalities. As mentioned earlier,
whenever possible, we endevour to stick to the modular approach, assuming that
one or another data channel can also be intentionally removed or added without
loss of generality.

— The same logic applies to the other plane of decomposition, namely spatial and
temporal scales of learned data representations. In our proposed framework for
gesture recognition, for example, the visual input is organized according to the
scale of the movement: the motion capture information is used to characterize
the motion of the whole upper body, while intensity and depth images cropped
around positions of hands more specifically capture fine finger articulation. At
the same time, the data stream is sampled at several temporal scales with follow-
ing combining the obtained spatio-temporal representations in a single frame-
work. The idea of multi-scale temporal processing was further explored by us in
the context of recurrent temporal deep learning models for the task of user vali-
dation from motion, and in particular learning abstract temporal representations
from acceleration and rotation measurements. In this setting, we propose an op-
timized dense convolutional mechanism (DCWRNN) performing such temporal
decomposition while being shift-invariant in the temporal domain.

— Furthermore, in order to ease the burden of annotating huge amounts of train-
ing data, which typically requires human participation and is therefore tedious
and costly, we ask ourselves the question of how synthetic data can be leveraged
in real computer vision applications through unsupervised or semi-supervised
learning and domain adaptation. More precisely, in this thesis this idea is ex-
plored as a part of the hand pose estimation framework, for which we have
artificially generated a huge amount of synthetic hand depth maps with corre-
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sponding annotations of hand parts. The real and synthetic sets of data are then
combined in a single semi-supervised trunsductive deep learning framework,
which performs estimation of hand joint positions in 3D space. This is done
by first aligning the real and synthetic domains in the intermediate feature space,
which is produced by pixelwise segmentation of a hand into parts. In this context,
we propose and analyze a number of different strategies for the domain adapta-
tion step, formulated in the spirit of both unsupervised and weakly-supervised
learning.

— The final issue, which we see as a key requirement in mobile contexts and
which will appear as a leitmotif in every chapter, is a real time inference and
lightweight deployment of the proposed models. This aspect is particularly im-
portant for real-time hand pose estimation in the human-computer interaction
setting, as well as in the context of user validation on mobile devices. In the
latter case, for example, we explore how deeply learned feature extractors can be
efficiently incorporated in a generative biometric framework which can be easily
adapted to a new user given only the computational resources of a commodity
smartphone.

1.3 thesis organization

The remainder of this thesis is organized as follows:

— Chapter 2 gives an overview of existing state-of-the-art computer vision ap-
proaches to action and gesture recognition, as well as human pose estimation,
to provide a background for the present work.

— In Chapter 3 we temporarily put the application aside and dive deeper into gen-
eral machine learning (and, in particular, deep learning) aspects to review rele-
vant existing models in more detail.

— Chapter 4 describes our research findings in the context of human gesture recog-
nition from multiple modalities and discusses corresponding modeling and fu-
sion aspects.

— Chapter 5 is dedicated to the problem of hand pose estimation and introduces a
number of supervised, unsupervised and semi-supervised approaches allowing
for integration of synthetic data in a real application.

— Chapter 6 approaches the problem of user validation from a combination of non-
visual data signals and discusses learning dynamic data representations as a part
of a biometric framework.

— Finally, Chapter 7 concludes the thesis by discussing remaining challenges and
future directions.



History doesn’t repeat itself, but it does rhyme.

— Mark Twain

2
B A C K G R O U N D : V I S U A L R E C O G N I T I O N

This chapter provides a review of existing traditional approaches to human mo-
tion analysis from visual data, i.e. various methods which mainly exploit specifically
designed static and dynamic descriptors, along with anatomical constraints. Even
though the majority of manuscripts discussed here are not directly related to the
research presented in this thesis (with respect to the chosen methodology, deep learn-
ing), they nevertheless provide a necessary background and insights for ongoing
research and are essential for understanding challenges of the domain. For more
general methods in a spirit of deep learning, giving inspiration to our work, the
reader is invited to proceed to the next chapter.

The field of human motion analysis from vision is fairly broad, as it covers a
large variety of tasks differing in scale, both spatially and temporally (such as, for
example, gesture, action and activity recognition). Although similar approaches can
often be applied to different problems, one or another aspect may play more or less
significant role, depending on a level of abstraction. In this chapter, we will focus
on a near-range subset of action-related problems, zooming in at hand gesticulation
but also mentioning more general methods, when applicable.

The research area, which covers hand motion modeling and analysis, can be fur-
ther quantized in a set of typical subproblems, listed below (see Figure 4):

— gesture spotting and recognition (including sign language interpretation), i.e.
assigning a visual input instance with a single-valued category number from a
predefined gesture or sign vocabulary. This can be done both from egocentric
videos or from a third person view;

— authentication from gestures, i.e. an inverse formulation of the previous task,
where the goal is to identify the person performing a gesture, rather than the
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Figure 4 – Different applications of human motion analysis: action and gesture recognition,
authentication from motion, pose estimation and motion capture.

gesture category itself. Another research problem, which can be assigned to
the same group, but involves whole body motion rather than just hands, is gait
recognition;

— hand pose estimation, i.e. mapping an observed input to a point in a high-
dimensional space of possible hand configurations, usually taking into account
anatomical constraints. This problem can be directly extended to the whole body
pose estimation;

— hand motion capture, the goal of which is developing algorithms, defining op-
timal physical setup and conditions for capturing movements of a single hand
with the highest accuracy (i.e unlike the hand pose formulation, whose goal is
optimizing for accuracy given the data, here the objective is to optimize the data
acquisition per se). The same applies to the problem of motion capture of the
whole body, which is typically easier;

— modeling hand-object interaction, typically involving recognition and modeling
grasp-like gestures with particular focus on handling occlusions and physical
collisions with different objects.

Although each gesture-related problem from the given list has a direct analog in
full body motion analysis, modeling deformation of a hand is generally considered
to be more challenging due to its smaller size, greater variety of poses and higher
degree of self occlusions.

In our work, we will focus on three first directions, namely gesture recognition,
hand pose estimation and authentication from motion. Technically speaking, hand
pose estimation can itself serve as an initial step for the task of gesture recognition,
but this problem deserves special attention as it leaves potential not only for identi-
fying gesture category, but also for estimating additional gesture parameters, such
as amplitude, speed, energy, etc. To the best of our knowledge, there are no ex-
isting regression based methods allowing to precisely estimate gesture parameters
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without explicitly relying on hand geometry reconstruction. Therefore, developing
gesture-based interaction interfaces in this context remains an open problem.

To introduce some structure in the following discussion, we will adhere to the
following taxonomy, even though boundaries between some groups of methods in
recent works start to vanish.

— Target application: recognition (i.e. gesture detection and classification) or re-
construction (i.e. pose estimation);

— Nature of gestures: static or dynamic. In the context of human-machine inter-
action, gestures are typically dynamic, however static gestures are still actively
researched by the community due to their particular importance for automatic
sign speech translation.

— Nature of input: color and intensity images or video, stereo and multiple views,
depth maps. Exploiting depth and combined RGB-D sensors (and, consequently,
a multi-modal input) in the context of human-machine interaction is becoming a
pronounced trend.

— Modalities used for motion analysis: raw visual signal or articulated pose, aka
skeleton (output of a pose estimation step, which in this case is considered as a
separated task). As soon as hand skeleton is provided, motion estimation is not
a vision problem anymore, therefore here our attention will be drawn mostly to
the pose estimation per se.

— Spatial strategy: gesture recognition methods can typically be split between two
main groups, namely appearance based (or data-driven) methods and methods
explicitly based on 3D modeling. In the former strategy, the main computational
burden lies in a preliminary offline step of training a discriminative classifier
on a large amount of pre-collected data. In the latter case, the classification
is performed on-the-fly by inverse rendering, where the whole space of hand
configurations is searched for the one which best explains the observed image
frame. Both mentioned strategies rely on some sort of feature extraction. In the
first case, these features are then fed to a classifier and serve to the purpose of
smart dimensionality reduction. In the second case, efficient data representation
is required for metric construction. However, if in the hand model-based ap-
proaches extracted features are usually straightforward, semantic and essentially
geometrical (and can be, typically, silhouettes or masks), in appearance-based
methods these data representations can be much more complex and abstract, as
long as their performance for the given discriminative task is justified. 3D model-
based formulation can be seen as an optimization problem and typically narrows
down to developing an efficient search strategy, construction and minimization
of a target cost function in a high dimensional space.

— Temporal strategy is an another important aspect, except for those cases when
gesture recognition or pose estimation are performed from a single image, and
the temporal aspect is therefore not involved. Due to the fact that hand gestures
typically can be decomposed in a set of characteristic poses with a certain order
of transitions between them, sequential models seem especially promising and
are broadly used in existing literature. Alternatively, gesture recognition from
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video can rely on direct classification of temporal (or spatio-temporal) features,
such as, for example, optical flow, trajectories [178] or descriptors, which are di-
rectly extracted or learned from spatio-temporal volumes of concatenated video
frames.

State-of-the-art work on gesture and action recognition and pose reconstruction
has been surveyed multiple times over the last two decades. An interested reader
may refer to [2, 240, 312] for a more detailed review of action recognition methods,
while other surveys [193, 320, 265, 200, 155, 154, 133, 120, 85] are focused mostly
on gesture recognition and hand pose estimation. Furthermore, introducing range
sensors has given an additional impetus for vision scientists and resulted in forming
a new research direction such as human motion analysis specifically from depth data
(surveyed in [48] and [333]).

A conventional method for action recognition and pose estimation typically in-
volves the following sequence of steps:

— preprocessing operations (i.e. localization of object of interest, such as a human
body or a hand, tracking, background subtraction, segmentation, denoising);

— constructing or learning data representations (i.e. transforming the visual input
in a format more suitable for further processing): in general case, this operation
can be realized in several steps as a cascade of successive data reformulations
and compressions;

— matching, regression or classification, involving one or another machine learn-
ing algorithm or optimization based on a predefined metrics.

In next sections, we will briefly discuss each of the steps listed above, starting with
preliminary operations (Section 2.1), then moving to existing approaches to feature
extraction and modeling temporal dependencies for hand gesture recognition (Sec-
tion 2.2) and finally focusing on a challenging problem of hand pose estimation
(Section 2.3). As we have mentioned at the beginning of this chapter, deep learning
methods are not included in this review and will be a subject of the next chapter.

2.1 preprocessing and hand detection

Preliminary steps include a set of well established techniques and routines that are
used in different combinations depending on the type of input data. Generally, the
main goal of this step is to localize and segment the object of interest (i.e. hands,
in our case) from background, while eventually compensating for noise and various
artifacts. Some methods and datasets assume this step to be preformed in advance,
however in practice, quality of data preprocessing is an issue which may affect an
algorithm performance in a crucial way. Supanc̆ic̆ et al. [134], for example, have
shown that in real life conditions, hand segmentation may be challenging, and poor
performance on this step completely sabotages gesture recognition and hand pose
estimation (see Figure 5).

Different approaches to hand localization, which are based on color images, often
involve skin color detection. In simple contexts, it works fairly well, due to the fact
that in appropriately chosen color spaces, skin tones are typically distinct from object
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Figure 5 – An example of pixel-wise hand detection [296] (on the left) and of a failure case
of hand pose estimation in a case of poorely segmented hand [134] (on the right).
Figures are reproduced from the corresponding papers.

colors. There exist several surveys on color spaces and methods for skin detection
(for example, [260, 241]). In particular, Schmugge et al. [260] have demonstrated that
HSI is a one of color spaces the most suitable for this task.

However, hand detection, which is based solely on skin color, remains highly
sensitive to illumination, race and individual differences and backgrounds. As a
practical ad-hoc solution, a more robust face detector is often used first to compensate
for differences in illumination and to estimate the expected skin tone, plus to define
an approximate expected position of hands. Alternatively, a hand detector can be
learned from a large amount of pre-collected data by, for example, training an SVM
on extracted HoG descriptors [178]. Van den Bergh and van Gool [301] proposed to
use a pre-trained Gaussian Mixture Model (GMM) to detect a possible range of skin
colors under different illumination conditions. GMM in this approach is combined
with skin tone estimation from a face of each given user, and the resulting probability
of each pixel to belong to a skin region is then thresholded to produce a hand mask.
Furthermore, they improve their method by calculating and enforcing a prior on
the distance between the face and the hand in a 3-dimensional space using depth
information from a time-of-flight camera.

Development of range sensors has extended the space for extracting spatial fea-
tures to 6 (or, strictly speaking, 5.5) dimensions, including 3 spatial dimensions and
3 color channels. Most existing systems, however, do not treat all of them equally.
Color images, for example, are often used exclusively for hand detection, while
discriminative features for following gesture classification are calculated based on
depth maps. At the same time, there is a number of works exploiting the opposite
strategy, where hand positions are calculated based on point cloud segmentation,
and spatial features are color or even intensity-based descriptors.

Speaking about solely depth-based methods, hand detection in this case is typ-
ically done by simple thresholding of the depth map, region growing [159] with,
eventually, following refinement (by, for example, wrist detection). Otsu’s method is
typically used to separate a hand from a background [287, 164, 284]. In these cases
the hand is typically assumed to be the closest object to the camera. Oberweger
et al. [215], for example, extract a cube around the center of mass of the closest ob-
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ject and rescale it along three dimensions to a predefined fixed size. The following
preprocessing steps for depth maps may consist in hole filling.

Alternatively, Tompson et al. [296] trained the Randomized Decision Forest (RDF)
to perform binary classification of each pixel of a depth map as either belonging to a
hand or to background (see Figure 5). Even though for the gesture recognition prob-
lem hand detection on the pixel level may not be strictly required, having a clean
and accurate hand mask appears to be crucial for the task of hand pose estimation.
In their implementation, given a depth image I, each node of a decision tree eval-
uates the following expression (inspired by an original idea of Shotton et al. [266],
which will be discussed in Section 2.3):
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where (u, v) are pixel coordinates of the point in the image where the feature is
evaluated, I(u, v) is a corresponding depth value, ∆u and ∆v are learned pixel off-
sets along each coordinate axis, and τ is a learned threshold. The offsets and the
threshold, used by different weak learners in the tree, are log-spaced to cover a large
range of possible values. Due to the fact that RDFs are easily parallelizable and their
complexity is logarithmic in the number of parameters, this step comes at almost
no cost in terms of time and can be efficiently incorporated into real-time gesture
recognition or pose estimation frameworks.

Since the majority of depth-based approaches rely on using structured light sen-
sors, which provide not only range information, but full body skeleton (extracted
algorithmically from depth frames), this additional information can be used directly
as initialization of hands positions. However, jitter compensating filtering on joints
position typically causes unwanted delays in skeleton tracking, and for rapid ges-
tures more complex hand stabilization may be required. Furthermore, in the case
when palms are parallel to the optical axis of the sensor, hands appear to be poorly
visible, and their positions are likely to be estimated incorrectly.

Finally, in some works, hand detection is based on segmentation from motion, in
assumption that other objects in the scene remain still.

2.2 gesture recognition

Discussing the problem of gesture recognition in traditional setting, we will start
by reviewing existing approaches to designing general and hand-specific descrip-
tors, and then will discuss common strategies of modeling temporal dependencies
between video frames.

Before we proceed, we need to mention a number of standard gesture recognition
benchmarks that are used by the community for solving different tasks.

2.2.1 Gesture recognition benchmarks

While there exist a great amount of benchmarks, which target general problems
of full body action and activity recognition, a number of datasets, which are suitable
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for exploring specifically hand movements in detail, is still limited. Below we briefly
describe the most important ones from this category.

— MSRC-12 Kinect Gesture Dataset [93] includes 6244 gesture instances collected
from 30 people and corresponding to 12 categories (such as crouch, shoot, throw
an object, karate kick) and basic controlling actions (such as navigating a menu
and switching the music on and off). The data contains tracks of 20 full body
joints captured with the Kinect sensor.

— Sheffield KInect Gesture (SKIG) Dataset [181] contains RGB and depth record-
ings or 1080 gesture instances corresponding to 10 simple gesture types (circle
(clockwise), triangle (anti-clockwise), up-down, right-left, wave, ”Z”, cross, come-
here, turn-around, and pat), performed with three different hand postures (fist,
index and flat).

— The ChAirGest Multimodal Dataset [253] consists of 1200 annotated gestures
from 10 classes, collected from 10 subjects under different lighting conditions
and starting from 3 different resting postures. In addition to RGB and depth
data, this dataset includes data captured with 4 Inertial Motion Units attached to
the right arm and to the neck of a subject.

— Starting from 2011, ChaLearn has been proposing a number of gesture recog-
nition challenges and corresponding gesture datasets. The first version of it,
CGD2011 [116], targeted the problem of one shot learning. For that competition,
the data corpus included 50000 gesture instances from over 30 categories (such
as Activity, Body Language, Dance, Emblems, Gesticulations, Illustrators, Pan-
tomime, Sign language, Signals), with each category consisting of from 8 to 12
subclasses.

— Unfortunately, today there exist a single data corpus, which contains sufficient
amount of data necessary for development of data driven gesture recognition
methods. This dataset was first released under the 2013 ChaLearn Multi-modal
Challenge on Gesture Recognition [86] and then, in its second reduction, as a part
of 2014 ChaLearn Looking At People Challenge. At the present time, this data
corpus is known as Montalbano Gesture Dataset [87]. It consists of more than
14000 gesture instances drawn from a vocabulary of 20 Italian conversational
gestures and performed by several different users. In addition to color and depth
video, this corpus contains skeleton information provided by the Kinect sensor
(an earlier version of it also included an accompanying audio track). This dataset,
both in its first and second reductions, was actively used in our experiments and
will be mentioned multiple times throughout this manuscript.

2.2.2 Generalized descriptors

In traditional gesture recognition frameworks, the preprocessing step is typically
followed by extraction of image descriptors, or features. Under generalized descriptors
we will understand all content-independent data representation methods, which are
typically used in Bag-of-X like frameworks, where X may stand for pixels, features,
visual and depth words (see Figure 6).
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Raw pixel values from color images and depth maps can be directly used as
features. Naturally, this approach results into extremely high dimensional feature
vectors and requires following linear (PCA, for example) or non-linear dimensional-
ity reduction.

In this spirit, Van den Bergh and van Gool [301] combine all pixel values of an
intensity image, a thresholded depth map and a segmentation mask of a hand into a
single feature vector. In their case, the Average Neighborhood Margin Maximization
(ANMM) is then applied for dimensionality reduction and its output is fed to a
Haarlet-based classifier [29].

Gradient and edge-based descriptors and their variations are probably the most
common in the category of general feature extractors. In the simplest case [242], both
intensity and depth images of a hand can be convolved with a bank of Gabor filters
at different scales and different orientations. The obtained feature maps can then be
averaged across overlapping Gaussian basis functions positioned on a regular grid.

Well known visual descriptors, such as HoG [67], SIFT [183] or SURF [21], com-
monly used for object recognition and typically extracted around preliminary de-
tected interest points, fall in the same category of gradient-based feature extractors.
We will assume though, that the reader is already familiar with their working prin-
ciples, and skip the detailed description for compactness of discussion.

In the context of gesture recognition, Takimoto et al. [287] proposed a gradient-
based descriptor inspired by SURF [21]. In this work, the authors make use of ad-
ditional information in a form of full-body skeleton provided by modern depth sen-
sors. The hand image, obtained by thresholding a raw depth map, is first rotated in
accordance with the direction of the corresponding wrist-elbow bone extracted from
the skeleton. Next, the image is divided into 8×8 blocks of pixels, and histograms
of horizontal and vertical gradients and their absolute values are then computed for
each pixel block. Finally, Principal Component Analysis (PCA) is applied for feature
dimensionality reduction.

Furthermore, SURF features, extracted from interest points, have been directly
exploited by Bao [20] in conjunction with motion trajectories. Yao et Li [330] use the
same descriptor for hand posture recognition from color images with an AdaBoost
classifier. An earlier work [306] relies on SIFT descriptors [183] in a similar context.
A combination of HoG [67] and Haar features is used in [89]. Finally, Yang et al. [327]
used Depth Motion Maps (DMM) obtained from 3 projections by integrating depth

Figure 6 – On variety of existing generalized handcrafted descriptors.
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images over time and then extracted HoG descriptors from those. Their method is
thus related to Motion History Images (MHI), which are used mostly in a number
of earlier works [300].

Local binary patterns have been used by [94]. A related feature, called Modified
Census Transform (MCT) was considered previously in [144]. For comparative stud-
ies on performance of various descriptors, we recommend an interested reader to
consult [61, 16, 294].

While all previous descriptors were designed for 2D images, there is also a number
of approaches adapted to depth maps and point clouds: Point Feature Histogram
(PFH) and Fast Point Feature Histogram (FPFH) [256], Viewpoint Feature Histogram
(VFH) [255], Clustered Viewpoint Feature Histogram (CVFH) [3], a concatenation of
VFH with a Camera’s Roll Histogram (VFHCRH) [125].

The last descriptor, VFHCRH, has been used, in a combination with various image
descriptors and spatio-temporal pyramids, in the context of gesture recognition as a
part of Bag-of-Visual-and-Depth-Words classification framework. Zhang et el. [336]
proposed another depth-based descriptor called Histogram of 3D facets (H3DF) and
applied it to the problem of gesture recognition.

Spatio-temporal descriptors are widely used for recognition of actions and ges-
tures from video. In most cases, these descriptors have evolved from their 2D prede-
cessors, by augmenting existing descriptors with additional features extracted along
the temporal dimension.

The spatio-temporal descriptors are typically extracted densely (on a regular grid
or globally), sparsely (around salient interest points (STIPS [166])) or along sparse
or dense trajectories [305]. Most of spatio-temporal detectors of interest points, just
as the descriptors per se, are obtained by extending corresponding algorithms to the
third dimension in order to operate on spatio-temporal volumes.

However, it has been shown by [308], that dense sampling generally leads to
higher classification rates when it comes to complex realistic data. Among the
most widely accepted engineered local descriptors, one could name Cuboid [77],
HoG/HoF [167], HoG3D [158], ESURF [317] (extension of SURF [21]), 3D-SIFT [261],
MoSIFT [50] (extensions of SIFT [183]) and several others.

Some of the spatio-temporal descriptors have been further extended for depth and
RGBD video: 3D MoSIFT [192], CCD [52], LDP [337], DCSF [321]. Once extracted,
features are typically treated in the bag-of-words fashion and are fed to a non-linear
kernel SVM. Efficiency of proposed spatio-temporal descriptors have been demon-
strated by several top performers of 2011/2012 ChaLearn One-shot-learning Chal-
lenge on gesture recognition, who have used HoG/HoF [167] and 3D MoSIFT [192]
features extracted around interest points [117].

2.2.3 Shape-based descriptors

In parallel with general approaches, which are suitable for basically any visual
problem involving human motion, a great amount of ad-hoc methods have been pro-
posed specifically for hand gesture recognition in narrow contexts. Most of them in-
clude hand detection, tracking, and gesture recognition, which are based on global
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hand shape descriptors such as contours, silhouettes, fingertip positions, palm cen-
ter, number of visible fingers, etc. [279, 185]. Similar descriptors have been proposed
for depth and a combination of RGB and depth videos [187, 299].

Relative advantages of general and hand-specific approaches are still a subject
of discussion. A recent comparative study [294] shows that in comparison with a
specific silhouette-based descriptor (shape context [23]), general HoG appears to be
more robust, insensitive to low resolution and segmentation errors. It may therefore
be more appropriate for real-world conditions.

Additional geometric information, which is specific to the hand, can be used in
a combination with locally extracted general descriptors. For example, such an ap-
proach has been employed by Li et al. [176] in order to first sample interest points
exclusively from a 3D contour of a hand or of a body, and then to treat them in
bag-of-points fashion.

Binary segmentation masks alone are often used for recognition and matching in
pose reconstruction related problems. In the simplest case, they are obtained from
color images or depth maps as a result of background subtraction. Furthermore,
operating on point clouds directly and projecting them on 3 orthogonal planes pro-
duces two more views in addition to the frontal one [9].

Different shape descriptors can be further extracted from binary masks such as,
for example, region-based Hu moments, where the first six descriptors encode a
shape with invariance to translation, scale and rotation [63]. The seventh component
ensures skew invariance, which enables to distinguish between mirrored images.
Priyal et Bora [226] use Krawtchouk moments instead.

Convex hull and convexity defects on the contour are used by [228], where clas-
sification is based on the minimum distance between Fourier shape descriptors [63].
Okkonen et al. [222] extract an affine-invariant Fourier descriptor from a hand con-
tour and fed it to an SVM. A Finite State Machine (FSM) if then used for modeling
temporal dependencies. Ren et al. [247] represented hand silhouettes as time-series
contour curve. In their frameworks, such curves are matched using Finger Earth
Mover’s Distance (FEMD), originally proposed for measuring distances between sig-
natures of histograms.

Another group of depth-based methods exploits occupancy grids. To preserve
spatial context information, Vieira et al. [303] proposed to use space-time occupancy
patterns on a 4D space-time grid for classifying human action from depth sequences.
In the context of hand gesture recognition, occupancy grids have been used by Ku-
rakin et al. [164], who proposed to use cell and silhouette features extracted from
thresholded depth maps of hands. In their case, an image is split into square cells
of different sizes. For each cell they then compute the occupied area and the aver-
age depth, which is called a cell occupancy feature. For the silhouette feature, they
divide the image into multiple fan-like sectors and compute the average distance of
each contour segment from the center. The dimensionality of the obtained feature
vector is then reduced with PCA and hand poses are quantized using K-means clus-
tering. Action graph is finally used for gesture classification (originally proposed
for action classification in [175]). A similar in spirit combination of 2D and 3D shape
descriptors was proposed in [284].
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All methods, which have been described in this section so far, aimed on geometry
representation without associating it with any anatomical meaning. However, there
is another group of approaches where hands are further segmented and positions
and orientations of their parts (typically palms and fingers) are estimated and further
used for feature extraction.

For example, finger-based descriptors coupled with SVM classifiers are used for
hand posture classification in [182]. Dominio et al. [79] designed several types of
anatomically meaningful descriptors, such as distances of fingertips an the estimated
palm center ("distance features") and from a plane fitted on the palm samples ("ele-
vation features"), as well as curvature of a contour of the palm and fingers regions
("curvature features") and the shape of palm region indicating whether each finger
is raised or bent on the palm ("palm features"). In order to find positions of hand
parts, they first employ skin-based segmentation and a circle fitting algorithm and
3D plane fitting for palm detection. Mestetskiy et al. [190] base their method on mor-
phological skeletons extracted from hand binary masks and use them for calculation
of positions of hand joints.

All these ideas bring us closer to the problem of explicit hand pose estimation,
which will be discussed later in this chapter.

2.2.4 Skeleton-based descriptors

At the present time (as of the beginning of 2016), there is no existing visual tech-
nology that could provide a reliable full hand skeleton (assuming that the hand is
seen from significant distance). However, many classes of gestures can be recog-
nized solely from upper body skeletons without taking into account movements
of individual fingers. This has been confirmed, for example, by the 2013 Multi-
modal Challenge on gesture recognition [86] results, where top participants built
their frameworks only on skeleton information, without relying on raw video input.

For simple actions, skeleton-based descriptors, being informative and fairly low
dimensional, are particularly efficient when combined with sequence modeling. Lv
et Nevatia [184], for example, used 3 coordinates of 23 skeleton joints directly to
obtain a 67-dimensional feature vector (for the sake of normalization, however, only
one coordinate is used for the hip joint). Xia et al. [322] proposed a skeleton-based
descriptor called Histogram of 3D joint locations (HOJ3D), where angular positions
of joints are calculated in a spherical coordinate system centered at the hip center
joint. The obtained descriptor is then quantized and classified using a HMM model.
Similar descriptors have also been proposed in [246] and [43]. Relational pose fea-
tures [198] have been employed by [328], in a combination with random forests in a
multi camera setup. Yang et Tian [326] calculated inter and intra frame differences
between positions of joints, applied PCA and obtained a descriptor called Eigen-
Joints.

Since we are mostly interested in hand gesture recognition, we will not go deeper
into discussion of methods based solely on skeleton descriptors – instead, we ad-
dress the reader to existing surveys. However, there exist a number of frameworks
utilizing a combination of articulated poses with visual inputs. For example, Sung
et al. [282, 283] formulate their descriptor as a combination of 4 types of features:
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normalized coordinates of 10 body joints and angles, hands positions with respect
to the torso and to the head, joint rotations calculated along 9 subsequent frames
and RGB and depth HOG features extracted from head, torso and arms regions.
Further classification is based on a hierarchical maximum entropy Markov model
(MEMM). As a result, they have demonstrated that RGB-based features were sen-
sitive to changes in people appearance but performed especially well in the person
seen before setting. Skeletal features in combination with depth HOGs appear to be
more robust but less informative in user-specific systems.

Wang et al. [309] proposed to explore depth appearance of a 3D joint and designed
a feature called Local Occupancy Pattern (LOP): a 3D occupancy grid is calculated
from a point cloud around a particular joint. The obtained information is combined
with pairwise relative positions of the joints and the Fourier temporal pyramid is
used for modeling temporal dynamics.

2.2.5 Sequence modeling

Treating internal temporal correlations in the same way as spatial dependencies
may seem a stretch, since in this formulation, specific properties of the time space
can easily get ignored. Alternatively, the temporal dynamics of motion can be mod-
eled by a time-series algorithm.

The state-of-the-art traditional (i.e. non deep learning) temporal frameworks tend to
treat video in a frame-wise fashion, extracting spatial features first and then feeding
them into what can be called a temporal classifier, i.e. a sequence modeling algorithm
performing final action classification. The most recent trend, in this context, is to re-
place single frames with short sequences (aka short spatio-temporal blocks) in order
to capture some instant characteristics of movements. The rest of the framework in
this case remains the same.

We must note here, that traditional temporal models may suffer from serious
limitations and fail to capture all complexity of more challenging data. Depending
on the task, such methods may have difficulties accounting for data nonlinearity,
high dimensionality, long-term dependencies, multi modalities, etc. Nevertheless,
sequence models have been shown to be suitable for many practical applications,
they are well understood and known to be easy to train.

In the category of non-connectionist methods, generative Hidden Markov Models
(HMMs), discriminative Conditional Random Fields (CRFs) and extensions of both
classes have gained mainstream acceptance and have proven to be effective and
efficient in many relatively simple recognition tasks. While HMM models joint prob-
ability of states and observed features, in CRFs model parameters are conditioned
on observations. Most of highly-ranked participants of the recent ChaLearn Gesture
recognition challenge claimed to use HMMs, CRFs or similar models [117].

Relative strengths and downsides of these classes of temporal models are still
being discussed in the community: a comparative study by Mendoza and de la
Blanca [189], for example, has shown that in the context of action recognition, CRFs
generally outperform HMMs when using spatial features, but fall behind when op-
tical flow is used.
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Figure 7 – (a) Hidden Markov Model, which represents P(St|St−1) and P(Yt|St). (b) A di-
rected conditional model, representing P(St|St−1, Yt), i.e. a locally normalized
conditional distribution based on the previous state (like in Maximum Entropy
Markov Model, MEMM). (c) Conditional Random Field modeling arbitrarily long
term dependencies. Gray units show conditioning on observations rather than
modeling them. The figure is inspired by [102].

The most widely accepted method for gesture recognition, that came from speech
and natural language processing and since then keeps the status of state-of-the-art
(or, at least, kept this status until recently), is exploiting one or another modification
of Hidden Markov Models (HMM), that can be seen as a special case of Dynamic
Bayesian Networks (see [199] for an overview).

HMMs are a simple and extremely useful class of probabilistic temporal models,
having their own type of structure that makes them particularly interesting for many
applications. Generally, they are built under two key assumptions (see Figure 7a
for a graphical illustration). First, they assume that each observation at a given
moment of time is generated by a process being in some discrete state S, which is
hidden from the observer. Second, this hidden state at time t is assumed to satisfy the
Markovian property, i.e. to be independent of all preceding history of states except
for its predecessor at time t−1. Consequently, each observation also satisfies the
Markovian property with respect to the state from which it was generated.

To summarize, the joint distribution over observations Y and states S in HMM is
factorized as follows [102]:

P(S0 . . . ST , Y0 . . . YT ) = P(S0)P(Y0|S0)
T∑

t=1

P(St|St−1)P(Yt|St), (2)

which shows that an HMM is specified by the probability distribution over initial
state P(S0), a transition matrix P(St|St−1) of size K×K (where K is the number of
possible hidden states), and output model P(Yt|St) (if the observations are also dis-
crete, the output model is specified by its emission matrix of size K×L, where L is the
number of possible outputs).

Numerous extensions to the classic HMM model have been proposed in order to
expand its modeling capacity and to overcome one or another of its limitations. For
example, hierarchical HMMs were designed to model movements of each body part
separately. Such models are more efficient and are easier to train, since breaking
down direct connections between movements of different limbs reduces the combi-
natorial complexity. Moreover, in this setting, out-of-vocabulary gestures, which are
composed of primitive limb motions, observed previously, can be learned and recog-
nized, which leaves more freedom for adaptive online learning. This class of models
has also been applied to a problem of pose recovery.

Ikizler and Forsyth [135] individually construct HMMs for legs and arms, whose
3D trajectories are treated as observations. For each limb, states of different ac-
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tion models with similar emission probabilities are linked, which allows for auto-
matic segmentation of actions. Chakraborty et al. [44] apply a similar strategy of
component-wise HMMs, where arms, legs and a head are first found with a set of
view-dependent detectors. Peursum et al. [231] proposed Factored-State Hierarchical
HMM (FS-HHMM) for joint modeling observations and body dynamics per class.

Another extension, introduced by Duong et al. [82], is called Switching Hidden
Semi-Markov Model (S-HSMM), which is designed as a two layer network, where the
bottom layer models fine grained activities and the top layer represents a sequence
of those. In the same spirit, Caillette et al. [41] proposed to use Variable Length
Markov Models (VLMM) which are capable of capturing local dynamics along with
longer temporal dependencies. Unlike classical HMMs, in these models the memory
length (order) can change instead of being fixed to a particular value. Natarajan and
Nevatia [208] introduced a Hierarchical Variable Transition HMM (HVT-HMM) which
consists of three layers that model composite actions, primitive actions and poses,
which are recognized with low latency.

A number of authors proposed action and gesture recognition frameworks based
on Conditional Random Fields (CRF) and their modifications [274, 311], driven by
an idea to eliminate simplistic and unrealistic assumptions built in the HMMs. A
graphical structure of CRF is shown if Figure 7c. Unlike HMMs, these models are
potentially capable of modeling longer term temporal dependencies, while offering
exact inference and possibility to be trained using convex optimization methods.

Sminchisescu et al. [274] have compared their CRF-based action recognition frame-
work with traditional HMM and a directed model (Maximum Entropy Markov Model,
MEMM, shown in Figure 7b) and demonstrated that CRF typically outperforms
MEMM, which, in turn, typically outperforms HMM. Generally, CRFs have also
been used in much broader contexts related to human motion analysis: for example,
for multi-person tracking [123].

2.3 hand pose estimation

The problem of hand pose estimation was always on the radar of computer vision
researchers, in particular due to its practical significance in the context of human-
computer interaction. This interest has only grown with emergence of affordable
range sensors, which brought the technology on the new level of performance.

Today, there exists a huge body of research dedicated to hand pose estimation, that
considers this problem both separately and as a part of gesture recognition pipeline.
Among those are works describing first non-visual glove based approaches, and then
systems based on video cameras [10, 310, 251, 114], depth sensors [130, 147, 235, 269],
and multi camera setups [72].

Providing an exhaustive overview of all existing strategies and their nuances
would certainly be worth writing a separate manuscript. For this reason, we trust
the reader will excuse us for omitting the description of early efforts in this thesis.
Instead, we will aim on giving a more detailed summary of the most strategically im-
portant and influential works from the recent past, which are likely to guide research
directions in the field in the upcoming years. Meanwhile, the reader interested in
the earlier history of the question may refer to two existing surveys on vision based
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Figure 8 – Kinematic configuration and 24 degrees of freedom of a human hand, as consid-
ered in robotics and analyzed by Chen et al. [48] (the figure is reproduced from
the paper). The thumb has 3 links and 4 degrees of freedom, while other fingers
have 4 links and 5 degrees of freedom.

hand pose estimation [85, 270], which provide a sufficiently detailed snapshot of the
field as it was several years ago.

From the computer vision perspective, a human hand can be seen as a highly artic-
ulated object consisting of 27 bones. A typical kinematic model used for hand pose
reconstruction has about 24-26 degrees of freedom (according to different authors),
where a palm is usually represented as a single rigid unit (see Figure 8). Naturally,
a hand has a number of anatomical constraints associated with it (such as bending
ranges of fingers, for example) which are measured, analyzed in the literature [59]
and widely used both in mechanical robotics systems and vision-based hand pose
estimation and modeling.

The number of degrees of freedom (DoFs) associated with the hand can be further
increased by taking into account its position and orientation with respect to the
camera, as well as its texture and ambient illumination properties. Hamer et al. [118],
for example, proposed a 96 DoF model. Similarly, De la Gorce et al. [73] went
beyond purely geometrical descriptors and created realistically looking rendered
images taking into account surface properties and lights, adopting Gouraud shading
model and Lambertian reflectance. Accordingly, in their work the problem of finding
optimal parameters, explaining the observed test sample, also included estimation
of texture and illumination.

At the same time, full pose reconstruction in some contexts may not be required (as
in the case of finger tracking) and the number of degrees of freedom to be estimated
can thus be significantly reduced.
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Generally, the problem of hand pose estimation is considered to be more chal-
lenging than full body pose estimation, not only due to larger number of associ-
ated parameters and more pronounced articulation, but also because of massive
self-occlusions and mutual occlusions while interacting with different objects.

In our discussion of existing approaches we will stick to the following order. After
mentioning the most important hand pose estimation benchmarks and providing a
brief summary of earlier works on global matching, we will proceed by review-
ing state-of-the-art generative models, which, in traditional setting, almost always
include a rendering pipeline and a 3D model of a hand. Most of existing tracking ap-
proaches are generative, as they allow for a cheap initialization of a hand pose from
the previous frame, which limits the search space and allows for precise matching of
the observation with the model. An immediate advantage of this group of methods
is that physical collisions can be explicitly modeled and therefore anatomically im-
plausible hand configurations can be effectively rejected. However, these methods
are known to accumulate tracking errors over time and tend not to recover from
significant mistakes.

The next part of this overview will be dedicated to alternative strategies, namely
data driven discriminative methods and a discussion of how these two opposite log-
ics, generative and discriminative, can be coordinated in a single hybrid framework.
The data driven discriminative models are formulated as a learning problem and
have an offline learning stage where one or another classifier is trained on a large
amount of pre-collected data. As opposed to the generative models, this group of
methods do not require careful initialization, but, on the downside, they are likely
to produce predictions which are not physically meaningful. The hybrid approaches
aim on bringing together the best from both worlds and combine a robust discrimi-
native initialization step with highly accurate generative tuning.

Finally, a detailed overview of state-of-the-art deep learning methods for hand
pose estimation, both discriminative and hybrid, will be a subject of a separate dis-
cussion in the next chapter.

2.3.1 Hand pose estimation benchmarks

In this section, we briefly describe the most interesting datasets created specifically
for evaluation of hand pose estimation methods. Unfortunately, most of them were
created and publicly released when the work, presented in this thesis, was already
close to its final stage.

A summary of numerical statistics of each corpus is given in Table 1, while a short
description of the purpose and the setup of each data collection is provided below.

— The NYU Hand Pose Dataset [296] has been captured with a depth sensor in
human-computer interaction setup, from a frontal and 2 side views, where the
training set contains samples from a single user and the test set contains samples
from two users. Annotations are provided in the form of 36 key points, among
which 14 are typically used for pose estimation and for comparison across dif-
ferent methods. In addition, a smaller set of frames is annotated with hand
segmentation masks and can be used to train classifiers for pixel-wise hand seg-
mentation from the background.
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(a) Position (b) Angle

Figure 9 – Analysis of pose variation in different hand pose test datasets in terms of hand
joint positions and joint angles, as performed by Supanc̆ic̆ et al. [134]. ICVL
dataset [288] is shown in red, NYU dataset [296] is shown in light green,
A*STAR [323] is shown in darker green. For each dataset, multi-dimensional
scaling is used to estimate the occupied space. As noted by Supanc̆ic̆ et al., most
datasets cover a similar set of poses (joint angles), but differ significantly in their
variety of represented viewpoints (joint positions).

— The ICVL Hand Posture Dataset [288] contains depth images with correspond-
ing annotations of 16 hand joints. As shown in Figure 9, the space of hand joint
locations, covered by this corpus, is relatively small, compared to other datasets,
and corresponds to a single view point. Furthermore, a number of authors re-
ported presence of noisy ground truth annotations [134].

— The Microsoft Research hand tracking dataset [243] is a collection of record-
ings of 6 subjects’ right hands, captured using Intel Creative Interactive Gesture
Camera and annotated with 21 hand joints positions in 3D.

— The General-HANDS dataset [134] (egocentric) was created for evaluation of
hand detection and pose estimation systems in different contexts. The annota-
tions contain 1) center positions of a hand in each frame, 2) locations of 17 key
points and 3) segmentation maps consisting of 19 regions.

— The CVRR VIVA Challenge: detection, tracking and gesture recognition 1 –
this data corpus includes RGB recordings collected in driving settings from 7
possible viewpoints, including first person view. For detection and tracking, an-
notations are provided as positions and sizes of tight bounding boxes surround-
ing each hand in each frame. The subset used for gesture recognition contains
19 classes of driving-related gestures collected from 8 subjects.

— The HandNet dataset [316] contains depth images, collected from 10 subjects
and annotated with 6 key points (a palm and five fingertips), using an automated
magnetic annotation technique.

— The FingerPaint dataset [264] is a collection of hand gestures, performed by
several individuals in front of the Kinect V2 depth sensor. The ground truth is

1. http://cvrr.ucsd.edu/vivachallenge/
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Dataset GT Subjects Training fr. Test fr. Used by
NYU [296] J-36 2 72 757 8 252 [296, 134, 290, 215, 216]
ICVL [288] J-16 10 331 000 1 599 [288, 289, 134, 290, 215, 281, 225]

MSRA [243] J-21 6 2 400 2 400 [243]
FingerPaint [264] S-7 5 56 500 [264]

HandNet [316] J-6 10 204 971 10 000 [316]
A*STAR [323] J-20 30 435 435 [323, 134]
Dexter 1 [275] J-5 1 – 3 157 [275, 134, 264]
MSRA2 [281] J-21 9 76 500 [281]

Table 1 – Comparison of existing hand pose estimation benchmarks. The letter in a ground
truth annotations type (GT) stands for joints (J) or segmentations (S), where the
following digits indicate the number of joints or regions, respectively.

represented as segmentation maps with 8 class labels: 1-5 for the five fingers,
6 for the palm and back of the hand, 7 for the forearm, and 0 for background
and unlabeled pixels (obtained by simultaneously capturing a video of painted
hands with an RGB camera and manually corrected).

— The A*STAR dataset [323] is acquired with a time-of-flight camera, while the
ground truth annotations are taken from a dataglove. This dataset is created
for single-frame hand pose estimation and contains gestures from the American
Sign Language and Chinese number counting. This study includes 30 volunteers
of different ages and races, both genders.

— The Dexter 1 dataset [275] includes video clips of fast and slow hand move-
ments recorded with 5 RGB cameras, the Kinect sensor and a time-of-flight cam-
era (among which RGB and ToF cameras are synchronized). Annotating was
performed manually based on 3D fingertip positions from the ToF camera view.

— The Microsoft dataset MSRA2 described in [281] consists of 76,500 depth im-
ages of 17 gestures (mostly from the American Sign Language) collected from
9 subjects. The ground truth annotation was done in semi-automatic way with
manual correction.

2.3.2 Early works and global matching

Now, it is time to talk about different strategies for building hand pose estimation
frameworks in traditional setting.

First, there exist a significant number of works on hand pose estimation by global
matching of observed visual inputs with pose instances from a training set, which
are typically sampled in advance using a synthetic 3D hand model. This strategy,
more popular in earlier works, was often used when only a subset of all possible
hand configurations could be observed in a given application and when the dis-
crete set of poses was sufficient for interaction. Unlike in rendering based methods
(Section 2.3.3), here the hand pose estimation is formulated as a database index-
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Figure 10 – Hand pose estimation as a database indexing problem. Top row: palm down and
palm up poses as seen from RGB images of bare hands and gloved hands [310].
Bottom row: two examples reproduced from [10], where the first column is an
original image, the second one shows the extracted edges, the third is the closest
correct entry from the database and the fourth column is the closest incorrect
entry.

ing problem, where the search is performed in a space, which is different from the
original space of kinematic parameters of the hand model.

For example, Athitsos and Sclaroff [10] estimated 3D hand poses from color im-
ages, using a synthetic dataset featuring 26 hand shape prototypes, 86 viewpoints
and 48 images from each viewpoint representing rotations. In a naive implementa-
tion, the search for the closest analog in the dataset could be performed by calcu-
lating approximate directed chamfer distance between corresponding edges in the
observed image X (with edge pixels x∈X) and a reference image Y (with edges y∈Y):

c(X, Y) =
1

|X|

∑

x∈X

min||x− y|| (3)

In such an implementation, calculating and storing all distances between the test
input and all images in the database would require a lot of memory and result
into O(dn logn) time complexity, where d is the number of images in the database
and n is the number of edge pixels. However, using intermediate representation of
all images in the database as a set of clamfer distances between them and a small
number k of reference images leads to a much faster approximate solution with
time complexity O(kn logn+dk) (where k<<d). The remaining issue of establishing
correspondences between edge pixels, prior to calculating the distances, is solved by
probabilistic line matching and discussed in [10] in detail (see Figure 10).

In this context, Wang et al. [310] achieved reasonable quality of hand pose recon-
struction by requiring the user to wear colored gloves (also shown in Figure 10).

2.3.3 Generative models, or optimization through rendering

The subject of the discussion in this section will be 3D model-based hand pose
estimation, which is essentially a search optimization problem and is therefore built
on such blocks as a hand model, metric, cost function and a search strategy.
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Figure 11 – Hand model: 26 DoF model and its realizations based on cylinders (similar to
what is used in [218]), on spheres [243] and on close to realistic 3D meshes [264].

From this group of models, one of the best known recent series of works have
been done by Oikonomidis et al. [217, 218, 219, 220, 221] who employ pixel-wise
comparison of rendered and observed depth maps with following search over hand
configuration hypotheses for the best match (see Figure 12 for examples of hand
pose estimation output in different scenarios). More recent generative models also
fall into the same pipeline, with numerous optimizations proposed for each step.
Let us briefly talk about each of the building blocks which are typically present in
each 3D model-based approach, starting from the very hand representation.

In different works, 3D models of a hand were formulated in several ways varying
in their geometric complexity and realism. The general trend is, however, moving
from symbolic models, which consist of a number of geometric primitives, to de-
tailed meshes, representing a hand with high degree of fidelity. Most of existing 3D
models adopt a 26 DoF hand kinematic structure shown in Figure 11 (or similar).

An immediate advantage of simpler models is their computational efficiency and
capacity for parallelism, when it comes to calculating distances and intersections
between the primitives. A more complex representation, however, allows for better
model fitting through more accurate estimation of correspondences between real
observations and rendered depth maps.

The mentioned model by Oikonomidis et al. [218], for example, represents a palm
as an elliptic cylinder merged with two ellipsoids, the thumb as a combination of an
ellipsoid, two cones and three spheres, and the rest of the fingers as three cones and
four spheres each.

Alternatively, in [243] a hand is composed of 48 spheres: 16 for a palm, 8 for a
thumb and 6 for the rest of the fingers. In this case, the radii of the spheres are fixed,
while positions of their centers are dependent on vector θ of 26 hand parameters
corresponding to 26 degrees of freedom. A process of fitting the geometric prim-
itives to a model starts with creation of a polygonal mesh of a hand and empiric
adjustment of each sphere size. The same could be done in, probably, more optimal
way, by using variational sphere set approximation [308].

At the same time, a more recent work by Sharp et al. [264] directly exploits a
hand mesh consisting of triangles and vertices. For a given pose, a 3D position of
each vertex is a deterministic function of hand configuration θ including, in their
particular case, 58 parameters: global scale (3), global rotation (3), global translation
(3), relative scale (1) and rotations (3) of each of 16 joints (3 per finger and a wrist).
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The mapping of hand configurations to mesh parameters is done using a computer
graphics technique called linear blend skinning (LBS). In this case, a kinematic tree
structure of a hand consists of bones b∈B, where each bone b has an associated
with it rotational transformation Gb(θ), establishing the correspondence between
the local (for the bone) and the global coordinate systems.

For each bone b, transformation Gb(θ) first applies rotations associated with b,
and then recursively calls the corresponding transformation on the parent node, if
this parent exists. Each vertex vm is skinned to each of the bones b by a sparse set
of skinning coefficients αmb. Thus, the position of each vertex vm, given a set of
parameters θ, is defined as follows:

vm = Gglob(θ) ∗
∑

b∈B

αmbGb(θ) ∗G−1
b (θ0) ∗ vm,0, (4)

where θ0 is a base pose corresponding to initial positions of vertices v0, and the
symbol ∗ denotes applying transformation (see [292] for more detail). This mapping
can be additionally parameterized by a set of hand shape parameters κ, which was
used, for example, by Taylor et al. [292] in the process of creating a user-specific
hand model from observations.

Different ways of creating 3D models and mesh rigging is alone an interesting
topic of research, but it is merely a first step in the general hand pose estimation
pipeline. In our context, probably a more important question is a definition of the
cost function E, which is used to search for optimal hand configurations.

The cost function is calculated based on a given observation I and a rendered
image Ir, obtained from a given hypothesis parameterized by θ. Summarizing the
recent works, the cost function can be represented as a sum of several general terms:

E(I,θ) = D(I,θ) +B(I,θ) + L(θ), (5)

where D(I,θ) (metric term) expresses an integrated distance between the observed
depth image I and a rendered depth image Ir(θ) (given a hypothesis θ), the silhou-
ette matching term B(I,θ) ensures global consistency between these two images
and, finally, the collision term L(θ) penalizes self occlusions and, consequently,
anatomically incorrect hypotheses. In a Bayesian sense, the first two components
are data-attached terms, and the last one can be seen as a prior over poses.

The metric term D(I,θ) is often based on the truncated pixel-wise L1 distance
between two images (referred, somewhat fancifully, as golden energy in [264, 290]):

D(I,θ) =
∑

u∈I

min
(
|I(u)− Ir(u,θ)| , τ

)
, (6)

where u=(u, v) is a set of 2D pixel coordinates and τ is a depth threshold. This term
roughly aligns a point cloud with a hand model, checking for global consistency
between corresponding depth maps and efficiently penalizing model over background
and background over model misalignments.

In another hand model, represented as a collection of spheres C(θ), which are
arranged in accordance with a given hypothesis θ (and specified by their centers and
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Figure 12 – Output of 3D model-based hand pose estimation: for a single hand [218], for
two strongly interacting hands [220] and for hand-object interaction [219].

radii (c, r(c))), Qian et al. [243] apply L2 distance to corresponding point coordinates
in 3D space (instead of L1 applied exclusively to depth values in the previous case)
and omit the truncation:

D(I,θ) =
∑

x∈P(I)

∣∣∣
∣∣∣∣x − c(x)

∣∣∣∣− r(c(x)
∣∣∣, (7)

where P(I) is the point cloud corresponding to the observation I (subsampled in
this implementation), x is a point in the point cloud, c(x)∈C(θ) is the closest sphere
(represented by 3D coordinates of its center) to the point x given the hypothesis θ,
and r(c(x)) is the radius of this sphere.

Please note, that the formulation of the golden energy given by equation (6) does
not involve any normalization terms, as in [264] the hand region is assumed to be
pre-segmented from the image and normalized to a given size. Otherwise, some
normalization would be required.

In the original work by Oikonomidis et al. [218], for example, an RGB input is used
along with the depth stream to produce initial pixel-wise hand detection based on
skin color, which results in creating a hand binary mask Im. This segmentation
mask, along with the rendered image Ir, are used to compute a residual map Ires,
where each pixel value is set to 1 if the difference between the rendered map and
the real depth observation is less than a certain threshold τ (and to 0 otherwise).
These two additional images are used to normalize the integrated distance by the
area occupied by the hand:

D(I,θ) =

∑
u∈I min

[
|I(u)− Ir(u,θ)|, τ

]
∑

u∈I

[
Im(u)∨ Ires(u,θ)

]
+ ϵ

, (8)
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where ϵ is a small offset preventing from dividing by 0.
Finally, one may note, that the global formulations of the distance term, discussed

so far, are expensive to compute, as the integration is performed over all pixels in a
depth map (assuming there is no subsampling). Instead, Tang et al. [290] perform
local computations of each term exclusively at points, corresponding to estimated
locations of hand joints j∈J(θ). In Section 2.3.6, we will discuss how such a prelimi-
nary joint localization is performed.

In the case of Tang et al. [290], the distance term is formulated as follows (dubbed
silver energy, to rhyme with equation (6)):

D(I,θ) =
1

α

∑

j∈J(θ)

D ′(j) (9)

D ′(j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if ̸ ∃I(ju, jv),
max

[
I(ju, jv)− jz − τ1,α

]
if I(ju, jv)− jz > τ1,

max
[
jz − I(ju, jv)− τ2,α

]
if jz − I(ju, jv) > τ2,

0 otherwise,

(10)

where (ju, jv) are pixel coordinates of the joint projected on the image plane, jz
is its depth, τ1, τ2 are thresholds, α is a coefficient for smoothness. In this case,
̸∃I(ju, jv) stands for the case when the pixel (ju, jv) lies outside of the silhouette of
hand image I. Of course, this term is only meaningful in a combination with a
silhouette matching term, explicitly penalizing such misalignments.

The general purpose of the second term of equation (5) (which we will call the
silhouette matching term) is to make sure that the proposed model lies inside the
observed point cloud. In the example with the sphere-based model [243], this term
is defined as follows:

B(I,θ) =
∑

x∈P(I)

B ′(x, c(x)) (11)

B ′(x, c(x)) =

{
max

[
I(cu(x), cv(x))− cz(x), 0

]
if ∃I(cu(x), cv(x))

dist
[
(cu(x), cv(x)),π(I)

]
otherwise

(12)

where (cu(x), cv(x)) is a set of 2D coordinates and cz(x) is a depth value of a sphere
center c∈C(θ) on the image plane (c(x) is the closest sphere to the point x), and π(I)
is a silhouette of the hand in image I. As before ∃I(cu(x), cv(x)) denotes the case
when the pixel (cu(x), cv(x) lies inside the hand image silhouette. This way, the term
penalizes those configurations, where the z-coordinate of some sphere center is less
than the corresponding depth value in the image, and also if the projection of the
sphere center falls on the background in the depth image.

In the case when only several point-wise checks are performed at the locations
of pre-estimated hand joint positions j∈J(θ) [290], the silhouette matching term is
defined as follows:

B(I,θ) =
∑

j∈J(θ)

max
[

min
[
dist((ju, jv),π(I)), τb

]
, 0
]
, (13)
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where each component in the sum is clamped to the range [0, τb], π(I) is a silhouette
of the hand in image I and (ju, jv) are projected coordinates of the hand joint j∈J(θ).

Alternatively, Oikonomidis et al. [218] formulate this term via discrepancies be-
tween the skin-based hand mask and the rendered image:

B(I,θ) = 1−
2
∑

u∈I (Im(u)∧ Ires(u,θ))∑
u∈I (Im(u)∧ Ires(u,θ)) +

∑
u∈I(Im(u)∨ Ires(u,θ))

(14)

Finally, the third term of equation (5) is needed to penalize anatomically implau-
sible configurations and is called the collision term. In the case of sphere-based
model [243], the brute force check for self-collisions is straightforward and is calcu-
lated for each pair of spheres from c∈C(θ):

L(θ) =
∑

c1,c2∈C(θ)

max(r(c1) + r(c2)− ||c1 − c2||, 0) (15)

In this work, only collisions between neighboring fingers are computed for efficiency.
Similarly, Oikonomidis et al. [218] perform this check only for adjacent pairs of

fingers, by calculating angular difference ϕ between abduction-adduction angles for
those fingers in the hypothesis θ:

L(Ir(θ)) =
∑

f∈F

−min(ϕ(f,θ), 0), (16)

where F denotes the three pairs of adjacent fingers (without the thumb).
To summarize, we would like to note that while equation (5) provides the most

general formulation of the cost function, which is typically used in the literature, in
some works, one or another term may be omitted for simplicity and faster inference.
In particular, in the most recent works [264, 290] explicit check for self-collisions is
not performed.

The search strategy is a crucial step of the generative models based of rendering
and its optimization is particularly important due to high complexity of straight-
forward solutions. In this context, the evolutionary Particle Swarm Optimization
(PSO) algorithm, originally developed by Eberhart and Kennedy in 1995 [150], de-
serves special attention as it remains a popular optimization strategy for similar
tasks also in more recent works on hand pose estimation. Generally, the popularity
of stochastic evolutionary algorithms in this context is explained by the fact that in
the presence of noise, discontinuities and uncertainties, which are typical for this
problem, many other optimization mechanisms, such as gradient descent, fail to
converge to a robust solution.

PSO was initially inspired by modeling in biological systems (more precisely, bird
flocking) and is strategically close to the family of Genetic Algorithms (GA), while
being technically simpler and missing some of basic GA concepts (e.g., mutations).

Starting with random initialization, the algorithm updates a number of solutions
(i.e. particles, or, originally, birds) on each iteration. Each bird has position x and
velocity ν associated with it in the parameter space and acts in accordance with
the following strategy: at each moment of time t it follows another bird from the
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1 cluster

2 clusters

generation 0 generation 4 generation 10

Figure 13 – ICP-PSO optimization process proposed in [243] (the figure is reproduced from
the paper). The top row corresponds to the case of a single cluster and the
bottom one corresponds to two clusters.

population that got the closest to the optimal solution so far (global optimum), while
remembering its own best position (local optimum). The update equation for the
velocity and position are formulated as follows:

νt+1 = w(νt + c1r1(xbest − xt) + c2r2(x̂t − xt)), (17)

xt+1 = xt + νt+1. (18)

where w [58], c1 and c2 are constant parameters (c1+c2>4 [58]), xbest is the best
value achieved by a given particle and x̂t is the best solution achieved so far by the
whole population. Vectors r1 and r2 introduce stochasticity and are sampled from a
uniform distribution in the range [0 . . . 1].

After the original work, a number of extensions and improvement to the algorithm
have been proposed, with particular focus on minimization of convergence time.
In a case of poor initialization and non-convexity of the error function in a high-
dimensional parameter space, this algorithm is likely to result in local suboptimal
solutions. To increase the quality of parameter estimation, some authors introduce
additional random periodic perturbation into particle parameters along different
subsets of dimensions [331, 218]. Different variations of evolutionary optimization
algorithms have been proposed, including Sobol Search [221] which resulted in 4x
speed up of the optimization step for a single hand.

Furthermore, Qian et al. [243] improved their PSO framework by incorporating
an additional step based on the Iterative Closest Point (ICP) algorithm [33] which
uses gradient-based optimization. We must note here, that this is not the first at-
tempt to exploit ICP (or similar methods) in the context of hand tracking and hand
pose estimation: for earlier works see, for example, [36, 73, 177]. But generally, as
we mentioned previously, gradient-based methods and, in particular, ICP methods
alone do not allow for robust real time tracking of such highly articulated objects
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Algorithm 1 ICP-PSO optimization method
1: initialize the hand pose (from the last frame, for example)
2: generate random particles around the initial pose
3: for each generation g = 1 . . . G do
4: for each particle x ∈ X do
5: find the closest point on the closest sphere
6: for m = 1 . . .M do
7: gradient descent on a random parameter (eq. (19))
8: k-means clustering of all particles
9: particle swarm update within each cluster

10: return the best particle

as human hands. However, introducing an additional ICP descent step before each
PSO update, as done in [243], results in more efficient cost minimization and faster
convergence.

In case if the reader is not familiar with the idea of the ICP method [33], let us
briefly review the basics. Generally, this class of algorithms perform alignment of
an observed point cloud with a geometric 3D model of the object in 3D space, by
minimizing distances between the model surface and the corresponding points in
the cloud. A number of improvements and modifications to the algorithm have
been proposed in last two decades, including extensions for modeling not only com-
pletely rigid, but also articulated objects using iterative Levenberg-Marquardt (LM)
optimization [76, 96]. Since the correspondences between the model and the ob-
served points are usually unknown, for each point sampled from the model surface
such algorithms iteratively pick the closest point in the observed point cloud and
optimize the following cost function [229]:

E =
∑

θ∈Θ

∑

m∈M

min ||Gmm(θ)− x||2, (19)

where m∈M are points on the model surface, Gm is a transformation of the corre-
sponding hand part calculated based on the tree-structured kinematic model for a
given pose θ∈Θ, and points x belong to the observed point cloud.

The exact ICP-PSO optimization procedure, proposed by Qian et al. [243], is illus-
trated in Figure 13 and formalized in Algorithm 1. All particles are first sampled
randomly in a vicinity of the initialization pose, which is typically taken from the
previous frame (or, as in hybrid methods, approximately estimated from the given
image, see Section 2.3.6). The first ICP step locally improves positions of all particles
and the best candidate quickly moves towards the most promising solution. The
following PSO iteration shifts the whole population towards the promising region
of the best candidate. In addition to the ICP component, Qian et al. [243] introduced
dynamic k-means clustering of the particles which results in faster convergence of
the algorithm to a number of local optima (hopefully, including the globally optimal
solution, see Figure 13).

Up to this point, talking about different cost functions and optimization strategies,
we have always assumed that the initialization hypothesis is provided, which is
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typically the case in tracking-based approaches where each next frame is initialized
from the previous one. However, estimating the hand pose at the starting point
and, eventually, correction of this estimate to recover from tracking failures has
been so far left out of the scope of our discussion. The most recent works in this
context are based on a combination of generative and discriminative models, which
will be discussed in Section 2.3.6. In a traditional purely tracking-based pipeline,
however, this has been done typically with ad-hoc methods of fingertip localization
(for example, as extreme points of hand silhouettes or point clouds [177, 243]) or
simply by asking the user to take the canonical pose for initialization [218].

2.3.4 Discriminative models, or hand pose estimation as a learning problem

Instead of direct matching between test and database images, as in Section 2.3.2,
or iterative search over hand configurations, as in Section 2.3.3, global hand pose
estimation can be formulated as a regression learning problem.

As in Section 2.2 (discussing the problem of gesture recognition), the discrimina-
tive pose estimation pipeline also includes feature extraction (or learning hierarchical
representations directly from the data) and a following machine learning algorithm,
which performs mapping from the extracted or learned features to hand pose param-
eters. Generally, these visual features can represent either global characteristics of a
hand shape, or can be expressed as local descriptors extracted over a dense grid or
around each pixel.

Learning-based pose estimation can be performed in a single step for the whole
object (which we will call holistic regression), or iteratively, taking into account the
underlying anatomical structure of the body and conditioning predictions of "child"
joints on detected positions of their "parents". In this section, we will refer to the
latter strategy as hierarchical regression.

2.3.4.1 Holistic regression

Back in 2001, Rosales et al. [251] proposed a holistic hand pose estimation frame-
work, for which they artificially created synthetic training data by capturing multiple
views of human hand motion using a CyberGlove. Their final training dataset con-
tains 2400 poses, each rendered from 86 uniformly distributed viewpoints. In this
work, Hu moments are computed on hand silhouettes and are used as visual features.
However, instead of direct matching of test images with training samples, as in [10],
the output of the system is expressed in hand pose parameters, which are estimated
by additional learned mapping from visual features.

Furthermore, de Campos and Murrey [72] developed a regression-based method
for hand pose estimation from multiple views. Their approach is based on converting
each image into a silhouette contour with following calculation of compact hand
descriptors using shape contexts (which are aligned with the hand axis to insure
rotational invariance). Descriptors from all cameras are concatenated in a single
feature vector. Following an earlier work [1] for body pose recovery, they relate
image descriptors and pose settings through a linear combination of basis functions.
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Figure 14 – Illustrations of depth-based body and hand segmentation methods, proposed
in [266, 151] and based on classification random forests (RDF) (figures repro-
duced from the original papers). This segmentation step is typically followed
by calculating pixel-wise votes for joint positions with a following aggregation
stage.

One of the most important recent advances in computer vision in recent years, a
seminal paper on pixel-based body segmentation with random decision forests by
Shotton et al. [266] (see also a journal version [267]), gave birth to a whole group
of follow up works, including several where this method was adapted for hand
segmentation (see Figure 14).

This group of methods is based on pixel-wise classification of a foreground depth
image into parts, using an ensemble classifier (random decision forest, or RDF) with
following inferring positions of joints from these auxiliary segmentation maps. In a
follow up proposal [267], the same RDF, instead of pixel-wise classification, performs
direct pixel-wise voting for joint positions. As these works build the ground for
many hand and body pose estimation algorithms which were proposed shortly after,
we will review their main steps in detail.

We have already mentioned one of the strategies, inspired by Shotton el al., while
talking about a pixel-wise hand/background segmentation algorithm by Tompson
et al. [296] (see Section 2.1), where we also provided an equation for a split function
(equation (1)). In the original paper, however, this split function, evaluated by each
node n in a tree m for each pixel u=(u, v) from a depth image I(u), is formulated
slightly differently:

h(u,θm,n) =

[
I

(
u +

∆um,n,1

I(u)

)
− I

(
u +

∆um,n,2

I(u)

)
! τm,n

]
, (20)

where θm,n is a vector of parameters associated with the given node n from the
given tree m, θm,n= {∆um,n,1,∆um,n,2, τm,n}, ∆u are learned depth offsets (sam-
pled randomly from a given range) and τm,n is a learned threshold.

This split function given by equation (20) has been reused by a great number of
RDF-based frameworks with no change, as it has proven to be effective and compu-
tationally efficient.
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As a slight modification, a number of works [323, 281], which also include a pre-
liminary normalization step compensating for in-plane image rotations by an angle α,
formulate this split function as follows:

h(u,θn,m)=

[
I

(
u+

Rot(∆um,n,1,u,α)
I(u)

)
−I

(
u+

Rot(∆um,n,2,u,α)
I(u)

)
!τm,n

]
,

(21)
where Rot(∆um,n,u,α) defines a mapping from ∆u to its new position as an in-
plane rotation of pixel ∆u by a preliminary estimated angle α around point u.

Given the split function, each node n in a tree m performs partitioning of the
whole set of training pixels S in two subsets, left SL and right SR. During training,
a vector of parameters θm,n for each node in each tree is learned to minimize an
objective function H (defined on given depth features) while trying to keep the split
between two nodes {L, R} balanced:

θ∗ = argmin
θ

∑

d∈{L,R}

|Sd(θ)|

|S|
H(Sd(θ)). (22)

What remains to define, is a precise form of this objective function H, and this
depends on a particular task, performed by an RDF – which, in our case, can be
either pixel-wise classification into parts, or, skipping this intermediate step, a direct
pixel-wise voting for locations of joints by regression.

Both algorithms have the same general structure and include three following steps:
(1) obtaining predictions for each image pixel, (2) creating a global aggregated dis-
tribution of votes over a whole image, and (3) generation of final predictions of joint
locations.

In the first step, a pixel-wise classification forest learns to output a pixel-wise
probability distribution p(c|(u, v)) over all classes c (i.e. hand or body parts) at each
leaf node l of each tree m. The training objective function in this case is defined
as Shannon entropy (in the following equations we will sometimes omit the depen-
dency on θ for convenience):

H(S) = −
∑

c

p(c|S) logp(c|S), (23)

where p(c|S) is the normalized histogram of labels c for all pixels in the set S. To
produce a final distribution for a given pixel, output probabilities at corresponding
leaf nodes from all trees l∈L(u, v) are averaged:

p(c|(u, v)) =
1

|L|

∑

l∈L(u,v)

pl(c), (24)

where |L| is a number of trees in the forest and pl(c) is a posterior probability of
class c at leaf node l.

The obtained segmentation maps are then used, first, to create an aggregated
distribution for a whole image (which we will discuss in a minute) and, second,
to infer joint positions on an additional postprocessing step (which we will discuss
later in this chapter).
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Algorithm 2 Global vote distribution from classification forests [267]

1: initialize a set of votes Yj = ∅ for all joints j

2: for each foreground pixel (u, v) in test image I do
3: compute 3D pixel position (u, v, I(u, v)) → (x, y, z)
4: for each tree m in the forest do
5: evaluate the tree to reach the leaf node l(u, v)

6: evaluate distribution p(c|(u, v, )) using eq. 24
7: for each joint j do
8: compute corrected depth z ′j = zj + ζj
9: lookup relevant body part c(j)

10: compute weight ω = p(c = c(j)) · z2
11: add vote ((x, y, z ′),ω) to set Xj

12: return set of votes Yj for each joint j

Alternatively, a pixel-wise regression forest is trained to infer joint positions di-
rectly, in which case for each image pixel (u, v)∈S a corresponding leaf node l con-
tains a set of relative votes xj∈Xl for locations of all joints j∈J in 3D space.

Training is performed by minimizing a sum H of squared differences between all
ground truth positions pj and all votes xj corresponding to all pixels in the training
set (u, v)∈S and integrated over all joints j:

H(S) =
∑

j∈J

∑

(u,v)∈S

∣∣∣∣pj − xj(u, v)− µj

∣∣∣∣2, (25)

µj =
1

|Sj|

∑

(u,v)∈Sj

(pj − xj(u, v)), (26)

Sj = {(u, v) ∈ S | ||pj − xj(u, v)|| < ρ}, (27)

where ρ is a fixed threshold and Sj is therefore a subset of pixels (u, v) in a proximity
of the ground truth joint position pj. As in the case of pixel-wise segmentation,
regression-based pixel-wise votes are yet to be aggregated to produce a global vote
distribution, which is then used to infer final predictions of joint locations.

Now, it is time to discuss how the aggregated distribution (step (2)) over all pix-
els in an image is obtained. For clarity, we provide pseudo code for two algorithms:
the first one corresponds to integration of pixel labels in classification forests (Algo-
rithm 2), and the second one to integration of pixel-wise votes in regression forests
(Algorithm 3) (presentation adapted from [267]).

In Algorithm 2, for a given pixel (u, v), each tree in the forest is first evaluated
and the resulting distributions over discrete classes are averaged (lines 2-6). Using
camera calibration parameters and a depth value I(u, v), each pixel is mapped back
to the original 3D space (line 3).

One should keep in mind, however, that all pixels in the image lie on the body
surface, while the final objective is to estimate positions of joints which are located
inside the body. Therefore, for each joint j, a corresponding depth shift ζj is intro-
duced to estimate how far from the surface this joint is expected to be (in terms of
differences in depth values), and the depth value is corrected (line 8).
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Algorithm 3 Global vote distribution from regression forests [267]

1: initialize a set of votes Yj = ∅ for all joints j

2: for all each foreground pixel (u, v) in test image I do
3: compute 3D pixel position (u, v, I(u, v)) → (x, y, z)
4: for each tree m in the forest do
5: evaluate the tree to reach the leaf node l(u, v)
6: for all joints j do
7: perform clustering to obtain Vlj (or lookup if previously computed)
8: for all (xljk,ωljk) ∈ Vlj do (where ωljk are confidence weights)
9: compute absolute position (x ′, y ′, z ′) = (x, y, z) + xljk

10: compute weight ω = ωljk · z2
11: add vote ((x ′, y ′, z ′),ω) to set Xj

12: sub-sample Xj to contain at most N votes [103]
13: return set of votes Yj for each joint j

Furthermore, we assume that in reality, a position of a joint always corresponds
to a position of a center of mass of some body part c. Therefore, to obtain a global
voting distribution for a given joint, pixel-wise probabilities of the corresponding
class are used, with squared corrected depths as weighting coefficients, to make the
distribution invariant to the distance between the person and the camera (lines 9-11).

The Algorithm 3, for the regression case, is overally similar. However, at each
node l the raw distribution Xl over pixel votes for each joint j is typically multi-
modal and, before the aggregation process starts (lines 8-11), needs to be clustered
to obtain k subsets of pixel votes xljk belonging to the same region in 3D space. This
clustering step corresponds to line(7) in Algorithm 3, where Vlj is a list of clusters
obtained at node l and corresponding to the vote distribution of joint j.

Since the sizes of all obtained clusters can be different, normalization coefficients
ωljk (called confidence weights) are set in accordance with the size of the cluster
(see [267] for more detail). Line (8) in the algorithm is formalized for a general
case, when several clusters from the same distribution are used for vote aggregation,
taken with corresponding confidence weights. In the original implementation by
Shotton et al. [267], however, a single most prominent cluster was used.

The output of both algorithms is a set of per-joint global vote distributions which
are then used to generate final proposals. This can be done by simply locating
centers of mass of the obtained regions, or applying the mean shift algorithms, even-
tually combined with additional refinement procedures. We will come back to this
step a bit later, but before we need to review another important building block of
state-of-the-art hand pose estimation systems.

In the case of pixelwise classification, the training objective given in equation (23)
has also been extended to include a prior on the label space [141]. This work exploits
the fact, that the the classification problem at hand features a structured label space,
as pairs of labels can be neighbors in label space (not to be confused with the image
lattice) or not. In [141], this additional prior was integrated into the random forest
objective (23), whereas in [140], this prior was integrated in a deep neural work used
for body part segmentation.
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Almost immediately after the work by Shotton et al. [266] came out, the pixel-wise
classification RDFs have been adapted to the problem of hand segmentation in [151],
see Figure 14. However, while the originally proposed framework demonstrates
excellent results on the full body pose problem, its adaptation for hands turned out
to be more challenging. This is not at all surprising, given that a human hand is an
object essentially more flexible and articulated than torso and limbs. For this reason,
algorithms addressing the problem of hand pose estimation generally require higher
modeling capacity which, in straightforward implementation, results in increased
depth of the RDF trees and therefore higher time and space complexity. To simplify
the task, a popular trend in recent works has been to perform preliminary view
point clustering of data samples in a hand pose space and to train individual expert
classifiers or regressors for each subset of the training data.

For this purpose, Keskin et al. [152, 153] have proposed what they call multi-
layered RDFs, where classification of pixels into hand parts is preceded by additional
shape classification forest, which first assigns each image of a hand with a pose class
label. In this case, the classification RDF, as in [266], is then trained for each pose
class, and the system performs online switching between classifiers depending on
the prediction at the first step.

Furthermore, in the same work, two different strategies were explored, namely
global shape classification forest (Global Expert Network) and local shape classi-
fication forest (Local Expert Network) with the difference in aggregation of predic-
tions at the first step. In the global approach, all pixel-wise predictions of the shape
classification forest are first integrated and averaged over the whole image produc-
ing a single pose label per hand. Alternatively, this step was skipped in the local
approach, where the following switching between pose-specific classifiers into hand
parts is performed separately for each pixel (see Figure 15).

Overall, in this work, the global method has led to better performance scores,
however it was noted that the locally organized shape classification, while being
less robust to noise, might better generalize to previously unseen hand poses.

Going farther in this direction, Tang et al. [288] implemented a more general frame-
work optimizing for a quality function formulated as a weighted linear combination
of several terms reflecting viewpoint classification, hand part (or patch) classification
and joint regression. Adaptive switching between those terms is performed in soft
fashion, such that at the top of the tree viewpoint labeling has the highest importance,
gradually giving the priority first to patch classification and then to regression while
moving down along the tree.

In this work, the authors exploit three types of training sets: annotated synthetic
hand maps, unlabeled real data and a small amount of labeled real images. First,
each synthetic image is assigned with a viewpoint label a (or, strictly speaking, each
synthetic image is rendered given the viewpoint drawn from a set of 135 quantized
viewpoints). Furthermore, all subsampled patches from each image are annotated
with label p of the closest hand joint (which is basically the same as annotating pixels
with hand parts in previous works) and vector v of relative ground truth positions
of all hand joints with respect to the center pixel. As a sample goes down the tree,
the task gradually shifts from viewpoint clustering first to segmentation and at the
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Figure 15 – View point clustering by Keskin at al. [152] (figure reproduced from the original
paper). The left image illustrates the idea of global clustering, and the right image
corresponds to the case of local clustering perform in pixel-wise fashion.

end to regression, which is expressed in the following formalization of a quality
function:

Qapv = αQa + (1−α)βQp + (1−α)(1−β)Qv, (28)

where α and β are switching coefficients, Qa and Qp are defined as information
gains for viewpoint and patch classification respectively, as described in [37] (Ha

and Hp is Shannon entropy for a given task):

Qa(θ) = Ha(S)−
∑

d∈{L,R}

|Sd(θ)|

|S|
Ha(S

d(θ)), (29)

where S is the training set of all image patches. For the patch classification term, the
information gain Qp is calculated in the same way.

The third term Qv in equation (28) is the regression term minimizing compactness
of vote vectors J(S):

Qv(θ) =

⎡

⎣1+
∑

d∈{L,R}

|Sd(θ)|

|S|
tr
(
var

[
J(Sd(θ))

])
⎤

⎦
−1

, (30)

where tr is a trace operator. The maximum value of this last term corresponds to the
case when all votes in one node are identical.

Switching coefficients α and β in equation (28) are defined at each node, based on
empirical purity of classification achieved so far, for the hand pose and the closest
hand joint, respectively. Denoting ∆(S) as a difference in probabilities between the
first and the second most probable classes and setting empirical thresholds τα,β, the
coefficients are expressed as follows:

α =

{
1 if ∆a(S) < τα,

0 otherwise;
β =

{
1 if ∆p(S) < τβ,

0 otherwise,
(31)

where ∆a(S) corresponds to view point classification and ∆p corresponds to patch
classification. Thus, when one of ∆(S) reaches a certain threshold and, consequently,
the classifier starts to produce confident predictions on a given step, the correspond-
ing coefficient (α or β) gets switched from 1 to 0, and the training objective gets
switched to the next task. This formulation results in automatic adaptation of the
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RDF to the complexity of the problem by determining a number of splits which
are necessary to achieve good performance on different subtasks (as opposed to a
single-step pose clustering in the previous work by Keskin et al. [152]).

Another important aspect of hand pose estimation, which has been actively re-
searched by the community and also in the same work by Tang et al. [288], is how
synthetic data can be efficiently integrated in the training process, along with a
large amount of unlabeled real samples. This direction is motivated by the idea
that modern computer graphics renders, given a parameterized 3D hand model, are
capable of producing infinite amount of training data along with perfectly accurate
ground truth annotations. At the same time, manual groundtruthing of real images
remains a tedious and time consuming procedure, while even the most advanced
state-of-the-art motion capture systems, given the scale of the task and general com-
plexity of the hand motion, do not guarantee sufficiently robust solutions. This is a
problem which we will also tackle in Section 5 of this thesis.

Along with the labeled dataset of real images, the work by Tang et al. [288] exploits
additional subsets of data, namely unlabeled samples of the same nature, plus syn-
thetic depth images of a hand. Accordingly, they introduce additional, unsupervised
quality function Qtss, expressed as follows:

Qtss = Qω
t Qu, (32)

where ω is a predefined parameter, Qu is the unsupervised term applied to both
labeled and unlabeled real data (denoted as R, from real), enforcing similar looking
patches to be assigned to the same node:

Qu(θ) =

⎡

⎣1+
∑

d∈{L,R}

|Rd(θ)|

|R|
tr
(
var

[
Rd(θ)

])
⎤

⎦
−1

, (33)

and Qt is a transductive term applied to all labeled samples, both real and synthetic
(denoted as L, from labeled), and performing alignment of real and synthetic do-
mains through a certain number of provided ground truth correspondences:

Qt(θ) =
|{r, s} ⊂ Ll|+ |{r, s} ⊂ Lr|

|{r, s} ⊂ L|
, (34)

where {r, s} are pairs of real and synthetic patches, which are marked as corresponding.
These correspondences are established through matching patches in synthetic and
real labeled subsets, according to their 3D joint locations (see [288] for more detail).
This transductive term is thus the ratio of preserved associations {r, s} after a split.

Such defined quality function for semi-supervised and transductive learning is
used in combination with the purely supervised terms Qapv, while the switching
between them is performed randomly.

As we have mentioned earlier, regardless of particular form of quality functions
using for training, this group of methods outputs a distribution of hand joint loca-
tions which is yet to be post-processed to produce a single vector of coordinates per
joint.
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For this purpose, Shotton et al. [267] employ a local mode finding approach based
on a Gaussian Parzen density estimator, defined as follows:

pj(x ′) =
∑

(x ′,w)∈Xj

w · exp
(
−
∣∣∣
∣∣∣
x ′ − x
bj

∣∣∣
∣∣∣
)
, (35)

where x ′ is a vector of coordinates in the 3D space and b is a learned parameter. The
mean shift algorithm [62] is then used to find modes in this density, while grouping
the votes converging to the same point in 3D space, producing final proposals for
joint positions.

A follow-up work [124] introduced a modification added graph cuts segmentation,
while Polrola et Wojciechowski [239] proposed another adaptation inspired by [266].
At the same time, the mean shift algorithm is actively used in a number of follow
up works, in some cases followed by kinematic refinement of joint positions [288].

2.3.4.2 Cascaded regression

Under cascaded regression we will understand a group of holistic, by spirit, meth-
ods, where positions of all hand joints are estimated simultaneously, but by the
means of progressive refinement in several iterative steps. This idea is based on
residual learning, where each following regressor aims to minimize the residual
error between previously obtained predictions and the ground truth:

θ(t) = θ(t−1) +R(t)(I,θ(t−1)), (36)

where, θ(t) is a hand pose hypothesis at iteration t, θ(t−1) is a hypothesis obtained
on the previous step, I is an input image and R(t) is a regressor trained to minimize
the residual error at the given stage t.

In the context of pose estimation, this idea was first explored by Dollar et al. [78]
and then served as a starting point for a work by Sun et al. [281] (for an illustration,
see the top row in Figure 16). As a further improvement, Sun et al. [281] introduced
an additional hand pose normalization transform, which is applied at each stage of
refinement to compensate for in-plane image rotations (as given by equation (21)).

It is important to understand, that a crucial difference between these methods and
what has been discussed in the previous section, is that here a whole image serves as
a single input and is processed at once, instead of producing votes on a pixel-wise
level. Therefore, an output distribution of votes for each joint is replaced by a single
vector indicating a joint position. Naturally, such an approach makes the processing
significantly more computationally efficient.

In general, the progressive refinement can be done by a single regressor for a
whole pose, or by a set of joint-specific predictors taking as an input a smaller but
higher-resolution regions containing each joint, as estimated by their predecessors.
A number of deep learning frameworks also make use of this strategy, and we will
talk about this in the next chapter.

Holistic cascaded regression methods, discussed so far, do not explicitly take into
account a kinematic structure of the hand and do not model anatomical structural
dependencies between possible locations of different joints. However, one may ar-
gue that this information is provided to the predictor somewhat implicitly by aug-
menting its input with preliminary estimates of all joint positions, which makes this
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Figure 16 – A comparison of cascaded holistic (top row) and hierarchical (bottom row) re-
gression as presented by Sun et al. [281]. In the first case, positions of all joints
are estimated and refined at each step. In the second approach, joints are lo-
calized in groups and in a particular order corresponding to their position in a
tree-structured hand model.

group of algorithms quite effective as compared to a single-stage pipeline. In a sense,
this formulation can be seen as a generalization of hierarchical methods (described in
the next section), which are defined specifically on tree structured kinematic graphs.

2.3.4.3 Structured hierarchical regression

Now it is time to look closely at some recent regression-based works on hand pose
estimation with random forests, which are based on hierarchical search, or hierarchi-
cal refinement of hand joint positions.

Unlike purely bottom-up strategies (discussed in Section 2.3.4.1), where pixel-wise
predictions were estimated first and then integrated to produce a final output, the
hierarchical methods are based on iterative optimization, where a whole image is taken
as in input at each iteration, as cascaded methods from Section 2.3.4.2.

As opposed to holistic cascaded approaches, hierarchical models make explicit
use of underlying hand structure, represented as a graph.

A number of recent works [289, 281] explicitly incorporated a topological model
of a hand into the training process. Sun et al. [281], for example, use a manually
defined articulated chain. Going down along the tree, the authors start by estimating a
palm position, then finger roots, then fingertips. In each step, a set of predictions for
a new group of joints is conditioned on the output of the previous step (illustrated
in Figure 16, bottom row).

An alternative approach was taken by Tang et al. [289], who instead of manually
constructing the graph representing a hand (based on its anatomical skeleton), learn
a tree-structured graphical model of a hand directly from the data. To estimate a
pose, instead of targeting positions of hand joints immediately, the algorithm itera-
tively learns to proceed by splitting the image into semantically meaningful groups of
hand parts, which get smaller and smaller with each iteration. Training objectives
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Figure 17 – Structure of the learned Latent Hand Model [289]. (a) Euclidean distance, (b)
geodesic distance, (c) the latent model learned by using the Euclidean distance,
(d) the same model learned using the geodesic distance.

for each step, which describe how the image should be split, are first automatically
defined based on the training data, given its ground truth statistics.

In addition to split and leaf nodes, the proposed modification of a RDF, called
latent regression forest (LRF) and consisting of latent regression trees (LRT), has
a set of division nodes. Split nodes, as before, evaluate each data sample to route it
left or right. Division nodes perform splitting of the training objective into two and
propagate the data along both paths in parallel.

Originally, the idea by Tang et al. [289] to infer structure from data takes its in-
spiration from a subset of probabilistic graphical models, called latent tree models
(LTMs) [91] and their recent application to the problem of body pose estimation by
Wang et al. [307].

As the reader may infer from its name, latent tree models is a subclass of latent
variable models, relating a set of observed variables to a set of latent variables, which
has a tree structure. In such latent tree models, all leaf nodes are considered to be
observed, while all internal nodes are latent variables. Accordingly, with respect to
the problem of hand pose estimation, 3D coordinates of hand joints are observed
vertices, and the hierarchical topology of the hand, represented by latent vertices, are
learned (see Figure 17c for an illustration).

In the discussed work by Tang et al. [289], the latent model of a hand is repre-
sented as a binary tree, which makes it straightforward to integrate this model into a
random forest, in order to obtain the latent regression forest (LRF) mentioned earlier.

The theoretical basis of latent tree models and fundamental principles for learning
LTMs are provided in a recent study by Mourad et al. [244]. Generally, there exist
three groups of methods for inferring LTM structure from the data, namely search-
based methods, variable clustering and distance-based algorithms. The Chow-Liu
Neighbor-Joining (CLNJ, [55]) method, used by Tang et al. [289], belongs to the last
group and performs grouping of joints consistently appearing close to each other in
the data.
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The employed CLN algorithm takes as an input a set of pairwise distances D

between all observed variables (i.e. 3D joint coordinates), which are estimated from
the training data:

D(v1, v2) =

∑
I∈S δ(I)(v1, v2)

|S|
, (37)

where δ is a metric (discussed below), v1 and v2 is a pair of joints and I is an image
from the training set S.

The metric δ can be defined in an arbitrary way: in particular, Tang et el. [289]
compare Euclidean and geodesic formulations and show that the geodesic distance,
which takes into account depth discontinuities in the image, is more robust to vari-
ations in poses and results in a more semantically meaningful learned topological
structure (see Figure 17 for an illustration).

The core process of neighbor joining [258, 98] starts with a star-shaped tree, where
all observed vertices are connected, and iteratively selects a pair of joints vi − vj (or,
at later stages, groups of joints), which minimizes the following criteria:

f(i, j) = (|N|− 2)δ(vi, vj)−
∑

k∈N

δ(vi, vk)−
∑

k∈N

δ(vj, vk), (38)

where N is the set of vertices. Once the pair vi − vj is combined in a single unit vij,
the distances are reestimated as follows:

δ(vi, vij) =
1

2
δ(vi, vj) +

1

2(|N|− 2)

(
∑

k∈N

δ(vi, vk)−
∑

k∈N

δ(vj, vk)

)

, (39)

δ(vij, vk) =
1

2
(δ(vi, vk)− δ(vi, vij)) +

1

2
(δ(vj, vk)− δ(vj, vij)). (40)

Once the LTM structure is learned based on the chosen metric (see [289, 258] for
the exact procedure), training of the LRF begins. The split function is defined in a
similar manner to what we have seen before for pixel-wise processing:

h(ρi,θn) =

[
I

(
ρi +

∆ρn,1

I(ρ0)

)
− I

(
ρi +

∆ρn,2

I(ρ0)

)
! τn

]
, (41)

but this time this expression is formulated for a given vertex i with 3D coordinates
ρi, rather than for each pixel in the image. As before, ρn,1 and ρn,2 are random
offsets, and normalization is performed with respect to a image depth value at the
root node position I(ρ0). Quality function Q for a given split is formulated as
information gain:

Q(S) = H(S)−
∑

d∈{L,R}

Sd

|S|
H(Sd). (42)

In this expression, H(S) minimizes the trace of the covariance matrix of the set of
offset vectors between the current center and positions of left and right subregions,
calculated over all images from set S:

H(S) =
∑

m∈{L(i),R(i)}

tr
(

Cov
{
ρ
(I)
m − ρ

(I)
i

∣∣I ∈ S
})

, (43)

where tr is a trace operator.
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As the reader may remember, in the previous work by Tang et al. [288], a number
of splits which are necessary to achieve sufficient performance at a given training
stage (in that case, shape classification, patch classification and regression on hand
joint positions) was defined automatically from the current performance and the
switching between them was therefore performed in adaptive manner. A similar
strategy is applied to the latent regression trees, where the number of levels in the
latent regression tree assigned to each level in the latent tree model is defined by
comparing the information gain achieved so far with a certain threshold. When a
desired level of performance on a given stage is achieved, a division node splits the
training objective in next two.

In spite of their great performance, latent regression trees proposed by Tang
et al. [289] do not take into account differences in viewpoints. However, as we have
seen in the case of shape classification forests [152], introducing this additional degree
of freedom in the model drastically increases its modeling capacity.

In these lines, inspired by the work by Tang et al. [289], Li et al. [225] proposed
a similar framework with the difference being that instead of latent variables from
the fixed LTM, their hierarchy is built on a number of flexible landmarks called
segmentation index points (SIPs). As in the previous case, positions of hand joints
are estimated only at the leaf nodes of an RDF.

In short, as in [289], SIPs represent centroids of groups of several hand joints and
are used for tree growing. However, while in [290] those intermediate targets were
predefined and aligned with a fixed LTM, SIPs are flexible and are also dependent on
a hand pose.

Proposed SIPs are obtained by clustering ground truth joint positions in parallel
with growing a tree (based on the same geodesic distance, as in the previous case).
This way, only subsets of training data reaching the particular node contribute into
SIPs definition at this node, which makes these landmarks dependent on the view
point and on the type of hand poses specific for the given subset. This idea is
illustrated in Figure 19 (also see Figure 18 for comparison with [289]).

The distortion for hand joints clustering is formulated as follows:

Jclust. = min
Q

∑

v1∈N

∑

v2∈N

∑

q∈Q

rv1v2qD(v1, v2), (44)

where Q is a set of possible splits over which Jclust. is minimized, v ∈ N are skeletal
hand joints, rv1v2q∈{0, 1} performs hard clustering as defined by q and D(v1, v2) is
defined by equation (37). Unlike in LTR, however, information about chosen splits
q should be stored at each node to be used during test time.

2.3.5 Refinement of joint positions: inverse kinematics

Purely discriminative data-driven approaches, which were discussed in this section,
do not explicitly take into account a physical model of the hand (except for some in-
formation on its skeletal structure in hierarchical methods) and are therefore likely
to produce anatomically implausible configurations with deformed structures and
self-collisions, especially when some of hand joints are occluded. In order to address
this issue, at least partially, a number of works [288, 296] introduce in their frame-
works an additional kinematic refinement step to tune and clean up their predictions.
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LRT LTMLRT takes a whole image
as an input

Propagate down the 
tree according to the 
guide of the learned 

fixed LTM. 
The search process 
goes simultaneously 

on each level
of LRT and LTM

End up at 
16 leaf node

at the same time

Figure 18 – Growing a Latent Regression Tree (LRT) given a Latent Tree Model (LTM) of a
hand, proposed by Tang et al. [289]. The LTM is first learned from the training
set and then used for training of the LRT (while being kept fixed).

RDT RDT takes a whole image
as an input

Generate SIP and divide 
current hand region into 

two sub-regions. 
Expand left and right 
branches from SIP.

Figure 19 – Growing a Random Decision Tree (RDT) with Segmentation Index Points (SIPs),
proposed by Li et al. [225]. Unlike in the previous case of LTM [289], where the
model was learned in advance and kept fixed, here the training objectives (SIPs)
are adaptively estimated for each split.
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Algorithm 4 Pose refinement by [288]
1: Input: vote distribution for each joint
2: for each joint j ∈ J do
3: Learn a 2-component GMM of the voting vectors
4: if ||µ1

j − µ2
j || < τg then

5: The j-th joint is a high-confidence joint
6: Compute the j-th location as a mean of the stronger component
7: else
8: The j-th joint is a low-confidence joint
9: Find the Gaussian in G by finding the nearest neighbor of the high-confidence

joints in G

10: Update the remaining low-confidence joint locations from this Guassian
11: return Output pose

For this purpose, Tang et al. [288] created an additional large dataset of hand con-
figurations (sampled using a 3D hand model and specified anatomical constraints)
and then computed a data-driven kinematic model G containing view-specific distri-
butions of joint locations in a form of Gaussian Mixture Models (GMMs) represented
by a set of means and variances.

An advantage of their local regression method [288] (discussed previously), in
which each pixel votes for positions of all neighboring joints, is that from the struc-
ture of obtained vote distribution (output of Algorithm 3) one may reason about the
confidence of the resulting prediction.

This is done by fitting into each j-th vote distribution a 2-component GMM with
parameters

{
µ1
j ,Σ

1
j , ρ

1
j , µ

2
j ,Σ

2
j , ρ

2
j |j ∈ J

}
where µ are corresponding means, Σ are

variances and ρ are weights of each component. Furthermore, if the Euclidean dis-
tance between two Gaussians ||µ1

j − µ2
j || for a given joint j does not exceed a certain

threshold τg, the prediction is considered as confident (since the output distribution
has a single mode). In this case, the mean of the stronger component with the weight
ρj = maxj(ρ1j , ρ

2
j ) is taken as a pre-refinement estimate.

Using these results, the refinement procedure is based on first alignment of the
most confident predictions (reference points) with the learned model G, in order
to find the closest Gaussian corresponding to the most similar pose seen from a
matching viewpoint. Once the closest Gaussian in G in found, the rest of joint
positions are set to means of its corresponding components (see Algorithm 4).

In spite of the fact, that such data driven refinement apparently results in statisti-
cally more accurate hand pose estimates, it still does not fully exploit all information
contained in a hand model. And this brings us closer to the idea of hybrid models,
which include both discriminative predictions and model based refinements – these
models will be the subject of the next section.
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Figure 20 – Comparison of hybrid methods: black box optimization by Sharp et al. [264] (on
the right) and hierarchical sampling optimization by Tang et al. [290] (on the
left). Figures are reproduced from [290].

2.3.6 Hybrid discriminative-generative models, or putting it all together

All pose estimation methods, which we have discussed so far, are built on either
data-driven learning-based hand pose estimation from a single frame (discriminative
approaches) with eventual data-driven refinement, or model-based optimization by
search given a provided initial guess (generative approaches) typical for tracking.

Naturally, both strategies have their advantages and downsides. Discriminative
methods, even those that exploit hierarchies of joints, do not explicitly incorporate
all available information about the hand (such as self-collisions, for example), neither
do they model temporal dependencies between frames. This is addressed in model-
based tracking approaches, but their efficiency is highly dependent on the quality of
the initial guess, which also means that they tend to accumulate errors over time.

A logical conclusion based on these observations would be to create a hybrid ap-
proach that would take the best of both worlds. Indeed, there exist a number of
recent works [264, 290, 237] which are based on a combination of discriminative and
generative approaches, where the model-based search is initialized (or corrected) by
a distribution of joint locations predicted by a discriminative model.

Sharp et al. [264], for example, significantly increased robustness of hand pose
estimation by augmenting their tracking-based framework with a discriminative 2-
step tracking reinitializer which learns to predict, first, global rotation, and, second,
global offsets and pose type, conditioned on the first-stage prediction. After initial-
ization, the real depth image is compared with the rendered depth map using the
truncated L1 pixel-wise distance from equation (6) dubbed the golden energy.

Their approach, however, is based on two purely holistic and independent stages,
where the rendering pipeline is treated as a black box (as in most classical generative
frameworks considered so far). One of the main criticisms here would be that com-
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puting the golden energy over the whole image for multiple candidates θ to find a
good match is obviously computationally expensive.

In this sense, Tang et al. [290] went farther in this attempt to introduce kinematic
hierarchy in the rendering-based search process and proposed a hybrid hand pose
estimation method called hierarchical sampling optimization (HSO). By focusing
on generating a small number of highly accurate pose hypotheses, they were able
to replace the iterative PSO-based search (as in [264] and earlier works) with simple
ranking and choosing the best candidate as the final output. As a result, they achieve
similar to [264] performance while requiring orders of magnitude fewer full image
evaluations. A graphical comparison of the two strategies, holistic and hierarchical,
is shown in the left part of Figure 20.

The hybrid method by Tang et al. [290] is based on a simplified (in comparison to
their previous work [289]) 4-step hierarchical generation of proposals for positions of
groups of joints called partial poses. This procedure starts with estimation of a wrist
position, and then, sequentially, estimates locations of finger roots, intermediate
finger joints and fingertips (see Figure 20 for a graphical illustration).

At each layer l, a set of hypotheses Θ(l) is generated for the given subset of joints,
and each hypothesis is combined with a set of its ancestors Θ(l−1). Then the best
candidate is selected by a cost function (dubbed silver energy), which is computed
for the given subset of joints as a combination of two terms given by equations (9)
and (13). The best hypothesis θ∗ is then used as a prior for sampling proposals for
a new group of joints at the next level l+1. Finally, the output pose is generated by
concatenating the best configurations for the partial poses obtained at each level.

Each time, the initial sampling of hypotheses for a given group of joints is per-
formed by a discriminatively trained decision forest producing a GMM over the
pose parameters at each level. Their implementation uses standard offset-based
depth features given by equation (20). We address an interested reader to consult
the original work by [290] for more detail.

There is also a number of deep learning approaches (discussed in the next chapter),
which fall in the same category of hybrid models [296, 216]. And if implementation
of discriminative frameworks with deep learning methods can be fairly straightfor-
ward, their generative counterparts, which do not involve a traditional 3D rendering-
based pipeline, seem particularly interesting.

2.3.7 Hand-object interaction

Analyzing hands in their interaction with objects, as well as reasoning about ob-
jects by how they are being manipulated, is a separate and quite exciting branch or
research. It finds its direct applications in robotics (mainly for robot learning from
visual demonstration [8]) and, furthermore, this idea became particularly interesting
with development of wearable cameras and raising demand for automatic analysis
of egocentric video streams in the wild.

This task is also particularly interesting from the modeling perspective. On one
side, massive occlusions of hand parts during their interactions with objects make
hand pose reconstruction even more nontrivial. Moreover, anatomical restrictions,
which are a common place of isolated hand motion analysis systems, should be
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Figure 21 – Output of a multi-camera motion capture system by Ballan et al. [19].

reconsidered here, since some additional unnatural stretches often appear. On the
other side, interactions with objects introduce additional physical constraints, which
can serve as a source of additional information for pose estimation.

The problem of recovering the pose of a hand occluded by an object was ad-
dressed, for example, in a work by Hamer et al. [118]. In their framework, an
individual tracker is associated with each joint of a hand, and a Markov Random
Field (MRF) expresses its anatomical constraints in terms of proximity and angles.

Ballan et al [19] worked on a slightly different problem, namely motion capture
of interacting hands (with each other and with objects) in a multi camera setup (see
Figure 21). Their generative method is based on iterative rendering of a synthetic
3D hand model and comparing the obtained results with the observed input using
a metric based on 3 kinds of features: edges, optical flow and salient points. For
salient point extraction, they train an additional nail detector based on a Hough for-
est classifier [95] on a dataset of 400 images with labeled nails seen from different
distances and view points. Their method significantly outperforms an alternative
solution proposed by Oikonomidis et al. [219] (which is based on depth maps and is
similar to other works from the same research group [217, 218] which we discussed
in Section 2.3.3) and relies exclusively on edge and skin color maps.

In the context of human-computer interaction (and, more precisely, augmented
and virtual reality environments), a recent work by Jang et al. [138] is dedicated
specifically to ego-centric videos and the problem of clicking action and finger posi-
tion estimation under self-occlusions.

Finally, a significant number of recent works, especially in the robotics community,
focus on the problem of human grasp analysis [40, 250, 132], where the objective
is formulated completely differently: instead of accurate hand pose estimation, the
task is to perform fine grained classification of hand grasps from egocentric videos, to
reconstruct positions of hand-object contact points and to estimate direction of forces.
We must note here, that this problem is not necessarily easier than direct pose esti-
mation by regression on hand joint locations and, more than that, accurate pose re-
construction per se provides no guaranties for quality of grasp classification (which
is illustrated in Figure 22).

For this task, Rogez et al. [250] proposed a large dataset of egocentric videos
containing 18 kinds of hand grasps with corresponding force and contact points
annotations. Their own method is then based on feature learning of data representa-
tions from a whole video frame, a pre-segmented hand mask and a close-up view
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Figure 22 – Challenges of human grasp analysis: three images with almost identical hand
poses correspond to three kinds of grasps () wide-object grasp, precision grasp
and finger extension) with completely different distributions of forces (red) and
positions of contact points (green) [250].

of a hand. Finally, the extracted features are fed to an SVM for grasp classification,
the nearest neighbor from the training cluster of the corresponding class is returned,
and its ground truth annotations of forces and contact points are projected on the
test sample and serve as a final output of the system.

This concludes our overview of the prior art on human (and especially hand) mo-
tion analysis with non-deep learning methods.

As a final remark, we would like to note that although the hand-object interaction
problem, that we have just discussed in this last section, is not directly related to the
contributions of this thesis (neither application-wise nor, strictly speaking, method-
ologically), we still find it essential to keep in mind a broader picture of how similar
problems are approached by different research communities (such as robotics and
multimedia), which methods and practices are employed and how priorities are
defined depending on the context of a particular application.
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“O Deep Thought computer,” he said, “the task we have designed you to perform is this.
We want you to tell us...” he paused, “the Answer!”

— Douglas Adams,
“The Ultimate Hitchhiker’s Guide to the Galaxy”

3
B A C K G R O U N D : D E E P L E A R N I N G

Deep learning has been known under a variety of names and has seen a long his-
tory or research, experiencing waves of excitement alternated with periods of obliv-
ion. However, it was not until recently that technological progress in hardware
engineering along with a number of algorithmic breakthroughs made it possible
for computers to learn concepts with minimal feature engineering, end-to-end and in
a purely data driven fashion, which significantly raised hopes and expectations of
those on the quest of solving artificial intelligence.

Early works on deep learning, or rather on cybernetics, as it used to be called back
then, are dated 1940s-1960s and already describe simple neural networks trained in
supervised and unsupervised fashion [252, 122]. The second wave came under the
name of connectionism in the 1980s-1990s [254] with the invention of backpropagation.
Finally, the modern era of deep learning per se, as seen by certain authors [109], has
started in 2006 [126, 26, 245], and since around 2011-2012 its ideas have been actively
conquering speech processing, NLP and computer vision communities. Due to this
highly non-linear history of development, these days, a fair amount of connectionist
works and methods from previous periods are being naturally rediscovered, refor-
mulated and reconsidered in new contexts. Those readers, who are interested to
know more about the history of the matter, are encouraged to consult an exhaustive
survey of the field by J. Schmidhuber [259].

During the last three years, the ideas of deep learning have made a tremendous
impact in computer vision, demonstrating previously unattainable performance on
the tasks of object detection, localization [104, 262], recognition [162] and image seg-
mentation [90, 64]. Convolutional neural networks (ConvNets) [171] have excelled
on several scientific competitions such as ILSVRC [162, 285, 121], Emotion Recog-
nition in the Wild (EmotiW 2013) [145], Kaggle Dogs vs. Cats [262] and Galaxy
Zoo. Taigman et al. [286] recently claimed to have reached human-level perfor-
mance using ConvNets for face recognition. On a more sober note, deep learning
in its modern formulation remains a relatively young field with tendencies to grow
uncontrollably fast and in ad-hoc manner. A vast amount of models, concepts and
algorithms which are already used today are yet to be completely understood.

In this chapter, we aim to review the most relevant classes of deep learning mod-
els to build a ground for our work. Starting with discussing state-of-the-art feed-
forward architectures and temporal neural models (the ones which are commonly
used in a supervised setting), we then briefly mention the milestones of unsuper-

57



58 background : deep learning

... ... ... ...

...

input layer, x0

ψ ψ ψ ψ

...

ψ

...

backpropagation loss function, L

output layer, ỹ
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Figure 23 – The architecture of a fully connected deep feedforward network, where ψ is an
activation function, Wk and bk are a weight matrix and a vector of biases of a
given hidden layer, respectively.

vised learning 1 and deep learning of multimodal representations. Finally, we will
look at how deep learning methodology is being applied to the problem of human
motion analysis. Many of those methods, that will be discussed, were proposed and
extended by the community during the last three years, when some parts of this
thesis were already completed. Nevertheless, we will attempt to provide a whole
picture, as of the beginning of 2016, for completeness.

3.1 deep feedforward models

Fully connected deep feedforward neural networks, also called multi-layer per-
ceptrons (MLPs), are the quintessential deep learning models [109]. Their general pur-
pose is to approximate an arbitrary surjective mapping R : x0 )→y (where x0 is an
input and y is an output), which is typically done in several steps of computations
given a set of learned model parameters θ.

We assume that the reader is familiar with fundamental principles of artificial
neural systems. The basic equations will still be provided for the sake of introducing
notations and terminology, which will be used throughout the whole manuscript,
but we will make every effort to keep this discussion brief.

Deep learning models belonging to this class are conventionally called networks
as they are assembled from a number of connected layers built from hidden units,
where each layer performs one step of computation.

A fully connected network is wired in such a way that each unit in one layer
receives information from all units from the previous layer. The term neural comes
from an analogy with biological systems. A basic architecture of a fully connected
feedforward network is shown in Figure 23.

In theory, even the simplest network with a single hidden layer and proper activa-
tion has the capacity to approximate an arbitrary smooth function, up to an arbitrary

1. We will not go into details of existing models for unsupervised learning, since they are not
directly related to the work presented in this thesis.
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precision. This was formulated and proved in a famous universal approximation theo-
rem (quoted from [109] with adapted numbers of references):

. . .the universal approximation theorem [131, 65] states that a feedforward net-
work with a linear output layer and at least one hidden layer with any "squash-
ing" activation function (such as the logistic sigmoid activation function) can
approximate any Borel measurable function from one finite-dimensional space to
another with any desired non-zero amount of error, provided that the network is
given enough hidden units. [109]

For practical purposes, it is enough to say that any continuous function on a closed
and bounded subset of Rn satisfies the requirement of Borel measurability.

The ability of a feedforward network to approximate any smooth function does
not provide guarantees that this approximation can be learned. Among the main
reasons for that are specific properties of currently used optimization algorithms, as
well as overfitting.

Furthermore, the theorem does not specify what amount of hidden units is suffi-
cient for such an approximation, and in the worst case scenario, this number may be
exponential, in order to memorize every possible input. For this reason, it is often
preferable to choose deeper architectures, as many families of functions can be approx-
imated in a much more compact way when the depth of the network is greater than
some value d.

In addition, it has been noted in [109], that a deep model may be preferred for
statistical reasons, as it only encodes a very general prior that the target function can
be represented as a composition of simpler transforms. This intuition was empirically
confirmed by a great number of works, showing that deeper models are able to reach
a higher degree of generalization on a large variety of tasks [162, 285, 90].

Finally, let us introduce notations and formalize the basic mechanics of fully con-
nected feedforward networks.

Starting from the input, at each next layer k+1 and for each input stimulus, the
values taken by hidden units xk+1, called activations, are recursively calculated
by taking a learnable linear affine transformation from activations of the previous
layer xk, followed by a nonlinear function, which is called activation function and
is applied elementwise:

xk+1,j = ψ

(
N∑

i=1

wkijxk,i + bkj

)

, (45)

or, in the vector form, xk+1 = ψ (Wkxk + bk) , (46)

where xk,i∈xk, i=1. . .N are elements of the vector of previous activations (or inputs,
for the first hidden layer in the network), xk+1,j∈xk+1, j=1. . .M are activations of the
given layer, Wk is a weight matrix defining weight coefficients of each input-output
connection wkij, and bk is a vector of biases consisting of elements bkj (weight
matrices and bias vectors are defined for each layer independently).

Finally, ψ is a non-linear activation function (where among the most popular op-
tions are sigmoid, hyperbolic tangent and, in more recent works, rectified linear unit,
dubbed ReLU).
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In the classification task, the number of output units ỹ corresponds to the number
of classes in the vocabulary. Normalized output activations, calculated by a softmax
transformation from activations of the previous layer x and matched with an appro-
priate loss (see below), have a meaning of posterior probabilities of a given class n

given observation x0:

ỹn = P(cn|x0) =
exp (WT

nx)∑
j exp (WT

j x)
(47)

where x are activations of the last hidden layer, W is a weight matrix (this time, of
the output layer). In this particular case, Wn denotes a set of weights connecting the
previous layer with an output element n. Biases b are omitted for compactness.

Training in deep networks is typically done by gradient descent using the chain rule
and back-propagation of the error from the output to the input in order to mini-
mize a predefined loss function L, which is typically non-convex in the parameter
space. In the context of supervised learning, classification cost function is conven-
tionally formulated as the cross-entropy between the ground truth labels and the
model predictions and is calculated by taking negative log-likelihood of the softmax
activations:

LC(θ,D) = −

|D|∑

i=1

logP(Y = y(i)|x(i)o ,θ), (48)

where D is a set of training samples, y(i) is a ground truth label of sample i, P()
are posterior probabilities calculated from equation (47) and θ is a set of all network
parameters, including, in the simplest case, weights and biases of all layers.

For regression, as in other machine learning algorithms, the mean squared error
remains a classical solution:

LR(D) =

|D|∑

i=1

N∑

j=1

||y
(i)
j − ỹ

(i)
j ||22, (49)

where N is the number of outputs, yj∈y(i) are elements of a ground truth vector
and ỹj∈ỹ(i) are model predictions (not normalized) for sample i.

3.1.1 Convolutional neural networks

According to the definition given by [109], convolutional neural networks (also
dubbed CNNs, ConvNets) are simply neural networks that use convolution in place of
general matrix multiplication in at least one of their layers. This class of models is par-
ticularly suitable for processing signals of a spatial or temporal nature (i.e. images,
video or audio, rather than ordered feature sets), where patterns in the data are
treated under the assumption of spatial or temporal invariance.

An illustration of such a convolutional architecture for processing a 2D input is
shown in Figure 24. The immediate advantage of this class of models is that the num-
ber of their parameters is significantly reduced in comparison with fully connected
networks due to parameter sharing, since the input is processed locally by sliding a
set of convolutional filters over it. This form of parameter sharing makes the convo-
lutional network equivariant to translation, meaning that the output activations of a
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Figure 24 – An example of a convolutional neural network taking as input a single chan-
nel 2D image. In general case, an arbitrary number of convolutional layers (or
convolutional-pooling pairs) can be stacked on top of each other, combined with
an arbitrary number of fully connected layers closer to the output of the network.

convolutional layer change in the same way as its input [109]. The dimensionality of
convolutions can be extended to an arbitrary number of input dimensions and ap-
plied, for example, to 3D ultra-sound images or 3D spatio-temporal volumes, using
the same spatial metaphor for time.

The result of the convolutional operation followed by an application of an element-
wise non-linearity ψ is called a feature map. Each convolutional layer is typically
followed by a pooling layer – an operation which outputs a maximum, for example
(for max pooling), value within a local neighborhood, reducing the size of a fea-
ture map and introducing additional invariance to small local translations. In some
recent architectures, the pooling step may be omitted.

The AlexNet [162] realization of a deep convolutional architecture for images, pro-
posed in 2012, signified the first major success of deep learning in computer vision
and was eight layers deep, where the three last layers were fully connected. A num-
ber of more advanced and complex convolutional networks, especially in the context
of visual recognition and detection from images, have been proposed over last years,
including Network in network [179], Inception modules [285], VGG networks [272],
and region-based CNNs [105].

The most recent convolutional architectures, as of the beginning of 2016, which are
based on Highway networks [278] and residual learning [121], are dozens to hundreds
layers deep and are able to dynamically adapt to the complexity of the task.

3.2 deep temporal models

The problem of sequence modeling with deep neural networks has been a subject
of decades of scientific exploration, and it is probably safe to say that today this is
one of the most actively researched topics in the community. Moreover, since the
temporal aspect is often crucial for human motion analysis, neural temporal models
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Figure 25 – Deep temporal models, shown unrolled in time: (a) a basic recurrent network
(RNN); (b) structurally constrained recurrent network (SCRNN) [191]. Red hid-
den units have activation function ψ and yellow hidden units have no activation.

will be one of the most important subjects of the main part of this thesis. For these
reasons, in this section we will aim to review the most important points concerning
existing architectures and their training in more detail.

3.2.1 Recurrent neural networks

A vanilla recurrent neural network (RNN) is a simple but general temporal ar-
chitecture, where at each moment of time t the output is governed by feedforward
connections from input x(t) (as in the previous case), as well as recurrent connections
conveying additional information about the history of the network’s activations at
preceding steps. In Elman’s simple recurrent network (SRN) [84], for example, it is
implemented by recursive conditioning of each state on the previous one.

Figure 25a shows a view of the simple one layer recurrent network unrolled over
time. Such a vanilla RNN is governed by the following update equation:

h(t) = ψ(Wx(t) + Uh(t−1)), (50)

where x(t) is the input at time t, h(t) denotes the network’s hidden state at time t,
W and U are feed-forward and recurrent weight matrices, respectively, and ψ is a
non-linear activation function, typically tanh.

The output is produced as a non-linear transform of the hidden state:

ỹ(t) = φ(Vh(t)), (51)

where V is a weight matrix and φ is an activation function. Here and in all equations
in this section we omit bias vectors for the sake of compactness of notation, but in
practice they are typically included as learnable parameters.

In deeper temporal architectures, several recurrent layers can be stacked on top
of each other. In this case, the output activations serve as input to the next layer
and, strictly speaking, should be denoted as xl+1 for a given input xl (where l is a
number of layer).
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Theoretically, a RNN is a general and powerful model, which is potentially ca-
pable of extracting complex patterns, storing them and propagating them through
time. However, in practice, training of such systems by backpropagation remains
difficult due to well known problems of exploding and vanishing gradients [128, 25].
And though explosion can be addressed by simple clipping the gradient magni-
tudes [227], the latter issue is more difficult to solve.

The reason for gradients to vanish becomes apparent if we mentally unfold a re-
current network in time, in which case it becomes no different from very deep feed-
forward networks. In the recurrent case, the gradient magnitude, propagated back
through time, gets affected by the recursive multiplication by the matrix of recurrent
weights. If the eigen values of this matrix are less than one, the gradients exponen-
tially decay to almost zero in several steps. This process only gets accelerated if
easily saturatable sigmoid-like activations are used. As a result, such networks can
capture short-term history, up to 5-10 steps, but dependencies spanning over longer
intervals are much harder to learn.

There were a number of works exploring possible solutions to this problem, in-
cluding Hessian-Free optimization methods [186], replacing non-linearities with rec-
tified linear units (ReLU) and initialization of recurrent weights with an identity
matrix or its scaled version [170]. Strictly speaking, however, the problem for the
given architecture remains unsolved.

More successful were approaches proposing modifications to the architecture and
to the structure of recurrent weights, rather than to the training process.

In this spirit, Mikilov et al [191] augmented the vanilla RNN with an integrating
module, consisting of context units s, whose function was to propagate integrated
statistics of the history of observations forward through time. Such architecture re-
ceived the name of Structurally Constrained RNN, or SCRNN, and has been shown
to be significantly more effective than the vanilla RNN on a number of challenging
sequence modeling tasks.

The SCRNN connectivity is shown in Figure 25b (again, unrolled in time for the
sake of explanation). In this diagram, the red elements correspond to the quasi-
conventional RNN units h(t) fully connected to their previous state h(t−1) (with
weight matrix Uh) and to input x (with weight matrix Wh). In addition, these ele-
ments are connected to a group of context units, and these connections are defined
by the third weight matrix, Wsh. As before, an element-wise non-linear activation
function ψ is applied to the sum of these terms once all three linear transforms are
calculated.

Similarly, the values taken by context units s(t) (i.e. yellow elements in the figure)
at each time t are computed as a linear combination of transformed input x (by
weight matrix Ws) and their previous state s(t−1) multiplied by an identity matrix,
with no non-linear activation applied. As a result, these additional recurrent hidden
units explicitly store information about the previous state and, through recursion,
provide conventional units with summarized context of the whole history of inputs,
while not suffering from vanishing gradients as much.

It remains to note that receiving this context information, conventional units do
not, in turn, influence the state of the context units.
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The following modified set of update rules summarizes everything what has been
said so far about the SCRNN:

s(t) = (1−α)Wsx(t) +αs(t−1),

h(t) = ψ
(
Whx(t) + Uhh(t−1) + Ushs(t)

)
,

ỹ(t) = φ(Vhh(t) + Vss(t)),

(52)

where α∈(0, 1) is a weight coefficient defining the contribution of the given state
to the history, Ush is a weight matrix of connections from the context units to the
conventional units at time t, ỹ(t) is the ouput of the network at time t, Vh and Vs
are weight matrices of the units connecting two blocks of the hidden layer (conven-
tional and context, respectively) to the output and φ and ψ are activation functions
(notations are shown in Figure 25b).

As it becomes fairly obvious from Figure 25, instead of positioning the context-
augmented SCRNN module as a new architecture, it is equivalent to say that the
SCRNN can be considered as a vanilla RNN with a block structured matrix of re-
current weights U, feedforward input weights W and output weights V defined as
follows:

U =

(
Uh Ush

0 Im

)

, W =

(
Wh

Ws

)

, V =

(
Vh

Vs

)

(53)

where Im is an identity matrix, and m is the number of context units. Assuming
that the layer has n conventional units, the size of Uh is n×n, Ush is of size n×m

and U is a square matrix of size n+m.

More generally, the first line in the set of SCRNN equations 52 agrees well with
the principle of leaky integration described by Bengio et al. [27], whose essential
purpose is to expand the time scale of gradient vanishing. This can be done by
applying the same principle, as in SCRNN, to a standard RNN, using the update
rule from equation 50, but with significantly smaller values of α, sampled randomly
and specifically for each unit:

h(t) = (1−α)Wsx(t) +αh(t−1), (54)

where, once again, α is a vector, rather than a single value, as before.

An alternative strategy to providing the network with the historical information
could be to explicitly connect each state t to its predecessors from more distant past.

El Hihi and Bengio [83], in their early work, have shown that a structural decom-
position of a recurrent hidden layer in several groups, which correspond to different
time scales, is beneficial for modeling hierarchies of temporal dependencies. In this way,
a group of slow units, which operate at long time scale, preserve the context longer,
while fast units (short time scale) are more responsive to local variations in fast
changing inputs.

One may note that this idea can be seen as closely related to the principle of
wavelet transforms [70] representing the signal at multiple resolutions. A similar
concept based on discrete time delays and shifts was previously implemented in
feedforward Time-Delay Neural Networks (TDNNs) [165].
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Figure 26 – An example of a Clockwork Recurrent Neural Network (CWRNN) [161] with 3
temporal bands, exponential low and a base of 2. Increasing k indicates lower
operating frequency. Grey color indicates inactivity of a slow unit (during both
training and test time) at a given iteration t, meaning that the value from the last
time when it was active is propagated.

More recently, Koutnik et al. [161] proposed a particular implementation of this
principle called the Clockwork RNN (CWRNN), where the hidden layer is parti-
tioned into several groups of scale-specific bands, including fast and slow units (an
example of such an architecture is shown in Figure 26). As a result, the CWRNN
operates at several temporal scales which are incorporated in a single network and
trained jointly, while each band is updated at its own pace.

The size of the step from band to band typically increases exponentially (which
we call exponential update rule) and is defined as nk, where n is a base and k is the
number of the band. In general, the set of step sizes can be defined arbitrarily, but
due to advantages in implementation (see [161]), in the rest of this manuscript we
will assume that all clockwork architectures have exponential bands, if not stated
otherwise.

In the CWRNN, fast units (shown in red in Figure 26) are connected to all bands,
benefiting from the context provided by the slow bands (green and blue), while the
low frequency units ignore noisy high frequency oscillations.

Equation (50) from classical RNNs is modified, leading to a new update rule for
the k-th band of output h at iteration t as follows:

h(t)
k =

⎧
⎨

⎩
ψ
(

W(k)x(t) + U(k)h(t−1)
k

)
if (t mod nk)=0,

h(t−1)
k otherwise.

(55)

where U(k) and W(k) denote rows k from matrices U and W. Matrix U has an up-
per triangular structure, which corresponds to the connectivity between frequency
bands.

A part of our work is based on the CWRNN architecture, so we will revisit it in
Chapter 6 and analyze its mechanics in more detail.
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Figure 27 – Gated temporal models: a) LSTM unit [129], b) Gated Recurrent Unit (GRU) [54].
Yellow units have sigmoid activations, while the blue ones are activated by tanh.

3.2.2 Gated recurrent models

One of the most efficient ways to increase the efficiency of training in neural
temporal models discovered so far is using a gated activation function, instead of a
simple linear transform followed by an elementwise non-linearity.

In this context, Long-Term Short Memory (LSTM) networks [129, 110], and their
recent convolutional extensions [80, 257] have proven to be, so far, one of the best
performing models for learning long-term temporal dependencies. They handle
information from the past through additional gates, which regulate how a memory
cell is affected by the input signal.

In order to explain the idea of a LSTM memory cell, C. Olah [223] drew a vivid
analogy with a conveyor belt, since a state of the memory cell is propagated through
time with only minor interactions with the input.

The basic LSTM cell is composed of input i, output o, forget f, and input modula-
tion g gates. Finally, c denotes the state of memory cell per se (shown in Figure 27a).
In this setting, the input gate allows the network to add new memory to the cell’s
state, the forget gate resets the memory and the output gate regulates how gates at the
next step will be affected by the current cell’s state.

As in the vanilla RNN and its extensions, each element of an LSTM is param-
eterized by corresponding feed-forward (W) and recurrent (U) weights (and bias
vectors):

i(t) = σ(Wix(t) + Uih(t−1)),

f(t) = σ(Wfx(t) + Ufh(t−1)),

o(t) = σ(Wox(t) + Uoh(t−1)),

g(t) = tanh(Wgx(t) + Ugh(t−1)),

c(t) = f(t) ⊙ c(t−1) + i(t) ⊙ g(t),

h(t) = o(t) ⊙ψ(c(t)),

(56)

where ⊙ denotes the Hadamard product, x(t) in an input at time t, h(t) is the cor-
responding output activation, σ is a sigmoid and ψ is a tanh activation function. In
some implementations, the activation on the input modulation gate is omitted.
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LSTMs have demonstrated state-of-the-art performance on most standard sequence
modeling tasks. In addition, it was noted by a number of authors [100, 143] that to
further improve performance, it is often important to initialize the bias of the forget
gate to 1 (or another positive value).

Despite its effectiveness, the LSTM architecture has been repeatedly criticized for
being too ad-hoc, since the purpose and significance of each of its components is not
immediately apparent. For this reason, the high complexity of LSTMs may turn out
computationally wasteful, especially in real time applications when computational
resources are limited.

Accordingly, there exist a body of work which aim to answer the question of
whether or not this architecture is optimal, by performing an empirical analysis of
contribution of each gate [112, 143, 56]. The conclusion of those experiments was
summarized by Jozefowicz et al. [143] as follows.

We discovered that the input gate is important, that the output gate is unim-
portant, and that the forget gate is extremely significant on all problems except
language modelling. This is consistent with Mikolov et al. [191], who showed
that a standard RNN with a hard-coded integrator unit (similar to an LSTM
without a forget gate) can match the LSTM on language modelling.

In this spirit, there were attempts to simplify the LSTM architecture while opti-
mizing its performance.

Recently, Cho et al. [54] proposed the Gated Recurrent Unit (GRU) which is
claimed, by the authors, to be easier to compute and implement. GRU has only
two gates, namely reset gate r (similar to the forget gate of LSTM) and update gate z
(acting similar to the memory cell). The GRU update rule is formulated as follows:

r(t) = σ(Wrx(t) + Urh(t−1)),

z(t) = σ(Wzx(t) + Uzh(t−1)),

h̃(t) = tanh
(
Whx(t) + Uh(r(t) ⊙ h(t−1))

)
,

h(t) = z(t) ⊙ h(t−1) + (1− z(t))⊙ h̃(t),

(57)

where h̃ is a candidate for the update and, as before, W and U are the parame-
terization of input and recurrent connections, respectively. Biases are omitted for
compactness of notation, but are typically present.

When being close to zero, the reset gate forces the network to forget its history.
The update gate regulates the contribution of a previous state into its current state.
A graphical representation of the architecture is shown in Figure 27b.

Finally, a recent work by Chung et al. [57], is dedicated to the problem of multi-
scaling and multi-resolution in the context of gated architectures. Their proposed model
received the name of Gated Feedback RNN (GF-RNN).

Unlike the Clockwork networks [161], instead of introducing multiple scales inside
one hidden layer by modifying its own recurrent wiring, the GF-RNN architecture
exploits the idea of learning fine-to-coarse representations in deeper recurrent mod-
els obtained by stacking several recurrent layers. Their idea lies in drawing a direct
analogy with feedforward convolutional networks, where first layers learn to be-
come atomic feature extractors, while with increasing depth the level of abstraction
and, in a sense, the scale of the learned representation changes.
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Figure 28 – An example of a Gated Feedback RNN [57] with three stacked recurrent layers.

Accordingly, to let different layers corresponding to different temporal hierarchical
scales influence each other, Chung et al. introduce inter-layer top-down and bottom-
up diagonal connections allowing high-level activations affect layers which are closer
to the input and vice versa (see Figure 28).

Although the wiring between all layers in the hierarchy is initially fully connected,
introducing scalar global reset gates g into each path allows the network to automat-
ically adapt to the task in a purely data-driven fashion, and to exploit the scales
optimal for the given application, while dropping the others. This global reset gate
is updated as follows:

gi→j = σ
(

wg,i→jh
(t)
j−1 + ug,i→jh∗(t−1)

)
, (58)

where i and j are layer numbers (and i→j is a directed connection between them),
wg,i→j and ug,i→j are weight vectors corresponding to the input and the recurrent
connections, respectively, and h∗(t−1) is a concatenation of all activations at the
previous step.

This logic can be incorporated into existing gated architectures, such as LSTM
and GRU, by associating a gate to each connection instead of each cell. To this end,
we modify the update rule of the input modulation gate (LSTM) or the update gate
(GRU). Equation 4 from the set 56 becomes:

g(t)
j = tanh

(

Wg,j−1→ih
(t)
j−1 +

L∑

i=1

gi→jUg,i→jh
(t−1)
i

)

, (59)

where L is the number of recurrent layers in the hierarchy. Similarly for the GRU
(line 3 from the set of equations 57):

h̃(t)
j = tanh

(

Wh,j−1→jh
(t)
j−1 + r(t)j ⊙

L∑

i=1

gi→jUh,i→jh
(t−1)
i

)

(60)

All existing deep learning temporal architectures can be naturally reformulated in
a bi-directional way, which is especially practical, when the modeled sequences have
a spatial nature.
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3.2.3 Temporal models with external memory

In addition to conventional simple recurrent and gated recurrent models, a signif-
icant amount of work has been done in the direction of temporal models exploiting
large external memory for explicit memorization of its inputs [69, 196, 142], which is
particularly important in such contexts as question answering or task completion.
Among the most interesting and promising recent reincarnations of this idea are
Memory networks [315] (including their end-to-end implementation [280]), Neural
Turing Machines [111] and Neural GPUs [146]. Since these concepts are still going
through the initial stage of their development and are not directly related to our
work, we will skip reviewing them in this manuscript.

3.3 remarks on unsupervised learning

Instead of hand-crafting data descriptors, or learning them discriminatively for spe-
cific tasks (which we have been discussing so far), efficient representations can be
inferred directly from data, with no additional supervision, by, for example, mini-
mizing reconstruction error, e.g. as in autoencoders, or some predefined energy func-
tion, e.g. as in Restricted Boltzmann Machines (RBMs).

Although there exist a quite large number of classes of such unsupervised learn-
ing models, they do not fall in the scope of this thesis, therefore we will not dive
deeply in this field. However, we must note that today, the unsupervised learning
appears to be one of the most intriguing problems, which occupies minds of many
researchers working on deep learning. Accordingly, this is more than possible that
these models will play more in more significant role in the nearest future.

In the context of human motion analysis, unsupervised models have been em-
ployed for learning spatial, temporal and spatio-temporal data representations.

Le et al. [169], for example, used Independent Subspace Analysis (ISA) for compu-
tationally efficient learning of hierarchies of invariant spatio-temporal features. In
the same countext, Baccouche et al. [14] adapted the original work of Ranzato et
al. [245] by adding a temporal dimension to 2D sparse convolutional autoencoders.

On the other side, Taylor et al. [291] extended and scaled up the Gated RBM
(GRBM) model proposed by Memisevic and Hinton [188] for learning representa-
tions of image patch transformations. Chen et al. [46] used convolutional RBMs
as basic building blocks to construct the Space-Time Deep Belief Networks (ST-DBN)
producing high-level representations of video sequences.

Finally, very recently Srivastava et al. [277] found a way to exploit LSTM networks
as autoencoders for unsupervised feature learning from video sequences and demon-
strated their positive contribution on supervised tasks.

3.4 remarks on multimodal deep learning

Before we start our review of applications of deep learning in human motion analy-
sis, there is the last important theoretical aspect which we need to discuss and which
is particularly related to the work presented in this manuscript. Here, we are talking
about learning in multimodal systems.
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Although most of existing models can be directly adapted to operate on a set of
input signals, rather than on a single one, there are a number of modeling aspects,
specific to this context, which are worth additional exploration.

Fusion dynamics, for example, has seen a long history of research. While in most
practical applications late fusion of scores output by several models offers a cheap
and surprisingly effective solution [145], both late and early fusion of either final or
intermediate data representations remain under active investigation.

A significant amount of work on early combination of diverse feature types has
been done in the field of object and action recognition. Multiple Kernel Learning
(MKL) [15] has been actively discussed in this context. At the same time, as shown
by [99], simple additive or multiplicative averaging of kernels may reach the same
performance while being orders of magnitude faster.

In [332] the authors propose a late fusion strategy compensating for errors of in-
dividual classifiers by minimizing the rank of a score matrix, and in a follow up
work [180] identify sample-specific optimal fusion weights by enforcing similarity
in fusion scores for visually similar labeled and unlabeled samples. Xu et al. in-
troduced the Feature Weighting via Optimal Thresholding (FWOT) algorithm [324]
jointly optimizing feature weights and thresholds. In [209] MKL-based combinations
of features act together with Bayesian model combination and weighted average fu-
sion of scores from multiple systems.

A number of deep architectures have recently been proposed specifically for multi-
modal data. Ngiam et al. [212] employ sparse RBMs and bimodal deep antoencoders
for learning cross-modality correlations in the context of audio-visual speech classi-
fication of isolated letters and digits. Srivastava et al. [276] use a multi-modal deep
Boltzmann machine in a generative fashion to tackle the problem of integrating im-
age data and text annotations. Kahou et al. [145] won the 2013 Emotion Recognition
in the Wild Challenge by building two convolutional architectures on several modal-
ities, such as facial expressions from video frames, audio signal, scene context and
features extracted around mouth regions.

3.5 action and gesture recognition with deep learning

Four years ago, when this project was just about to launch, there was relatively
little work on applying ConvNets to the problem of classification from video, both
in the general setting and in the particular context of action and gesture recognition.
It was not until very recently, that convolutional learning of data representations
started to emerge in the field, replacing spatial, temporal and spatio-temporal hand-
crafted descriptors, which were the subject of discussion in the previous chapter.

However, even within this short period of time, the computer vision community
has made significant progress in applying deep learning ideas to this field, and to-
day there exists a fair amount of literature on action recognition from single images
and feature learning with 2D convolutional neural networks, on spatio-temporal vol-
umes and 3D convolutions, and, finally, on modeling temporal transitions with neural
recurrent architectures.
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Figure 29 – Multi resolution video classification framework by Karpathy et al. [148].

Action and gesture recognition from single images is often based on the same setup,
as object recognition models, which typically include joint feature learning and clas-
sification done in a single network trained end-to-end [205].

In order to incorporate the temporal aspect, a number of authors extended the
dimensionality of the input by concatenating subsequent video frames in short spatio-
temporal blocks. Accordingly, the dimensionality of convolutional filters in such
frameworks is also changed from 2D to 3D [14, 148, 139].

In this category, Karpathy et al. [148], working on the problem of large scale video
classification, proposed a multi resolution framework (shown in Figure 29) which
includes low-resolution context stream, taking as an input a downsampled version
of the whole image, and high-resolution fovea stream, focusing specifically on the
central part of the frame, with no downsampling. Features are extracted from both
inputs separately, but parameters of corresponding layers are shared between the
two paths. Somewhat surprisingly, in this framework, according to the authors,
extending the input with the temporal dimensional resulted in a barely noticeable
advantage over multi resolution single-frame processing.

In a recent work, Varol et al. [302] have shown that extending a spatio-temporal
framework to long-term convolutions (processing up to 60 frames simultaneously),
even at cost of reduced spatial resolution, results in better performance. Of course,
this result is probably specific to video classification, where a single class is associ-
ated to whole videos, and may not be applicable to the case when short gestures
should be recognized.

Similar ideas were applied specifically to the problem of gesture recognition by
Molchanov et al. [194]. Their double resolution framework is based on 3D con-
volutions applied to concatenated frames, and the final prediction is obtained by
multiplying output per-class probabilities from both paths.

In earlier works, a popular approach was to first apply a set of manually defined
transforms (such as computing gradients and optical flow) as a preprocessing step.
Ji et al. [139], for example, exploited hardwired filters to obtain low level feature
maps and then fed them to a 3D convolutional network (ConvNet) for joint learning
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Figure 30 – P-CNN features by Chéron et al. [53]. The figure shows the whole pipeline of
feature learning, starting with the input video, patch extraction and learning
representations from the RGB channels and optical flow.

of mid-level spatio-temporal representations and classification. Even the most recent
works [302, 211, 107, 271] show that careful estimation of optical flow is, at this
stage of development, beneficial for learning accurate action models. In this context,
Weinzaepfel et al. [313] have been working on solving the problem of patch matching
(which they call DeepFlow), also in the spirit of deep convolutional networks, but
with no learning involved.

Guided by the above observations, Simonyan and Zisserman [271], instead of
mixing space and time together as in [148], took another approach to video classi-
fication and processed spatial and temporal streams separately with a pair of Con-
vNets, whose predictions were then combined by late fusion. In their logic, the two
recognition streams are complimentary: while the spatial information is necessary
to characterize scenes, the temporal signal conveys solely motion dynamics. In this
implementation, the temporal network took as input multi frame dense optical flow,
which resulted in significantly better performance compared to the prior art [148].
Working with egocentric videos, Poleg et al. [238] used solely sparse optical flow vol-
umes (with no spatial color or depth information whatsoever) to recognize human
activities from the first person view.

In a more specific context of action recognition, instead of extracting features from
the whole frame, Chéron et al. [53] proposed to learn motion and appearance rep-
resentations along trajectories of human body parts with what they call Pose-based
Convolutional Neural Networks (P-CNNs) (see Figure 30). Similarly, Pigou et al. [232]
address the problem of gesture recognition with two-scale 3D ConvNets, where the
first path takes as an input a whole depth image, and the second one processes
specifically a region extracted around the human hand (whose position is provided
by the Kinect skeleton tracker).

As we have already mentioned, Karpathy et al. [148], as well as their colleagues
working on convolutional learning from 3D spatio-temporal volumes, have demon-
strated that treating the temporal dimension in the same fashion as the spatial in-
formation adds a certain number of points to the recognition performance, but the
improvement is not as dramatic as one could expect. For this reason, non surpris-
ingly, an increasing number of deep learning and vision research groups started
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(a) (b)

Figure 31 – (a) Long-term Recurrent Convolutional Networks by Donahue et al. [80], where
convolutional feature extraction is followed by modeling long term temporal
dependencies with a set of LSTM layers. (b) Feature weighting based on soft
attention mechanism introduced to (a) by Sharma et al. [263].

focusing more on explicit analysis of extended temporal dependencies with recur-
rent temporal models [14, 80, 329], which we discussed in Section 3.2.

From this category, an influential contribution was the work by Donahue et al. [80],
who combined low-level convolutional learning with processing temporal transi-
tions in LSTM layers located closer to the output of the network (see Figure 31a).

This idea is similar in spirit to Simonyan et al. [272] in the sense that the spatial
and temporal aspects are kept separated, making the network double deep [80] in
these two spaces. This composite model, dubbed LRCN (from Long-term Recur-
rent Convolutional Network), has been proven to outperform the prior art on the
number of tasks with sequential inputs (such as action recognition, image and video
description).

Below, we quote the authors casting their predictions on the near future of com-
puter vision.

As the field of computer vision matures beyond tasks with static input and pre-
dictions, we envision that “doubly deep” sequence modeling tools like LRCN will
soon become central pieces of most vision systems, as convolutional architectures
recently have. [80]

The LRCN model has been used in a number of follow up works, especially in the
context of image and video captioning.

In a gesture recognition model by Pigou et al. [233], for example, this architecture
was further complexified. In their implementation, the input layers of the network
contain intermittent spatial and temporal convolutions, while modeling longer tem-
poral relations is performed with bi-directional LSTMs.

As a further improvement, Sharma et al. [263] combined the LRCN with the idea
of focus selectivity [148]. However, instead of focusing the fovea stream always on
the center of the frame, as in [148], it seems to be a promising idea to incorporate
soft attention mechanisms [17] in the activity recognition pipeline. In this setting,
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Figure 32 – Multi stage refinement of body pose estimation in DeepPose framework [297].
Convolutional layers are shown in blue and the fully connected layers are shown
in green. The total number of stages in this implementation s"3.

the model by Sharma et al. [263] adaptively learns which parts of the frame are
important for the task and the features extracted from the corresponding regions
are given higher weights in the classification (see Figure 31b).

3.6 pose estimation with deep learning

Looking back at the taxonomy of pose estimation methods in Chapter 2, we
should say that their existing deep learning alternatives are typically discrimina-
tive by nature but may include an additional, potentially generative refinement step.
However, a recent work by Oberweger et al. [216] also provides interesting insights
on fully discriminative-generative learning in neural systems for this application.

The basic pipeline of all state-of-the-art frameworks performing hand pose esti-
mation with deep learning includes convolutional feature extraction from a depth
map of a hand with following direct estimation of hand joint positions. A training
objective is formulated such that the network outputs either positions of joints di-
rectly [297, 215, 216], or estimates auxiliary probability distributions (called heat maps)
of each joint being present in a given location [296, 137, 295]. The former provides
output for a single input image, whereas the latter provides output for each location,
eventually (but not always) in a sliding window fashion.

In the first group of methods, based on regression on joints, the network is trained
to minimize the mean-square error between normalized ground truth joint positions
and produced outputs. Among early works, exploiting this idea, was a facial pose
estimation method by Osadchy et al. [224].

In the context of full body pose estimation from color images, this was first im-
plemented in the DeepPose framework by Toshev and Szegedy [297] (shown in Fig-
ure 32). Their network output has a form of ỹ(I;θ)∈R2|J| where I is an input image,
θ is a set of learnable network parameters and ỹ is a vector of 2D image coordinates
of body joints j∈J. Accordingly, the L2 loss for learning parameters θ given a set of
ground truth joint positions y reads:

argmin
θ

∑

i∈D

∑

j∈J

||y(i)
j − ỹ(i)

j (θ)||22 (61)

where D is a training set containing pairs of normalized images and annotations,
y(i)
j is a normalized ground truth position of joint j in image i and ỹ(i)

j is network
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Figure 33 – An overview of a hand pose estimation architecture by Oberweger et al. [215].
First row shows the whole cascaded framework, where the coarse estimation
of joint locations with a first-stage deep regressor (second row) is followed by
a number of refinement steps performed with multi-resolution regressors with
incorporated bottleneck hidden layers to enforce pose constraints (third row).

prediction for a joint j in an image i given a set of network parameters θ. The
normalization is performed by detecting a bounding box around the person in the
image I with following subtracting its center coordinates and normalizing by its
width and height.

This holistic regression approach in the DeepPose framework is combined with
a subsequent iterative refinement of predictions based on the output of a previous
step (we have previously discussed similar methods in traditional setting in sec-
tion 2.3.4.2). After initial coarse estimation of joint locations from a low resolution
image, a higher resolution fragment, cropped around this point, is used as an input
for the next step. At subsequent stages (up to 3 in this implementation), the convo-
lutional regressor predicts displacement of the previously produced prediction from
the normalized ground truth location, but relying on more and more detailed input.

The network architecture in this work is the same at each step and consists of 7
layers, among which 5 are convolutional (see Figure 32). However, on each iteration
the network learns different sets of parameters specific to the scale of the input.
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Similar ideas were applied specifically to the problem of hand pose estimation by
Oberweger et al. [215], who benchmarked a number of different network architec-
tures on the task of direct regression of hand joint locations (shown in Figure 33).

For this study, the authors tested performance of shallow and deep networks, as
well as their multi-scale and multi-resolution extensions [90]. The multi-resolution
implementation, unsurprisingly, performed better (at cost of higher network com-
plexity), and was finally chosen for the step of iterative refinement. The coarse
regressor was implemented as a single path deep convolutional network.

Their main finding, however, was to introduce a bottleneck fully connected layer,
which is located closer to the output and performs regularization of network pre-
dictions by enforcing a so called pose prior. The dimensionality of the bottleneck
layer is set to be less than the number of degrees of freedom, i.e. 3|J| (where J is
a set of hand joints and 3 comes from the dimensionality of 3D space). For NYU
dataset [296], for example, where the tripled number of joints equals 42, the width
of the bottleneck was set to 30, which, together with the multi-resolution refinement,
resulted in about 30% improvement of output predictions.

Although the regression based approaches perform sufficiently well in many con-
texts, some authors raise a number of reasonable criticisms [137] with respect to this
strategy. The coordinates of joints, produced by such a regressor, are unbounded,
while the very mapping from input space to pose coefficients is highly non-linear
and not one-to-one.

Alternatively, there were a number of works performing body and hand pose
estimation by forcing the network to output unnormalized probability distributions
over spatial locations for each joint (also called heat maps), which are then post-
processed and integrated in order to obtain the final estimate of the joint coordinates.

The intuition behind this approach is that these intermediate heat map represen-
tations also describe the shape of the predicted distribution, which can be used for
several purposes.

First of all, they help to reason about how confident the network is in the given
prediction – similar, for example, to the refinement step in the work by Tang et
al. [288], which we discussed in Section 2.3.5. In that case, the confidence of the final
prediction was estimated based on the distance between centers of two components
in a 2-component GMM fit to the vote distribution. This idea was confirmed by an
observation made by Tompson et al. [296] that erroneous predictions typically come
from multimodal distributions.

Furthermore, this information can be used to guide a following refinement step, if
it is present, in order to choose the correct mode from the distribution by minimizing
global energy over the whole pose given some additional priors (we will talk about
it later in this section).

An overview of a hand pose estimation framework from the work by Tompson
et al. [296], promoting the heat map approach, is shown in Figure 34. They employ
a multi-resolution convolutional architecture [90], which takes as an input a 92×92

depth map of a hand and produces |J|×18×18 heat maps (i.e. of lower resolution),
where |J| is the number of joints. The ground truth for training is produced by
placing truncated 2D Gaussians at ground truth image coordinates of each joint, after
which the training is performed using stochastic gradient descent with a standard
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Figure 34 – Hand pose estimation with heat maps. On the left: a depth image with a cor-
responding ground truth for the pinky tip joint. On the right: a deep learning
architecture including a multi-scale convolutional feature extractor (above) and
a number of fully connected layers (below) [296].

element-wise L2-norm error function between the ground truth heat maps and the
distributions produced by the network.

Finally, during test time, each heat map is used to extract the corresponding pre-
dicted joint location by fitting a 2D Gaussian into a maximal lobe of the distribution,
to achieve subpixel accuracy. For that, the output heat map is first thresholded to
remove low energy noise and then Levenberg-Marquardt is used to find a mean of
the Gaussian.

The obtained predictions then serve as an input for an additional refinement step,
which is based on solving an unconstrained linear optimization problem (similar to
inverse kinematics), where the objective function is defined in the following way:

L(θ) =
∑

j∈J

(
∆j(θ) +Φj

)
, (62)

∆j(θ) =

{
||(u, v, I(u, v))j − (ũ, ṽ, I(ũ, ṽ))j||2 if ∃ I(u, v), I(ũ, ṽ)
||(u, v)j − (ũ, ṽ)j||2 otherwise

(63)

where (u, v) are image coordinates of a joint, in pixels, over which optimization
is performed, (ũ, ṽ) are image coordinates of the predicted joint location, I(u, v)
and I(ũ, ṽ) are corresponding depth values from the depth map, if they are known.
In other words, the first term ∆j(θ) expresses the Euclidean distance between the
ground truth and predicted locations in 3D, if there is no hole in the depth map in
either of those locations, and in 2D otherwise.

Finally, a linear penalty Φ enforces a constraint on the variables to stay in a pre-
defined range [Cmin, Cmax]:

Φj = αj[max(Cj −Cj,max) + max(Cj,min −Cj)], (64)
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Figure 35 – Image dependent pairwise relations (IDPRs) by Chen and Yuille [51].

where αj are weighting coefficients, which are set for each joint separately. Similar
to what we have discussed in Section 2.3.3, the particle swarm optimization method
with partial randomization (PrPSO) [331] was used to find the optimal solution.

In a full body pose estimation framework by Tompson et al. [137], refinement (by
removing outliers) is performed by introducing an additional spatial model consisting
of a number of priors on pairwise relations between anatomically connected body
joints (which generally are much more static than hand joints). This type of model
is frequently called a kinematic tree and it has been classically used in pose estimation
(even before the deep learning era).

In this case, the initial energy distribution in a form of a heat map pi produced by
a ConvNet is considered to be a unary term, and the final distribution is defined as
follows:

p̂ ∝ pλ
i

∏

j∈J ′
pi|j=0⃗ ∗ pj, (65)

where i ∈ J is a given joint, j ∈ J ′ are its neighboring joints, λ is an empirical
parameter reflecting the confidence of each joint’s unary distribution and pi|j=0⃗ is a
prior calculated as a histogram of locations of joint i given that the joint j is located
in the center of the image (the priors are estimated statistically from the training
data by simple histogramming).

Introduced terminology of unary terms and priors brings us closer to the one of
essential ambitions of the community, namely marrying deep learning or data rep-
resentations with graphical models (which becomes particularly meaningful in the
context of structured pose estimation).

Going in this direction, Chen and Yuille [51] have introduced a deep learning body
pose estimation framework including learning of data driven unary and binary terms
(or, as they call them, image dependent pairwise relations, IDPRs), which depend
on appearance of image patches containing body joints (see Figure 35). Since they
are image-dependent, however, they cannot be seen as prior in a Bayesian sense.

Since in this work, the relational graph representing the human body is formu-
lated as a tree, the inference is efficiently performed using dynamic programming.



3.6 pose estimation with deep learning 79

Figure 36 – An illustration of message passing between the face and shoulder joints in [295].

Finally, another work by Tompson et al. [295] shed some light on how joint train-
ing of deep learning and graphical models could be approximated in a single con-
nectionist framework and applied to full body pose estimation.

In their method, a spatial model is formulated similar to an MRF over distribu-
tions of spatial locations of body joints. By analogy with equation (65) [137], one
step of sum-product belief propagation is formalized as follows (see Figure 36 for a
graphical illustration of the idea):

p̂i =
1

Z

∏

j∈J ′

(
pi|j ∗ pj + bi,j

)
, (66)

where, as before, pj is a unary term (heat map), pi|j is a binary term (prior), bi,j

is a bias term (describing, in the terminology of graphical models, the background
probability of the message from joint i to joint j) and Z is a partition function and ∗
denotes convolution. The priors pi|j intuitively encode distributions of relative joint
positions.

In the neural network approximation, this equation is transformed to log space
and is reformulated as follows (where SoftPlus and ReLU are added for numerical
stability, and ei, ei|j are energies corresponding to pi, pi|j):

êi = exp

⎛

⎝
∑

j∈J ′

[
log

(
SoftPlus (ei|j) ∗ ReLU (ej) + SoftPlus (bi,j)

)]
⎞

⎠ , (67)

Simply speaking, the idea can be summarized as follows. The ConvNet producing
unary heat maps is first pretrained and its outputs (while being fixed) are used to
train the spatial model with the objective (to maximize) is given by eq. (67). The
convolutional weights in eq. 67 are first initialized by priors statistically estimated
from the training data and then learned, along with the bias terms. Finally, all con-
straints are relaxed and both networks are fine tuned together by back-propagation,
which further improves pose estimation performance.

We must note that the idea of structured prediction with deep learning, where unary
terms learned by a ConvNet are combined with MRF/CRF like models, has recently
become very popular and is extensively used, for example, in the field of scene
parsing [49].

While jointly exploiting graphical models and deep learning predictors is no
doubt an exciting direction of research, its applicability to the problem of hand pose
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Figure 37 – Hybrid model by Oberweger et al. [216]. On the left: functional overview (see
text for description), on the right: architecture of the synthesizer block.

has not yet been explored. Therefore, to conclude this review of prior art on hand
pose estimation, we would like to discuss another particularly interesting strategy.

Following the same recent trend of combining discriminative and generative coun-
terparts in a single framework, as in RDF-based strategies (Sec. 2.3.6), there was
an attempt to create a hybrid model for hand pose estimation with deep learning,
where discriminative and generative steps follow each other interchangeably until
convergence [216]. While the most straightforward approach would be to combine
discriminative convolutional learning with inverse 3D rendering, in this work the
authors go even farther and create a deep learning analog to the generative pipeline.

The general framework [216], shown in Figure 37, consists of three functional
blocks: predictor P, synthesizer S and updater U, where the first discriminative block
(predictor) is used to initialize the process, after which the generative synthesizer
and the discriminative updater acting together lead the training process to a locally
optimal solution.

The predictor P is implemented as a single scale deep ConvNet, which is trained,
as before, in a purely supervised way to produce the first round of predictions of
joint locations (by direct regression on their 3D coordinates). This set of predictions
is then used as an input of the synthesizer S which is trained to produce a depth
image of a hand given the set of joint locations describing its pose (see Figure 38).
Finally, an updater U takes both the original and the synthesized images as in input
and learns to output a correction of the initial prediction, which is then added to the
previous estimate. Then the process repeats, until, in theory, convergence, when the
joint positions do not longer change (in practice the number of iterations is set to 2).

The described process can be formalized as follows:

ỹ0 = P(I) (68)
Isynth = S(ỹ) (69)

ỹ(i+1) = ỹ(i) +U(I, Isynth), (70)

where I is an input image, Isynth is an image generated by the synthesizer S, ỹ0 is
the first round of outputs produced by predictor P, and ỹ(i) is a set of predictions
after iteration i.
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Figure 38 – On the left: original depth maps (above) and images rendered from ground
truth joint locations (below). On the right: synthetic images rendered from
anatomically unplausible hand poses [216].

The fact that the updater block takes as an input a pair of images, rather than a
single one, can be considered as a special form of data augmentation. Since for each
training image, an arbitrary number of pose hypotheses and, consequently, synthetic
counterparts can be generated, this strategy allows the model to explore pairwise
relationships between much larger sets of poses than what was initially covered by
the training data.

In this implementation, each functional block is trained separately by minimizing
a corresponding loss function (which is custom for the updater and is simply defined
as L2 norm for two other blocks):

P : argmin
θP

∑

j∈J

||ỹj − yj||
2
2 + γ||W||22 (71)

S : argmin
θS

1

|I|

∣∣∣∣S(ỹ)− I
∣∣∣∣2
2

(72)

U : argmin
θU

∑

j∈J

max
(
0, ||ỹ(i+1)

j − ỹj||2 − λ||ỹ(i)
j − ỹj||2

)
, (73)

where y is a ground truth vector, γ is a coefficient and W is a set of weights of the
predictor network, |I| is the number of pixels in the image I, and θP, θS, θU are sets
of internal parameters of predictor, synthesizer and updater blocks, respectively.

In discussing the loss functions, the authors particularly stress that direct search
for a set of outputs, which would directly minimize the mean square error between
the original and rendered images (skipping the updater block), leads to inferior
performance, due to the high probability of getting stuck in local minima, divergence
and anatomically implausible solutions. The same situation was observed regardless
of which optimization algorithm was used.

The discussed manuscript by Oberweger et al. [216] is concluded by drawing an
analogy between their hybrid strategy and biological systems, which we provide
here for the reader with no change (except for insertion of appropriate citations), as
a food for thought.

It has been shown that feedback paths in the brain and especially in the visual
cortex actually consist of more neurons than the forward path [71]. Their func-
tional role remains mostly unexplained [38]; our approach could be a possible
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explanation in the case of feedback in the visual cortex, but of course, this would
need to be proved. [216]

3.7 conclusion

In this chapter, we have reviewed several classes of classic deep learning architec-
tures, which are the most relevant to our work, and also talked about their most
recent applications in the field of human motion analysis.

As the reader might have noticed, deep learning methods are currently being applied
to nearly every related vision problem, with a tendency to replace traditional meth-
ods (discussed in Chapter 2), which are based on feature engineering. This migration
process, however, is far from its completion. We have shown, that in video analy-
sis, for example, careful preliminary estimation of optical flow remains crucial in
the state-of-the-art frameworks. Accordingly, there are still a great number of open
questions remain to be answered, both in the sense of developing general learning
paradigms, as well as their adaptation to the whole concept of motion.

In the following part of this manuscript, we will provide more detailed analysis
and introduce our contributions to some deep temporal architectures, applied in dif-
ferent contexts, as well as to multi-modal neural networks. Naturally, convolutional
learning will be a leitmotif of the rest of the thesis.
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M A I N PA RT





”Through seven figures come sensations for a man; there is hearing for sounds,
sight for the visible, nostril for smell, tongue for pleasant or unpleasant tastes, mouth for

speech, body for touch, passages outwards and inwards for hot or cold breath.
Through these come knowledge or lack of it.“

— Hippocrates

4
M U LT I M O D A L G E S T U R E R E C O G N I T I O N

In this chapter, we propose a strategy for gesture detection, classification and localiza-
tion, which is based on multi-scale and multi-modal deep learning. In our method,
each visual modality captures spatial information at a particular spatial scale (such
as motion of the upper body or a hand), and the whole vision based system operates
at three temporal scales. Key to our technique is a network training strategy which
exploits i) careful initialization of individual modalities; and ii) gradual fusion in-
volving random dropping of separate channels (which we call ModDrop) for learning
cross-modality correlations while preserving uniqueness of each modality-specific rep-
resentation.
We present experiments on the ChaLearn 2014 Looking at People Challenge gesture
recognition track, in which we placed first out of 17 teams, as well as our earlier
results on the ChaLearn 2013 Multi-modal Gesture Recognition dataset. We demon-
strate that fusing multiple modalities at several spatial and temporal scales leads to a
significant increase in recognition rates, allowing the model to compensate for errors
of the individual classifiers as well as noise in the separate channels. Furthermore, the
proposed ModDrop training technique ensures robustness of the classifier to missing
signals in one or several channels to produce meaningful predictions from any number
of available modalities. In addition, we demonstrate the applicability of the proposed
fusion scheme to modalities of arbitrary nature by introducing the audio channel.

4.1 introduction

As the reader can see from the previous chapters, automatic analysis of human
gestures is a quite old and well-researched problem. When we first started working
on this project, applying deep learning methods in this context was not a common
practice, although an amount of literature on traditional methods, based on either
general or ad-hoc hand specific descriptors, was established.

Even though an increasingly large number of different methods and techniques
have been proposed over the last few decades, making gesture recognition work
robustly in a real world setting still remains an open challenge. This applies partic-
ularly to the human-robot interaction scenario, which will be the primary context of
this chapter.

There are many potential reasons for a gesture recognition system to fail. First of
all, it concerns essential cultural and individual differences in tempos and styles of

85
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Figure 39 – Examples of two-scale gesture decomposition: upper body movement and hand
articulation. The gesture in the top row can be fully characterized by large-
scale body motion, whereas in the one below, subtle finger movements play the
primary role. A full body skeleton, extracted from range maps, can be seen as an
efficient way to summarize large-scale body motion, while raw images contain
additional information about hand poses, which is, however, more difficult to
extract.

human articulation, which, in addition, tend to change over time. Second, one needs
to keep in mind, that recognition in practice first implies detection, and besides relevant
gesture classes, there also exist infinitely many kinds of out-of-vocabulary movements,
which need to be modeled, in order to be correctly ignored. Furthermore, a vision-
based framework may suffer from typical acquisition-related problems, such as vari-
able observation conditions and noise in camera channels. An additional limitation
on a maximal model complexity, that can be afforded, is imposed by a requirement
of real-time processing, which is necessary in such applications to maintain a low
response time and to make the interaction process natural and intuitive.

An important advantage of modern mobile robots, however, is that they are typ-
ically equipped with a number of built-in sensors, including, among others, a color
and a range camera, and a microphone. All these sensors can capture gesture-related
information on different levels of abstraction (such as, for example, full body mo-
tion vs fine hand articulation – see Figure 39 for an illustration) and from completely
different perspectives (such as video vs audio signals).

Naturally, a visual signal is expected to play the most important role in gesture
recognition. In the human-robot interaction setting, however, a distance between a
person and a camera can, in a general case, be significant. This implies, that the
size of hands, and especially fingers, in images taken by a robot sensor in such
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conditions, will not exceed several pixels. Given that Kinect-like RGB-D cameras
typically have a quite low image resolution, fingers are therefore likely to be not
discernible.

At the same time, a body silhouette typically remains visible and may provide useful
cues for gestural interaction. However, a depth-based automatic tracking of a body
skeleton, which is currently a part of many standard camera SDKs, often fails – for
example, when an optical axis of the depth sensor coincides with extended limbs.
In addition, it may also fail on rare poses, or when hands are simply in immediate
proximity of other body parts. Furthermore, low-pass filtering, which is typically
employed to compensate for jitter in detected joint positions, may cause additional
delays in the skeleton localization.

Finally, an audio channel can convey additional relevant signal, if a gestural instruc-
tion to a robot is doubled verbally. But, apart from the fact that it is not always the
case, audio processing has its own associated challenges, including handling differ-
ences in voice tones, accents, styles and language vocabularies, as well as handling
typically present noise.

To summarize, in unconstrained real-world conditions, each of the mentioned sen-
sors is likely to fail, when acting alone. However, combining a number of different by
nature channels in a single multi-modal framework may open up new perspectives on
human-robot interaction, and dramatically increase effectiveness of such interfaces.

In this chapter, we define two main challenges, which we will aim to address.
Our first objective will be to find a way to effectively and efficiently learn human
gesture representations from a number of input signals, regardless of their nature, for
which we will adapt the deep learning methodology. Second, we will particularly
focus on aspects of fusion of multi-modal representations, learning cross-modality
correlations and ensuring robustness of the whole framework to signal corruption.

Before we proceed with description of our contributions, it is important to note
that all experiments, which will be presented in this chapter, have been conducted on
a standard multi-modal gesture recognition benchmark, rather than on our own data.
This was done, first of all, to ensure reproducibility of the results and for the sake
of comparison with existing state-of-the-art gesture recognition methods. However,
in the context of the industrial project, which funded our research, a new dataset
of human-robot interactions has been shot. Evaluation of the proposed methods on
this data is an ongoing work, which will not be presented in this thesis.

As we have already mentioned in Section 2.2.1, the only publicly available gesture-
oriented dataset, which contains a sufficient amount of training samples for deep
learning methods, was proposed for the ChaLearn 2013 Challenge on Multi-modal ges-
ture recognition [86] and, a year later, the same data corpus, but with significantly
cleaner annotations, was released under the umbrella of the ChaLearn 2014 Looking
at People Challenge (gesture recognition track) [87]. This dataset (which is lately re-
ceived the name of Montalbano dataset) contains multi-modal recordings of Italian
conversational gestures, along with out-of-vocabulary movements, performed by 36
different people, and the challenge if formulated as a gesture detection, recognition
and localization task. The deep learning method, which is described in this chapter,
placed first in the 2014 version of this competition.
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Figure 40 – Overview of our method on an example from the 2014 ChaLearn Looking at Peo-
ple dataset (gesture recognition track) [87]. Multi-modal and multi-scale gesture
decomposition is followed by classification by the deep ModDrop network and
is combined with parallel gesture localization.

A core aspect of our approach is employing a multi-modal convolutional neural
network for classification of so-called dynamic poses of varying durations (i.e. tempo-
ral scales). 1 Visual data modalities, which are integrated by our algorithm, include
intensity and depth video, as well as articulated pose information (or, a full body
skeleton) extracted from depth maps (see Figure 40). In our framework, we make
use of different data channels to decompose each gesture at multiple scales, not only
temporally, but also spatially, to provide context for upper-body body motion and
more fine-grained hand/finger articulation.

Furthermore, in this chapter, we pay special attention to developing an effective
learning algorithm, since training of large-scale multi-modal networks, like the one
described here, is a formidable challenge, especially when the amount of training
data is strictly limited. In addition, we introduce an advanced multi-modal training
strategy, dubbed ModDrop, that makes the network predictions robust to missing or
corrupted signals in one or more data channels.

Our gesture classification model outputs prediction updates in real-time in a
frame-wise manner. However, since temporal integration is involved, precision of
gesture localization suffers from a certain degree of inertia. Furthermore, due to high
similarity between gesture classes on pre-stroke and post-stroke phases, frame-wise
classification at that time is often uncertain and therefore erroneous. To compensate
for these negative effects, we introduce an additional module, which is necessary for
filtering, denoising and more accurate gesture localization.

1. In our earlier submission, created for the 2013 version of the challenge, we exploited a temporal
deep learning model (instead of dynamic poses), which we will also discuss in this chapter.
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Figure 41 – The deep convolutional multi-modal architecture operating at three temporal
scales corresponding to dynamic poses of three different durations. Although
the audio modality is not present in the 2014 ChaLearn Looking at People Chal-
lenge dataset, we have conducted additional experiments by augmenting the
visual signal with audio recordings from the 2013 version of the data.

Finally, we demonstrate, that the proposed scheme can be naturally augmented
with more data channels of arbitrary nature, by introducing an additional audio
signal to the classification framework.

To summarize, the major contributions of the work, which will be presented in
this chapter, are the following:

— we develop a deep learning-based multi-modal and multi-scale framework for
gesture detection, localization and recognition, which can be augmented with
channels of an arbitrary nature (demonstrated by experiments with an audio
signal);

— we propose and theoretically analyze the ModDrop procedure for effective fu-
sion of multiple modality channels, which targets learning cross-modality corre-
lations, while prohibiting false co-adaptations between data representations and
ensuring robustness of the classifier to missing signals.

4.2 gesture classification

On a large-scale multi-modal dataset, such as ChaLearn 2014 Looking at People [87],
we face several key challenges, among which are learning representations at multiple
spatial and temporal scales, integrating the various input modalities, and training a
complex model, in conditions when the number of labeled training examples is not
at web-scale, like in widely used static image datasets (ImageNet [162], for example).

In this section, we start our discussion by describing how the first two challenges,
namely learning and integrating data representations, can be overcome at an archi-
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tectural level. Our training strategy, addressing the third issue, will be the subject of
the next section (4.3).

The proposed multi-scale deep neural model consists of a combination of single-
scale paths connected in a parallel way (shown in Fig. 41). In this setting, each
path independently learns an input representation and performs gesture classifica-
tion at its own temporal scale, given input from RGB-D video and articulated pose
descriptors (audio channel can be also added, if available).

Predictions from all multi-modal paths are then aggregated through additive late
fusion. This strategy allows us to, first, extract the most salient (in a discriminative
sense) motions at a fine temporal resolution and, at the same time, consider them in
the context of global gesture structure, smoothing and compensating for per-block
errors typical for a given gesture class.

To differentiate among temporal scales, we introduce a notion of a dynamic pose.
Here and in the rest of this chapter, by dynamic pose we mean a sequence of video
frames, synchronized across modalities, sampled at a given temporal step s and
concatenated to form a spatio-temporal 3D volume.

Varying the value of s allows the model to leverage multiple temporal scales for
prediction, thereby accommodating differences in tempos and styles of articulation
of different users. Our model is therefore different from, for example, the one pro-
posed by Farabet et al. [90] for image segmentation, where by multi-scale the authors
imply a multi-resolution spatial pyramid, rather than a fusion of temporal sampling
strategies. Regardless of the value of step s, we analyze the same number of frames
(5) at each scale. Figure 41 illustrates the three single scale multi-modal paths, which
are used in this work (with s=2. . .4). At each temporal scale and for each dynamic
pose, the classifier outputs a per-class score.

All available modalities, such as depth, gray scale video, and articulated pose (as
well as the audio signal, if provided), contribute to the network’s prediction. In
particular, global appearance of each gesture instance is captured by the skeleton
descriptor, while video streams convey additional information about hand shapes
and their dynamics, which are crucial for discriminating between gesture classes
performed with similar full body poses.

Although inter-scale fusion in this framework is performed at the final stage by late
aggregation of per-classifier predictions, developing an optimal strategy for inter-
modality fusion is more challenging. Due to the high dimensionality of the data
input and the non-linear nature of cross-modality structure, an immediate concate-
nation of raw skeleton and video signals appears to be sub-optimal. However, initial
discriminative learning of individual data representations from each isolated channel
followed by fusion has proven to be efficient in similar tasks [212].

In our approach, discriminative data representations are first learned within each
separate channel, followed by joint fine tuning and fusion by a meta-classifier. This
procedure is performed independently at each scale, which we will describe in Sec-
tion 4.3 in more detail. The architecture of a single scale multi-modal predictor is
shown in Figure 42.

A shared set of hidden layers is employed at different levels for, first, fusing of
similar by nature gray scale and depth video streams and, second, combining the
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Figure 42 – Single-scale deep architecture. Individual classifiers are pre-trained for each
data modality (paths V1, V2, M, A) and then fused using a 2-layer shared fully
connected network initialized in a specific way (see Sec. 3.4). The first layers of
paths V1 and V2 perform 3D convolutions followed by 3D max pooling eliminat-
ing the temporal dimension (not to be confused with V1 and V2 in the human
visual system). The second layers on these paths are exclusively spatial. Weights
are shared across the V1 and V2 paths.

obtained joint video representation with the transformed articulated pose descriptor
(and audio signal, if available). To ensure detection functionality, rather than just
classification, all video fragments from the training data, which are not annotated
with any of target gesture classes, are used as zero-class samples.

Let us now describe, how learning gesture representations is performed, first sep-
arately from each input modality.

4.2.1 Articulated pose

A typical full body skeleton, tracked by modern consumer depth cameras and
associated middleware, usually consists of 20 (or fewer) body joints, which are iden-
tified by their coordinates in a 3D coordinate system, aligned with the depth sensor.
For our purposes, in the context of gesture recognition, we exploit only 11 of these
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Figure 43 – The proposed pose descriptor is calculated from normalized coordinates of 11
upper body joints, also including their velocities and accelerations, three sets of
angles (triples of joints forming inclination angles are shown on the right) and
pairwise distances. The body coordinate system (shown on the left) is calculated
from 6 torso joints (shown in dark gray on the left).

joints, which correspond to the upper body (shown in Figure 43). In our framework,
we also do not use wrist joints as their detected positions are often unstable.

As an input for the network, we formulate a pose descriptor, consisting of 7 logical
subsets, and allow the classifier to perform online feature selection.

We denote raw, i.e. pre-normalization, positions of 11 upper body joints in a 3D co-
ordinate system, which is associated with the depth sensor, as p(i)

raw = {x(i), y(i), z(i)},
i = 0...10, where i=0 corresponds to the HipCenter joint.

Following the procedure proposed by Zanfir et al. [334], we first calculate normal-
ized joint positions, as well as their velocities and accelerations, and then augment
the descriptor with a set of characteristic angles and pairwise distances (similar to
what is done in [43]).

— Normalized joint positions. The body skeleton is represented as a tree struc-
tured graph, with the HipCenter joint playing the role of a root node. For the sake
of normalization, the coordinates of the root node are subtracted from the rest
of the vectors praw, in order to eliminate the influence of the absolute position of
the body in space. To compensate for differences in body sizes, proportions and
shapes, we start from the top of the tree and iteratively normalize each skeleton
segment to a corresponding average bone length, which is statistically estimated
from all available training data.
This normalization step is performed in such a way, that absolute 3D positions
of body joints are corrected, while orientations of corresponding virtual bones,
connecting the joints, remain unchanged:

p(i) = p(i−1)
raw +

p(i)
raw − p(i−1)

raw

||p(i)
raw − p(i−1)

raw ||
b(i−1,i) − p(0)

raw, (74)
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where p(i)
raw is a vector of raw coordinates of the current joint, p(i−1)

raw is a vector
of raw coordinates of its parent in the tree structured graph, b(i−1,i) (i=1. . .10)
is a set of estimated average lengths of virtual bones, and p is a vector of cor-
responding normalized coordinates of the current joint. Once the normalized
joint positions are obtained, we perform Gaussian smoothing along the temporal
dimension (σ=1, filter size 5×1) to decrease the influence of skeleton jitter.

— Joint velocities are calculated as first derivatives of the normalized joint coordi-
nates (approximated as differences between joint positions in subsequent frames
at times t and t−1):

δp(i)(t) ≈ p(i)(t+ 1)− p(i)(t− 1). (75)

— Joint accelerations correspond to the second derivatives of the same positions:

δ2p(i)(t) ≈ p(i)(t+ 2) + p(i)(t− 2)− 2p(i)(t). (76)

— Inclination angles are formed by all triples of anatomically connected joints (i, j, k),
plus two virtual angles RightElbow–RightHand–HipCenter and LeftElbow-LeftHand-
HipCenter (shown in Figure 43, on the right),

α(i,j,k) = arccos
(p(k) − p(j))(p(i) − p(j))

||p(k) − p(j)|| · ||p(i) − p(j)||
. (77)

— Azimuth angles β provide additional information about the pose in the coor-
dinate space associated with the body. We apply PCA on the positions of 6
torso joints (HipCenter, HipLeft, HipRight, ShoulderCenter, ShoulderLeft, Shoulder-
Right) (shown in dark gray in Figure 43) to obtain 3 vectors, which form the
basis: {ux,uy,uz}, where ux is approximately parallel to the shoulder line, uy is
aligned with the spine and uz is perpendicular to the torso.
Then for each pair of connected bones, β are angles between projections of the
second bone (v2) and the vector ux (v1) on the plane, which is perpendicular to
the orientation of the first bone. As in the previous case of inclination angles, we
also include two virtual bones RightHand-HipCenter and LeftHand-HipCenter. The
azimuth angles are calculated as follows:

v1 = ux − (p(j) − p(i))
ux · (p(j) − p(i))

||p(j) − p(i)||2
,

v2=(p(k)−p(j))−(p(j)−p(i))
(p(k)−p(j))(p(j)−p(i))

||p(j) −p(i)||2
,

β(i,j,k) = arccos
v1 · v2

||v1||||v1||
.

(78)

Bending angles γ are a set of angles between a basis vector uz, perpendicular to
the torso, and normalized joint positions:

γ(i) = arccos
uz · p(i)

||p(i)||
. (79)

Pairwise distances. Finally, we calculate pairwise distances between all normal-
ized joint positions:

ρ(i,j) = ||p(i) − p(j)||. (80)
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Combined together, these seven set of features produce a 172-dimensional pose
descriptor for each video frame:

D = [p, δp, δ2p,α,β,γ,ρ]T . (81)

Finally, each feature is normalized to zero mean and unit variance, and a set of
consequent 5 frame descriptors, sampled at a given temporal stride s, are concate-
nated to form a 860-dimensional dynamic pose descriptor, which is further used
for gesture classification. The two subsets of features, which involve the first and
the second derivatives, contain dynamic information and for dense sampling may
be therefore partially redundant, as several occurrences of same frames are stacked
when a dynamic pose descriptor is formulated. Although theoretically unnecessary,
in this case, this formulation remains beneficial in the context of a limited amount
of training data.

The skeleton descriptor, calculated for each dynamic pose, is then fed to the corre-
sponding branch of the multimodal classifier (Path M in Figure 42), and this part of
the network, containing 3 fully connected layers, is pre-trained discriminatively for
classification of each dynamic block, based solely on the skeleton data.

4.2.2 Depth and intensity video: convolutional learning

In our approach, two video streams (RGB and depth) serve as a source of infor-
mation about hand pose and finger articulation. Accordingly, to focus specifically on
these objects of interest, each frame is used to extract a pair of bounding boxes,
which contain images of a right and left hand. These bounding boxes are cropped
around positions of the RightHand and LeftHand joints, provided by the skeleton
tracker.

In order to eliminate the influence of the person’s position with respect to the
camera and to keep the hand size approximately constant, the size of each bounding
box is normalized by the distance between the hand and the sensor, as follows:

Hx =
hxX

z · tan (αFoV,x)
, Hy =

hyY

z · tan (αFoV,y)
, (82)

where Hx and Hy are the hand sizes (in pixels) along the x and y axes of the camera
sensor, hx and hy are the physical sizes of an average hand, in mm, X×Y are the
frame dimensions, in pixels (i.e, for the typical case of VGA resolution, 640×480), z
is the distance between the hand and the camera in mm (estimated from the depth
map), and αFoV,x and αFoV,y are the camera field of view along the x and y axes
respectively (which are intristic parameters of the sensors).

Within each set of frames forming a dynamic pose, hand position is stabilized by
minimizing inter-frame square-root distances calculated as a sum over all pixels. As
in the case of skeleton descriptors, images of each hand, extracted from subsequent
frames, are concatenated to form a single spatio-temporal volume.

As a final preprocessing step, the color stream is converted to gray scale, and each
depth and intensity frame is normalized to zero mean and unit variance.

Since the main objective of the modality-wise pre-training step is to learn data
representations, which are discriminative for the task of gesture recognition, it is
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important to ensure that, in the case of video data, such a representation captures
elements of hand poses, which are specific and characteristic for a given gesture class.
Accordingly, during this pre-training step, we adapt the video pathways to produce
predictions for each hand, rather than for the whole gesture. For this purpose, left
hand videos are flipped about the vertical axis and combined with right hand in-
stances in a single training set.

At the same time, in reality, each gesture can be performed with either the right
or left hand, while some gesture classes require symmetric use of both hands. This
implies that a ground truth gesture label alone, without additionally specifying which
hand is active in this gesture, does not fully characterize hand movements and cannot
be directly used as a target for training for both hand images. In order to eliminate
this possible noise associated with switching from one active hand to another, we in-
troduce an additional step of unsupervised hand labeling. For one-handed gesture
classes, we detect the active hand and adjust the class label for the inactive one. In
particular, we estimate the motion trajectory length of each hand using the respec-
tive joints provided by the skeleton stream (summing lengths of hand trajectories
projected to the x and y axes):

∆ =
5∑

t=2

(∣∣x(t)− x(t− 1)
∣∣+

∣∣y(t)− y(t− 1)
∣∣
)
, (83)

where x(t) is the x-coordinate of a hand joint (either left or right) and y(t) is its
y-coordinate. As a result, the hand with a longer trajectory ∆ gets assigned to the
label class, while the second one is assigned the zero-class "no action" label.

Finally, for each channel and each hand, we perform 2-stage convolutional learn-
ing of data representations independently (first in 3D, then in 2D space, see Paths V1
and V2 in Figure 42) and then fuse the two streams with a set of fully connected hid-
den layers. Parameters of the convolutional and fully-connected layers at this step
are shared between the right hand and left hand pathways.

Our experiments have demonstrated that relatively early fusion of depth and in-
tensity features leads to a significant increase in performance, even though the qual-
ity of predictions obtained from each channel alone is unsatisfactory.

4.2.3 Audio stream

First of all, we would like to note, that in the context of gesture recognition, the
audio signal interests us mostly from the perspective of modeling fusion dynamics,
as this modality is fundamentally different from the video inputs. For this reason,
advancing the field of audio processing and speech recognition per se is something
which is out of the scope of this work.

Generally, recent works in the field of speech processing have demonstrated that
exploiting raw or slightly preprocessed audio data in combination with deep learn-
ing architectures leads to higher performance in comparison with traditional systems,
which are based on hand crafted features (typically from the family of Mel-frequency
cepstral coefficients, or MFCC). Deng et al. [74] from Microsoft have demonstrated
the advantage of using primitive spectral features, such as 2D spectrograms, in com-
bination with deep autoencoders. Ngiam et al. [212] applied the same strategy to
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the task of multi-modal speech recognition while augmenting the audio signal with
visual features.

Further experiments from Microsoft [74] have shown, that convolutional neural
networks appear to be especially efficient in this context, since they allow the cap-
ture and modeling of structure and invariances that are typical for speech. The most
advanced state-of-the-art speech recognition systems DeepSpeech [119] and Deep-
Speech2 [5] exploit a LRCN-like architecture [80], which we discussed in Section 3.5
and that includes a number of convolutional layers, applied along the temporal di-
mension, followed by a number of recurrent layers.

The ChaLearn 2013 dataset originally contained audio recordings, where study
participants, demonstrating Italian conversational gestures, were asked to verbally
express the meaning of the gesture they were performing, without being forced to
pronounce exactly the same words each time. While working on this project, we have
explored both traditional and deep learning approaches to the problem of learning
gesture representations from this signal, which we will briefly describe below.

4.2.3.1 Traditional framework

Our traditional audio processing module uses a simple word-spotting strategy,
which assumes that each gesture has a limited verbal vocabulary associated with it.
However, numerous practical issues such as illiterate speech, variations in dialects,
differences in speech levels (e.g. idiomatic, casual, even ungrammatical colloquial
speech vs grand style) make high demands on the level of system generalization.

In order to avoid using complex language models, we associate each class with a
single virtual gesture word, which is defined as a set of verbal words (in the linguistic
sense), word-combinations or short phrases, which have the same semantic meaning
and typically accompany each gesture from a given class.

For this purpose, we construct a dictionary by including all possible utterances,
which are associated with each gesture word in the form of sequences of phonemes.
Here we do not differentiate between slight variations in phrase constructions and
different pronunciations of the same phrase.

For example, an Italian gesture sei_pazzo? ("are you crazy?") can be associated
with phonetic transcriptions s-E-i-p-a-tts-o, m-a-s-E-i-p-a-tts-o and s-E-i-m-a-tt-o (cor-
responding to the sei pazzo, ma sei pazzo and sei matto orthographic forms). Depend-
ing on the training data and the task at hand, the dictionary can be populated by
hand, aiming on including the greatest possible number of ways to express every
single gesture.

The proposed traditional framework consists of two modules (implemented with
the Julius LVCSR engine [172]). First, Voice Activity Detection (VAD) is applied
to isolate single speech gesture events (with start and end timestamps), then an
automatic speech recognition (ASR) system takes over considering each isolated
event as a word instance.

Typically, ASR systems provide a lattice (also called a wordgraph), that for each rec-
ognized word gives timing, scores and possible connections with other recognized
words. For this task, we simplified the algorithm to produce an n-best list for every
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Figure 44 – Mel-scaled spectrograms of two pairs of audio samples corresponding to differ-
ent types of Italian conversational gestures: (a) cosa ti farei and (b) perfetto (shown
in false colors).

gesture event. As a result, each list contains an infinite-dimension sparse vector of
hypotheses, i.e. predictions of gesture classes with associated confidence scores.

As the last step, we select a fixed number W of hypotheses with the highest scores
and treat the ASR system output in the bag-of-words fashion calculating frequencies
of appearances of each of N gesture classes and normalizing the counts by W. As a
result, we obtain a distribution of class probabilities that has the same structure as
the outputs produced from the video and skeleton modalities.

4.2.3.2 Deep learning framework

Comparative analysis of our first phoneme recognition based approach, which we
have just described, and an alternative deep learning framework, which we describe
in this section, has demonstrated that the latter strategy resulted in significantly
better performance on the ChaLearn dataset 2013 (see Section 4.7 for more details).
Therefore, in the final version of this work, the audio signal is processed in the same
spirit as video data, i.e. by feature learning with a convolutional architecture.

In our deep learning framework, the preprocessing step consists of basic noise
filtering and speech detection by thresholding the raw signal along the absolute
value of the amplitude (τ1). Short, isolated peaks of duration less than τ2 are also
ignored during training.

Next, we apply a short-time Fourier transform on the raw audio signal to obtain
a 2D local spectrogram, which is further transformed to the Mel-scale to produce
40 log filter-banks on the frequency range from 133.3 to 6855.5Hz (i.e. the zero-
frequency component is eliminated). In order to synchronize the audio and visual
signals, the size of the Hamming window at each temporal scale is chosen to cor-
respond to the duration of a dynamic pose (for the corresponding sampling step s)
with half-frame overlap. A typical appearance of such Mel-scaled spectrograms for
two gesture classes is illustrated in Figure 44. As it was experimentally demon-
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strated by Deng et al. [74], the step of the scale transform is important to facilitate
the training process. Even state-of-the-art deep architectures, until recently, had
difficulty in learning these kind of non-linear transformations.

A one-layer convolutional network in combination with two fully-connected layers
form the corresponding path which we, as before, pre-train for preliminary gesture
classification from short utterances. The output of the penultimate layer provides
audio features for data fusion and modeling temporal dependencies (see Sec. 4.3).

4.3 training procedure

In this section, we describe the most important architectural solutions that were
critical for our multi-modal setting, including per-modality pre-training and aspects of
fusion such as the initialization of shared layers. Also, we introduce the concept of
multi-modal dropout (ModDrop), whose primary goal is to minimize the network
sensitivity to the loss of one or more channels.

4.3.1 Pretraining of per-modality channels

Depending on the source and physical nature of a signal, the input representation
of any modality is characterized by its dimensionality, information density, associ-
ated correlated and uncorrelated noise, and systematic errors in measurements. For
this reason, a single network, which takes as an input a combined collection of fea-
tures from all channels is suboptimal, since uniformly distributing the parameters per
input is likely to overfit one subset of features and underfit the others.

In this case, performance-based optimization of network hyper-parameters may
resolve in cumbersome deep architectures, which would require sufficiently larger
amounts of training data and computational resources, both at training and test
time. Furthermore, blind fusion of fundamentally different signals at early stages has
a high risk of learning false cross-modality correlations and dependencies among
them (see Section 4.7). In this project, we have demonstrated that in order to capture
the complexity within each channel, isolated pretraining of modality-specific input
layers and optimization of hyper parameters for each given subtask is required.

Let us once again recall Figure 42, which illustrates our developed architecture of
a single-scale deep multi-modal convolutional network. Initially, it starts with six
separate pathways: depth and intensity video channels for right (V1) and left (V2)
hands, a mocap stream (M) and an audio stream (A).

From our observations, inter-modality fusion is effective at early stages if both
channels are of the same nature and convey complementary information (rather than
double it). On the other hand, mixing modalities which are weakly correlated, is rarely
beneficial until the final stage. Accordingly, in our architecture, two video channels
corresponding to the same hand (hidden layers HLV1 and HLV2) are fused imme-
diately after the first steps of feature learning. We postpone any attempt to capture
cross-modality correlations of complementary skeleton motion, hand articulation
and audio (if present) until the shared layer HLS.
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Figure 45 – Illustration of the proposed fusion strategy. On the left: architecture of shared
hidden and output layers. Output hidden units on each path are first connected
to a subset of neurons of the shared layer. During fusion, additional connections
between paths and the shared hidden layer are added (not shown). On the right:
structure of parameters of shared hidden and output layers (corresponds to the
architecture above). Note that the image scale is chosen for clarity of description
and the real aspect ratio between dimensions of the matrix W1 is not preserved
(it has 1600 rows and 84 columns), the ratio between vertical sizes of matrix
blocks corresponding to different modalities is 9:9:7:7.

4.3.2 Initialization of the fusion process

Assuming that the weights of the modality-specific paths are pre-trained, the next
important issue is determining a fusion strategy.

Pre-training solves some of the problems related to learning in deep networks
with many parameters. However, direct fully-connected wiring of pre-trained paths
to the shared layer in large-scale networks is not effective, as the high degrees of
freedom afforded by the fusion process may lead to a quick degradation of pre-
trained connections. We therefore proceed by initializing the shared layer such that
a given hard-wired fusion strategy is performed, and then gradually open up to
more powerful fusion strategies.

In a number of works [4], it has been shown that among fusion strategies, the
weighted arithmetic mean of per-model outputs is a technique, which is the least sensitive
to errors of individual classifiers and which is therefore often used in practice as an
optimal solution outperforming more complex fusion algorithms.

Inspired by this idea, in our strategy, we consider the weighted mean as a simple
baseline and aim to initialize the fusion process with this starting point, with the follow-
ing intention to proceed with gradient descent optimization towards the minimum,
in case if it is not reached.

Unfortunately, implementing the arithmetic mean in the case of early fusion and
non-linear shared layers is not straightforward [108]. However, as it has been re-
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cently demonstrated by Baldi and Sadowski [18], in dropout-like systems [127],
activation units of complete models produce weighted normalized geometric mean of
per-model outputs. This kind of average approximates the arithmetic mean closer
than the simple geometric mean, and the quality of this approximation depends on
consistency in the neuron activations.

Based on these observations, we initialize the fusion process to a normalized geo-
metric mean of per-model outputs. For this purpose, data fusion is implemented at
two different layers: the shared hidden layer (named HLS in Figure 42) and the out-
put layer. The weight matrices of these two layers, denoted respectively as W1 and
W2, are block-wise structured and initialized in a specific way. Figure 45 illustrates
this situation. The left part of this figure shows the architecture in a conventional
form as a diagram of connected neurons. The weights of the connections are indi-
cated by matrices. On the right, we introduce a less conventional notation, which
allows one to better visualize and interpret the block structure.

Let us denote the number of hidden units in the modality-specific hidden layers
on each path as Fk, where k=1. . .K, and K is the number of modality-specific paths.
We set the number of units of the shared hidden layer to be equal to K·N, where N

is the number of target gesture classes in a given dataset (N=21).
As a consequence, the weight matrix W1 of the shared hidden layer HLS is of

size F×(N·K), where F =
∑

k Fk, and the weight matrix W2 of the output layer is
of size (N·K)×N. Weight matrix W1 can be thought of as a matrix of K×K blocks,
where each block k is of size Fk×N.

This structure imposes a certain meaning on the units and weights of the network.
Each column in a block (and each unit in the shared layer) is therefore related to
a specific gesture class. Let us stress here, that this block structure (and meaning)
is forced on the weight matrix during the initialization step and in the early phases of
training. If only the diagonal blocks are non-zero, which is forced at the beginning
of the training procedure, then individual modalities are trained independently, and
no cross correlations between modalities are modelled.

During the final phases of training, no structure is imposed and the weights can
evolve freely. Considering the shared layer, this can be formalized by expressing
activation of each hidden unit h(k)

l as follows:

h
(k)
l = σ

⎡

⎢⎣
Fk∑

i=1

w
(k,k)
i,l x

(k)
i + γ

K∑

m=1
m̸=k

Fn∑

i=1

w
(m,k)
i,l x

(m)
i + b

(k)
l

⎤

⎥⎦ , (84)

where h
(k)
l is unit l initially related to modality k, and all weights w are from weight

matrix W1. Notation w
(m,k)
i,l stands for a weight between non-shared hidden unit

i from the output layer of modality channel m and the given shared hidden unit l
related to modality k. Accordingly, x(m)

i is input number i from channel k. Finally,
b
(k)
l is a bias of the shared hidden unit h(k)

l .
The first term of equation (84) contains the diagonal blocks, and the second term

contains the off-diagonal weights. Setting parameter γ=0 freezes learning of the
off-diagonal weights responsible for inter-modality correlations.
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This initial meaning forced onto both weight matrices W1 and W2 produces a
setting where the hidden layer is organized into K subsets of units h(k)

l , one for each
modality k, and where each subset comprises N units, one for each gesture class.
The weight matrix W2 is initialized in a way such that these units are interpreted as
posterior probabilities for gesture classes, which are averaged over modalities by the
output layer controlled by weight matrix W2. In particular, each of the N×N blocks
of the matrix W2 (denoted as v(k)) is initialized as an identity matrix, which results
in the following expression for the softmax activated output units:

oj =
e
∑K

k=1

∑N
c=1 v

(k)
j,c h

(k)
c

N∑

i=1

e
∑K

k=1

∑N
c=1 v

(k)
i,c h

(k)
c

=
e
∑K

k=1 h
(k)
j

N∑

i=1

e
∑K

k=1 h
(k)
i

, (85)

where we used that v(k)j,c=1/K if j=c and 0 otherwise.
From equation (85), the reader may see, that the diagonal initialization of W2

forces the output layer to perform modality fusion as a normalized geometric mean
over modalities, as motivated in the initial part of this section. Again, this setting
is forced in the early stages of training and relaxed later, freeing the output layer to
more complex fusion strategies.

4.3.3 ModDrop: multimodal dropout

Inspired by the concept of dropout as the normalized geometric mean of an exponen-
tial number of weakly trained models, in our multi-modal setting we furthermore
aim on exploiting a priori information about groupings in the feature set. For that
reason, we initiate a process similar to dropout, but with a fixed number of models
corresponding to separate modalities, which are first pre-trained to convergence.

We have two main motivations for this scheme. First, we aim to learn a shared
model while preserving uniqueness of per-channel features and avoiding false co-
adaptations between modalities. Our second objective is to be able to handle missing
data in one or more of the channels at test time. Therefore, the key idea is to train
the shared model in a way that it would be capable of producing meaningful pre-
dictions from an arbitrary number of available modalities (with minimal loss in
precision when one or more signals are missing).

To formalize this idea, let us consider a set of Mk, k=1. . .K modality-specific
models. During pretraining, the joint learning objective can, in a general case, be
formulated as follows:

Lpretraining =
K∑

k=1

L
[
M(k)

]
+α

H∑

h=1

||Wh||
2, (86)

where each term in the first sum represents a loss of the corresponding modality-
specific model (in our case, negative log likelihood, summarized over all samples xd
for the given modality k from the training set |D|):

L
[
M(k)

]
= −

|D|∑

d=1

logo
(k)
Y (Y = yd|x

(k)
d ), (87)
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where o
(k)
Y is output posterior probability distribution over classes of the network,

corresponding to modality k, and yd is a ground truth label for a given sample d.
The second term in equation (86) is L2 regularization on all weights Wh from all

hidden layers h=1. . .H in the neural network (with corresponding coefficient α). At
this pretraining stage, all loss terms in the first sum are minimized independently
for each data channel.

Once the weight matrices W1 and W2 are initialized with pre-trained diagonal
elements and initially zeroed out off-diagonal blocks of weights are relaxed (which
corresponds to γ=1 in equation (84)), fusion is learned from training data. The
desired training objective during the fusion process can be formulated as a combi-
nation of losses of all possible combinations of modality-specific models:

LΣ =
K∑

k=1

L
[
M(k)

]
+

∑

k̸=m

L
[
{M(k),M(m)

]
+

∑

k̸=m̸=n

L
[
{M(k),M(m),M(n)}

]
+ . . .

+α
H∑

h=1

||Wh||
2 =

2K∑

m=1

L [Sm] +α
H∑

h=1

||Wh||
2, (88)

where notation {} stands for fusion and Sm is an element of the power set of all
models, which correspond to all possible combinations of modalities.

The loss function, which is formulated in equation (88), reflects the theoretical ob-
jective of the training procedure. In practice, however, we approximate this objective
by the ModDrop process, i.e. as iterative interchangeable training of one term at a
time.

In particular, the fusion process starts by joint training of the whole network,
through back propagation over the shared layers and fine tuning all modality specific
paths. As this step, the network takes as an input multi-modal training samples

{δ(k)x
(k)
d }, k = 1 . . . K, (89)

from the training set |D|, where for each sample each modality component x(k)d is
dropped (set to 0) with a certain probability:

q(k) = 1− p(k). (90)

In the last expression, p(k) is indicated by Bernoulli selector:

δ(k) : P(δ(k)=1) = p(k). (91)

Accordingly, one step of gradient descent, given an input with a certain number of
non-zero modality components, minimizes the loss of a corresponding multi-modal
subnetwork denoted as {δ(k)M(k)}. This idea aligns well with the initialization pro-
cess, described above, which ensures that modality-specific subnetworks that are
being removed or added by ModDrop are well pre-trained in advance.

4.3.4 Analysis of regularization properties

In the following discussion, we will study the regularization properties of modality-
wise dropout on inputs (ModDrop) on a simpler network architecture, namely a
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Figure 46 – Toy network architecture and corresponding notations, which are used for
derivation of ModDrop regularization properties.

one-layer shared network with K modality specific paths and sigmoid activation
units (illustrated in Figure 46). The obtained results can be then extended to the
case of more general deep learning architectures.

In this case, input i for modality k is denoted as x
(k)
i , and we assume that there

are Fk inputs, which are coming from each modality k (see Figure 46). Output unit l,
which is related to modality n, is denoted as o

(n)
l . Finally, a weight coefficient

connecting input unit x(k)i with output unit o(n)
l is denoted as w

(k,n)
i,l .

In our example, all output units are sigmoidal, i.e. each output unit ol, which is
related to modality n, is calculated as follows:

o
(n)
l = σ(s(n)

l ) =
1

1+ e−λs
(n)
l

, (92)

where λ is a coefficient and s
(n)
l is the input to the activation function, which is

coming to the given output unit from the previous layer:

s
(n)
l =

K∑

k=1

Fk∑

i

w
(k,n)
i,l x

(k)
i . (93)

During training, we minimize cross-entropy error, which is calculated from the
targets y (indices are dropped for simplicity):

E = −(y logo+ (1− y) log (1− o)), (94)

whose partial derivatives can be given as follows:

∂E

∂w
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∂E
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∂o

∂s

∂s

∂w
, (95)

where each of the three multipliers is calculated as:

∂E
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= −y
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∂s
= λo(1− o).
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∂E

∂w
= −λ(y− o)

∂s

∂w
. (96)

Along the lines of [18], we consider two situations corresponding to two different
loss functions: EΣ, corresponding to the complete network, where all modalities are
present, and Edrop where ModDrop is performed. In our case, we assume that whole
modalities (sets of units corresponding to a given modality k) are either dropped
(with probability q(k) = 1− p(k)) or preserved (with probability p(k)).

In a ModDrop network, this can be formulated such that the input to the activation
function of a given output unit l related to modality n (denoted as s̃

(n)
l ) involves a

Bernoulli selector variable δ(k) for each modality k which can take on values in {0, 1}

and is activated with probablity p(k):

s̃
(n)
l =
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i,l x

(k)
i . (97)

As a reminder, in the case of the complete network (where none of the channels is
dropped) the output activation is the following:

s
(n)
l =

K∑

k=1

Fk∑

i=1

w
(k,n)
i,l x

(k)
i . (98)

As the following reasoning always concerns a single output unit l related to modal-
ity n, from now on these indices will be dropped for simplicity of notation. There-
fore, we denote s = s

(n)
l , s̃ = s̃

(n)
l and w

(k)
i = w

(k,n)
i,l .

Gradients of the corresponding complete and ModDrop sums with respect to the
weights can be expressed as follows:
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Using the gradient of the error E
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, (100)

we can derive the gradient of the error for the complete network:
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In the case of ModDrop, for one realization of the network, where a modality is
dropped with corresponding probability q(k) = 1− p(k), indicated by the means of
Bernoulli selectors δ(k), i.e. P(δ(k) = 1) = p(k), we get:
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Taking the expectation of this expression requires an expression introduced in [18],
which approximates E[σ(x)] by σ(E[x]). We take the expectation over the δ(m) with
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the exception of δ(k)=1, which is the Bernoulli selector of the modality k for which
the derivative is calculated, giving:

E

[
∂Edrop

∂w
(k)
i

]

≈ −λ

⎡

⎣y− σ

⎛

⎝
K∑

m̸=k

p(m)
Fm∑

j=1

w
(m)
j x

(m)
j +

Fk∑

j=1

w
(k)
j x

(k)
j

⎞

⎠

⎤

⎦p(k)x
(k)
i ,

E

[
∂Edrop

∂w
(k)
i

]

= −λ

⎡

⎣y− σ

⎛

⎝
K∑

m̸=k

Fm∑

j=1

w
(m)
j x

(m)
j −

−
K∑

m̸=k

(1− p(m))
Fm∑

j=1

w
(m)
j x

(m)
j +

Fk∑

j=1

w
(k)
j x

(k)
j

⎞

⎠

⎤

⎦p(k)x
(k)
i ,

E

[
∂Edrop

∂w
(k)
i

]

= −λ

⎡

⎣y− σ

⎛

⎝
K∑

m=1

Fm∑

j=1

w
(m)
j x

(m)
j −

−
K∑

m̸=k

(1− p(m))
Fm∑

j=1

w
(m)
j x

(m)
j

⎞

⎠

⎤

⎦p(k)x
(k)
i . (103)

Taking the first-order Taylor expansion of the activation function σ around the
point s =

∑
m

∑
jw

(m)
j x

(m)
j gives:
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where σ ′(s) = σ(s)/(1− σ(s)). Plugging in equation (101), we get:
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If p(k)=p(m)=p, then p(1− p) = Var(δ). From the gradient, we can calculate the
error E integrating out the partial derivatives and summing over the weights i:

E ≈ pEΣ − λσ ′(s)Var(δ)
K∑

k=1

K∑

m ̸=k

Fk∑
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Fm∑

j=1

w
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i w

(m)
j x

(k)
i x

(m)
j . (106)

As it can be seen from the final expression (106), the error of the network with
ModDrop is approximately equal to the error of the complete model (up to a coeffi-
cient) minus an additional term including a sum of products of inputs and weights
corresponding to different modalities in all possible combinations. We need to stress
here that this second term reflects exclusively cross-modality correlations and does
not involve multiplications of inputs coming from the same channel.

To understand the influence of the cross-product term on the training process,
we analyze two extreme cases depending on whether or not the signals in different
channels are correlated.
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Let us consider two input units x
(k)
i and x

(m)
j , which come from different modal-

ities, and first assume that they are independent. As a rule, each network input is
preliminary normalized to zero mean and unit variance, therefore the expectation of
a product of two independent inputs is also equal to zero:

E
[
x
(k)
i x

(m)
j

]
= E

[
x
(k)
i

]
E
[
x
(m)
j

]
= 0. (107)

Furthermore, weights in a single layer of a neural network typically obey a uni-
modal distribution with zero expectation [268]. It can be shown [174], that under
these assumptions, Lyapunov’s condition is satisfied, and therefore Lyapunov’s cen-
tral mean theorem allows us to make a conclusion, that in this case, the sum of
products of inputs and weights will tend to a normal distribution, given that the
number of training samples is sufficiently large. As both input and weight distribu-
tion have zero mean, the resulting law is also centralized, and its variance is defined
by magnitudes of weights (assuming inputs to be fixed).

The important conclusion from the reasoning above is that assuming indepen-
dence of inputs in different channels, the second term in equation (106) tends to
vanish if the number of training samples in a batch is sufficiently large. In practice,
it shows that additional regularization on weights needs to be added to the error
function to prevent weights from exploding.

Now let us consider a more interesting scenario, when two inputs x
(k)
i and x

(m)
j ,

belonging to different modalities, are positively correlated. In this case, given zero
mean of distribution of each input, their product is expected to be positive:
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j

]
. (108)

Therefore, on each step of gradient descent, this term enforces the product of
weights w(k)

i w
(m)
j to be positive and therefore introduces correlations between them

(given, again, the additional regularization term preventing one of multipliers from
growing significantly faster than the other). The same logic applies if inputs are
negatively correlated, which would enforce negative correlations on corresponding
weights. Accordingly, for correlated modalities, this additional term in the error
function, introduced by ModDrop, acts as a cross-modality regularizer, which forces
the network to generalize by discovering similarities between different signals and
aligning them with each other by introducing constraints on corresponding weights.

Finally, as it has been shown by [18] for the case of dropout, the multiplier, which
is proportional to the derivative of sigmoid activation, makes the regularization
effect adaptive to the magnitude of the weights. As a result, it is strong in the
mid-range of weights, plays less significant of a role when weights are small and
gradually weakens with saturation of the neuron.

Our experiments have shown that ModDrop achieves the best results if combined
with dropout, which introduces an adaptive L2 regularization term Ê in the error
function [18]:

Ê ≈ λσ ′(s)Var(δ̂)
K∑

k=1

Fk∑

i=1

(w(k)
i x

(k)
i )2, (109)

where δ̂ is a Bernoulli selector, such that P(δ̂=1)=p̂, and p̂ is a probability of a given
input unit to be present in the given network realization.
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4.4 iterative fusion : practical recommendations

In this section, we will give a number of practical recommendations on how the effi-
ciency of our proposed iterative fusion strategy can be further improved, depending
on the nature of modalities which are being fused. The points described here sum-
marize our experience gained from long hours, which were spent on optimization
of the training process in this multi-modal framework (using a validation set). A
reader who is not interested in such nuances, is invited to skip this discussion and
proceed to the experimental Section 4.7.

As we have seen in the previous sections, proper initialization of the shared layer
before fusion is important. Otherwise, direct fully connected wiring of pre-trained
paths to the shared layer with randomly initialized weights leads to quick degre-
dation of pre-trained connections and as a result, our experience suggests, that the
joint representation performs worse than a linear combination of the predictions of
individual classifiers.

However, even in the case when all diagonal blocks in the shared weight matrix
are pre-initialized and out of diagonal blocks are zeroed out and relaxed, the net-
work still may struggle learning cross-modality correlations immediately. From our
observations, this is especially the case, when architectures of each modality-specific
paths are not perfectly optimized, and therefore perfomance of each individual per-
modality classifier alone is relatively low.

To address this issue and to stimulate learning on this fusion stage, one possible
strategy would be to feed a classifier with training data arranged in a specific mean-
ingful order, starting from clean samples, that are easy to classify, and proceeding to
the most complex ones, allowing the network to learn more and more sophisticated
concepts. In the machine learning community, this idea is widely known under the
name of curriculum learning [24]. Generally, this approach has shown to yield better
generalization in less time. Alternatively, the network itself can be changed in an
iterative way, evolving from a weak prediction model to more and more complex
prediction models. In this section, we employ the latter strategy, which we will first
explain intuitively, and then formalize.

In this sense, our per-modality pre-training step, when the network itself is di-
vided into meaningful parts, that are adjusted separately and then combined, can be
considered as the first step of this model growing process. Here, we begin training
by presenting modality-specific parts of the network with samples, where only one
modality is present. As we described earlier, in this way, we pre-train initial sets
of modality-specific layers that extract features from each data channel and create
more meaningful and compact data representations.

Once pre-training is completed, it is practically beneficial to proceed with integrat-
ing all channels, one by one, in an iterative manner. At this step, we choose the order
of modalities in a specific way, in order to first combine the data where the strongest
cross-modality structure is expected. This permits the model to gradually and effec-
tively learn a joint distribution, focusing its representational power on where it is
most effective, while keeping the input compact and the number of parameters rel-
atively small. In the task of multi-modal gesture recognition, the audio stream and
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articulated pose alone convey sufficient information about the gesture, i.e. recogni-
tion can be performed reasonably well from each channel independently. However,
data in the two video channels, representing the articulation of each of the two
hands, is complementary for the skeleton classifier and can improve its accuracy.

To ensure that the joint model is meaningful, both the shared representation layer
and output layer are first configured to produce an an averaged combination of
individual modalities (as described in Section 4.3.2). The network parameters are
further optimized starting from this initialization. We start the fusion procedure
by integrating two highly dependent video channels (V1 and V2) with shared pa-
rameters, then add the third visual modality (articulated pose, Path M) and finally
connect the audio Path A (see Figure 42).

The whole training-fusion process, which increases the power of the prediction
model iteratively by adding connections, will now be presented in a more formal
way. For clarity and ease of notation, the connectivity of the network will stay
constant over all iterations of the training procedure. In practice, a subset of weights
will be clamped to zero initially; these weights will then be freed iteratively and
allowed to be trained.

For this following discussion, we will once again exploit the network representa-
tion and notations introduced in Figure 45.

The training procedure starts by pre-training each modality separately. This is
equivalent to initializing the block diagonal elements of the matrix W1 with blocks
W

(1,1)
1 , W(2,2)

1 , W(3,3)
1 and W

(4,4)
1 , containing sets of weights corresponding to dif-

ferent modalities:

W1 =

⎛

⎜⎜⎜⎜⎝

W
(1,1)
1 0 0 0

0 W
(2,2)
1 0 0

0 0 W
(3,3)
1 0

0 0 0 W
(4,4)
1

⎞

⎟⎟⎟⎟⎠
. (110)

Accordingly, the set of biases b1 can be represented as a concatenation of k modality-
specific vectors:

b1 =
[
b
(1)
1 , b

(2)
1 , b

(3)
1 , b

(4)
1

]T
. (111)

The weights of the output layer, W2, are initialized as a concatenation of K identity
matrices of size N×N, W2 = [IN, IN, . . . , IN]T . Bias elements b2 are set to 0. This
setting can be interpreted as follows: (i) The structure of W1 forces each of the K

modalities to be represented by N units in the shared hidden layer, one for each
gesture class. Columns in the weight matrix are assigned to modality specific blocks,
and to gesture classes within each block. (ii) The diagonal/identity structure of
matrix W2 forces the output layer to create a sum over modalities. This restriction
of W2 corresponds to late fusion with constant identical weights. The prediction Pn
for class n can be written as follows:

Pn = softmax

[
K−1∑

k=0

IN · ReLU

(
F∑

i=1

UiW1,i,(kN+n) + b1,(kN+n)

)]

, (112)
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where {Ui}, i = 1 . . . F are neuron activations from the last hidden layer of each path
and the notation ReLU stands for rectified linear units.

During pre-training, only one path is connected (i.e. all elements of W1 except for
the corresponding block W

(k)
1 are set to zero) and weights and biases of the output

layer are fixed. The shared layer consists of rectified linear units so the combination
of the shared hidden and output layer works as a simple logistic regression unit for
the given channel. On this step, parameters of all modality-specific convolutional
and hidden layers belonging to the given path are trained by gradient descent, as
well as the weights and biases of the corresponding subset of neurons in the shared
layer.

The detailed training procedure, step by step, is shown on Fig. 47. Green blocks
in W1 show weights which are not clamped to zero, while gray blocks show weights
clamped to zero. The first three steps (top row) illustrate pre-training of 3 channels
corresponding to the intensity-depth, articulated pose, and audio streams. Since the
weights of paths V1 and V2 are tied, in this case the network is trained once on a
combined training set containing blocks corresponding to both hands. Then the pre-
trained connections are copied from one path to another and coefficients of matrix
W2 are normalized. This is denoted as:

W1 =

⎛

⎜⎜⎜⎜⎝

W
(1,1)
1 0 0 0

0 W
(2,2)
1 0 0

0 0 0 0

0 0 0 0

⎞

⎟⎟⎟⎟⎠
, (113)

W2 = [αd · IN, (1−αd) · IN, 0, 0]T , (114)

where W
(1,1)
1 =W

(2,2)
1 and the zero entries in W2 are zero-valued matrices. Here, the

hyper-parameter αd = 0.6 reflects the fact that there is a greater variety of training
data for the right hand in the dataset and predictions obtained from the first path
are more reliable.

After training all paths separately, additional connections between output hidden
layers on each path are added, and at the end the shared hidden layer becomes
fully connected. Returning to the matrix W1, it signifies initialization out of diag-
onal blocks, representing the structure among individual modalities. The block at
position (k1, k2), for example, contains weights representing interactions between
modalities k1 and k2.

From this moment on, all parameters of the preceding modality-specific layers are
kept fixed. We start the integration procedure with two video channels (step 4 on
Figure 47). In this case, the matrix W1 is masked for updating 4 blocks: W

(1,1)
1 ,

W
(2,2)
1 , W

(1,2)
1 and W

(2,1)
1 . The audio and articulated pose channels are discon-

nected and the corresponding parameters of the weight matrix W1 and biases b1 are
set to 0. Whereas previously, a hand-specific classifier was trained for distinguishing
individual hand movements, on this step gesture labels are used as a ground truth
and a combination of two hand movements is classified. On this and the following
steps, corresponding blocks of the weight matrix W2 (and biases b2) are initialized
as identity matrices (zeros) and trained.
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all visual channels

Step 6 (iterative fusion):
all channels

Figure 47 – Iterative training procedure. The areas shown in red correspond to parameters
which are set but kept fixed during the current iteration. The grean color sig-
nifies that the corresponding parameters are set and updated. Gray areas are
masked, i.e. the corresponding blocks are set to 0. The first raw: one-by-one pre-
training of the individual channels. The second raw: learning inter-modality
dependencies and final tuning.

After combining two video channels, articulated pose is added, and the mask on
the weight matrix W1 is extended to the size of 3×3 blocks. The third block of
the matrix W2 is initialized with an identity matrix and updated on each training
iteration. This is denoted as:

W1 =

⎛

⎜⎜⎜⎜⎝

W
(1,1)
1 W

(1,2)
1 0 0

W
(1,2)
1 W

(2,2)
1 0 0

0 0 W
(3,3)
1 0

0 0 0 0

⎞

⎟⎟⎟⎟⎠
, (115)

W2 = [(1−αm)W(1)
2 , (1−αm)W(2)

2 ,αmIN, 0], (116)

where, as before, αm is an empirical coefficient balancing initial contributions of
modalities which are being fused.
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Figure 48 – Energy structure of weights W1 after iterative training. Diagonal blocks are dom-
inated by individual modalities (right and left hands, articulated pose and au-
dio) out of diagonal elements reflect cross-modality correlations. As the reader
may see, the energy corresponding to video-skeleton crossterms is significantly
higher than on the step of visual-audio fusion.

The same procedure is finally repeated for the audio channel, where all feedfor-
ward weights and biases of the shared layers are once again updated and interactions
among the visual and audio data are learned. The weights are now:

W1 =

⎛

⎜⎜⎜⎜⎝

W
(1,1)
1 W

(1,2)
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1 0
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1 0
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1 0
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(4,4)
1

⎞

⎟⎟⎟⎟⎠
, (117)

W2 = [(1−αa)W
(1)
2 , (1−αa)W

(2)
2 , (1−αa)W

(3)
2 ,αaIN]. (118)

Normalization coefficients αm and αa are set proportionally to the performance
of individual modalities in the sole modality classification task (αm=0.7, αs=0.3).

The resulting weight matrix W1 after all training steps described above is shown
in Figure 48. The most discriminative articulated pose (third diagonal block) is high-
lighted. We can see that interacitons between the two video channels are especially
strong, while visual and audio dependencies are not that pronounced.

Finally, we would like to stress once again, that for the case, when each of the
modality-specific classifiers can ensure relatively strong performance, the signifi-
cance of the iterative character of the fusion process decreases. Our experiments
have shown, that in this case, training converges to approximately the same valida-
tion rates (even though it may take longer to converge, if all modalities are fused at
once).

In practice, however, multi-modal systems can be built from a great number of
weak classifiers, in which case introducing additional priors on the expected energy
of cross-modality correlations, by adjusting the training routine, can be highly bene-
ficial. We have observed such behavior in the same gesture recognition framework
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in our earlier experiments, when architectures of all modality-specific paths were
not yet sufficiently optimized, and proper ordering of fused channels turned out to
be crucial to boost network performance.

4.4.1 Additional remarks on introducing recurrent connections

Discussing practical recommendations for training, we have considered, so far, ex-
clusively inter-modality dependencies, staying at the level of classification of short
spatio-temporal blocks (dynamic poses). In our ealier research, however, we con-
sidered introducing in this multi-modal framework an explicit modeling of temporal
dependencies, by adding additional recurrent connections to the shared layer, denoted
as HLS in Figure 42.

This architecture was implemented in our submission for the Chalearn 2013 ges-
ture recognition challenge. Even though in the following year, in our Chalearn 2014
submission, the recurrent elements were replaced by multi-scale late fusion (for prac-
tical reasons), we describe our experience with training the multi-modal RNN for
completeness.

In these experiments, for integrating the data over time and capturing temporal
dependencies, we introduced additional recurrent connections to the shared layer,
which were trained at the last step, once modality fusion was completed. During
training, feedforward connections were renormalized, to avoid saturation, and kept
fixed.

In this case, to facilitate the training, the recurrent weights Wr were first initialized
to an identity matrix IN·K. This was done following the same logic, as in our initial-
ization of feedforward ways, and served for the sake of initiating the fusion process
starting from a meaningful averaging point. This idea of initialization of recurrent
connections with identity matrices was later proposed, developed and analyzed in
a paper by Le et al. [170].

Since we assume that all gestures are independent from each other and their order
is randomized, incorporating really long-term dependencies in the model is not
beneficial and even harmful. Therefore, for RNN training and testing we did not
use a continuous data stream, but rather split the input into sequences of a length
which roughly corresponded to the duration of a typical gesture.

4.5 inter-scale fusion at test time

Finally, we need to return to our particular application, in order to describe how
gesture recognition is implemented at test time, considering the proposed multi-
scale feedforward architecture.

Once individual single-scale predictions are obtained from each multi-modal clas-
sifier, we employ a simple voting strategy for fusing the output probabilities with
a single weight per model. We would like to note here, that introducing additional
per-class per-model weights and training meta-classifiers (such as an MLP) on this
step quickly leads to overfitting.

Accordingly, at each given frame t, per-class network outputs ok are obtained
via per-frame aggregation and temporal filtering of predictions at each scale with
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Figure 49 – Gesture localization. Top: output predictions of the main classifier; Bottom:
output of the binary motion detector. Noise at pre-stroke and post-stroke phases
in the first case is due to high similarity between gesture classes at these time
periods and temporal inertia of the classifier.

corresponding weights µs, which are defined empirically through cross-validation
on a validation set:

ok(t) =
4∑

s=2

µs

0∑

j=−4s

os,k(t+ j), (119)

where os,k(t+ j) is the score of class k obtained for a spatio-temporal block sampled
starting from the frame t+ j at step s.

Finally, each frame is assigned the class label l(t), which has the maximum value
of the posterior probability, integrated over all relevant dynamic poses and all tem-
poral scales:

l(t) = argmax
k

ok(t). (120)

The same logic can be applied in the case when temporal models are used, by
simplifying equation (119) for a single temporal scale.

4.6 gesture localization

With increasing duration of a dynamic pose, recognition rates of the main gesture
classifier increase at a cost of loss in precision in gesture localization. Using wider
sliding windows leads to noisy predictions at pre-stroke and post-stroke phases, in
some cases overlapping several gesture instances at once. On the other hand, too
short dynamic poses are not discriminative either, as most gesture classes at their
initial and final stages have a similar appearance (e.g. raising or lowering the hands).

To address this issue, we introduce an additional binary classifier, in order to
distinguish resting moments from periods of activity. Trained on dynamic poses at the
finest temporal resolution s=1, this classifier is able to precisely localize starting and
ending points of each gesture.
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The module is implemented based on the same articulated pose descriptor, which
is fed to an MLP. All training frames, labeled with some gesture class, are used
as positive examples, while a set of frames right before and after each gesture are
considered as negatives. This strategy allows us to assign each frame with a label
motion or no motion with accuracy of 98%.

Mapping from block-wise to frame-wise binary predictions for the motion detec-
tor is performed in the same fashion, as for the main classifier, using equations (119)
and (120). The resulting stream of predictions is a smooth stepwise function, where
switching from 0 to 1 indicates a beginning of a gesture, and switching from 1 to 0

marks its ending point (see the graph in the bottom of Fig. 49).
To combine the classification and localization modules, frame-wise gesture class

predictions are first obtained as described in Section 4.5. At this stage, the output
predictions at the beginning and at the end of each gesture are typically noisy (illus-
trated by the top curve at Fig. 49).

During the localization refinement, for each gesture, spotted by the main classifier,
its boundaries are extended or shrunk towards the closest switching point produced
by the binary classifier (given a certain range −τ . . . τ, in which the gesture bound-
aries are allowed to be adjusted).

4.7 experimental results

In this section, we will discuss and analyze empirical performance of the proposed
gesture recognition strategy, including each of the single channel classifiers as well
as the whole multi-modal setup.

As we have mentioned earlier, the results presented in the chapter, correspond to
our submission entries for two gesture recognition competitions, which were held
in 2013 and 2014. The two different architectures will be presented in reverse chrono-
logical order, starting with submission from 2014, after which we will mention key
observations from the earlier work, which we believe were important. Generally,
the more recent entry corresponds to a better optimized architecture, in which some
elements of its predecessor, however, were removed (such as recurrent connections
of the shared layer).

Both ChaLearn 2014 Looking at People Challenge (track 3) and ChaLearn 2013 Multi-
modal Gesture recognition datasets consist of 13,858 instances of Italian conversational
gestures performed by different people and recorded with a consumer RGB-D sensor.
In fact, the 2014 version represents an updated release of the same data corpus, as
in 2013, in which previously noisy annotations were manually corrected, and the
training and test sets were reshuffled. This version includes color, depth video and
articulated pose streams, while the earlier release also included audio recordings.

In both datasets, gestures are drawn from a large vocabulary, from which 20 cat-
egories are identified to detect and recognize, and the rest are arbitrary gestures
and movements [87]. Training data is accompanied by a ground truth label for each
gesture, as well as information about its starting and ending points. For these chal-
lenges, the corpus was split into development, validation and test set, where the test
data has been released to participants after submitting their codes.
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To further explore dynamics of learning in multi-modal systems, using a cleaner
ChaLearn 2014 version, we also augment this data with audio recordings extracted
from its previous release. As a result, in both versions of the dataset, each gesture
in a video sequence is accompanied with a corresponding vocal phrase bearing
the same meaning. Due to dialectical and personal differences in pronunciation
and vocabulary, gesture recognition from the audio channel alone appeared to be
surprisingly challenging.

To summarize, we report results on several different versions of the dataset:

— the original version used for the ChaLearn 2014 Looking at People Challenge (LaP)
(track 3, dedicated to gesture recognition),

— an extended version of the ChaLearn 2014 LaP dataset, augmented with audio
recordings taken from ChaLearn 2013 Multi-modal Gesture Recognition dataset,

— the original version of the data used for the ChaLearn 2013 Multi-modal Gesture
Recognition Challenge.

4.7.1 Evaluation metrics

Performance of all participants in both scientific competitions was evaluated based
on a number standardized metrics. While in the 2013 version of the dataset, the
objective of the challenge was to solely detect and classify a gesture, the more recent
version also required accurate gesture localization.

— ChaLearn 2014. In these experiments, we followed the evaluation procedure
proposed by the challenge organizers and adopted the Jaccard Index to quantify
model performance:

Js,n =
As,n ∩Bs,n

As,n ∪Bs,n
, (121)

where As,n is the ground truth label of gesture n in sequence s, and Bs,n is
the obtained prediction for the given gesture class in the same sequence. Here
As,n and Bs,n are binary vectors where the frames in which the given gesture
is being performed are marked with 1 and the rest with 0. Overall performance
was calculated as the mean Jaccard index among all gesture categories and all
sequences, with equal weights for all gesture classes.

— ChaLearn 2013. Following the methodology originally proposed by the chal-
lenge organizers for this earlier competition, we evaluate the performance as
the edit distance (ED), also known as Levenshtein distance, between an ordered se-
quence of gestures recognized by the system and the ground truth. Here, one
sequence corresponds to one video from the dataset. This metric is calculated
as a number of uniformly penalized edit operations (substitution, insertion, dele-
tion) necessary to transform one sequence into another. The overall score is a
sum of the edit distances over the whole test set divided by the real number of
gesture instances.

Finally, recall, precision or a per-dynamic pose classification accuracy may be re-
ported in some of the experiments, when appropriate.
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4.7.2 Baseline models

For the sake of self-assessment and more fair comparison of the proposed deep
learning strategy with a close traditional analog, we have implemented a baseline
model, which is based on an ensemble classifier trained in a similar iterative fash-
ion, but on purely handcrafted descriptors. It was done to explore the relative ad-
vantages (and disadvantages) of using learned representations and also the nuances
of fusion. In addition, due to differences in feature formulation as well as in the
nature of classifiers, we found it beneficial 2 to combine the proposed deep network
with the baseline method in a hybrid model as separately two models make different
errors (see Table 5).

A baseline has also been created for the audio channel, where we compare the
proposed deep learning approach with traditional phoneme recognition framework
in the given context.

4.7.2.1 Baseline visual models

We use depth and intensity hand images and extract three sets of features. HoG
features describe the hand pose in the image plane, and histograms of depths de-
scribe pose along the third spatial dimension. The third set reflects temporal dynam-
ics of the hand shape.

— HoG features from intensity images. First, we make use zero-mean and unit
variance-normalized intensity images to extract HoG features hint [67] at 9 ori-
entations from a 2-level spatial pyramid [168], i.e. from the whole image and a
magnified version of it containing 3×3 cells.

— Histograms of depths. 9-bin depth histograms hdep are extracted on two scales
from depth maps of both hands: from a whole map and from each quarter of its
upsampled version (by a factor of 2).

— Derivatives of histograms. First derivatives of HoGs and depth histograms are
calculated as follows:

δh(t) ≈ h(t+ 1)− h(t− 1), (122)

where h can stand for both hint and hdep. Combined together, these three sets of
features form a 270-dimensional descriptor [hint,hdep, δhint, δhdep] for each frame
and, consequently, a descriptor of dimension of 1350 for the dynamic pose of
each hand.

— Extremely randomized trees (ERT) [101] are adopted for data fusion and gesture
classification. Ensemble methods of this sort have generally proven to be espe-
cially effective in conjunction with handcrafted features. During training, we
followed the same iterative strategy as in the case of the neural architecture.
First, three ERT classifiers are trained independently on:

— skeleton descriptors (the same as described in Section 4.2.1),
— video features for the right hand,
— video features for the left hand.

2. for the sake of the competition
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Once training is completed, features from all modalities with importance above
the mean value are selected and once again fused for training a new, general
ERT classifier. Feature importance is calculated as mean decrease in impurity
(i.e. total decrease in node impurity weighted by proportion of samples reaching
that node and averaged over all trees [37]).
At each step, ERT classifiers are trained with 300 estimators, an information
gain criterion, no restrictions in depth and

√
Nf features considered at each step

(where Nf is the total number of features).

4.7.2.2 Baseline audio model

As a baseline method for the audio channel we employ a phoneme recognition
method described in Section 4.2.3.1 and implemented with the Julius engine [172].
In this approach, each gesture is associated with a pre-defined vocabulary of possible
ordered sequences of phonemes that can correspond to a single word or a phrase.
After spotting and segmenting periods of voice activity, each utterance is assigned
with a n-best list of gesture classes with corresponding scores. Finally, frequencies of
appearances of each gesture class in the list are treated as output class probabilities.

4.7.3 Experimental setup

The set of hyper-parameters of two deep architectures, used for two submissions,
slighly differ. In 2013, the color video signal was not used, and hand articulation was
estimated solely based on the depth channel. At the same time, the earlier prototype
had recurrent connections in the hidden layers, which were replaced by multi-scale
processing.

— Submission for ChaLearn 2014. Hyper-parameters of the main multi-modal
neural network for gesture classification are provided in Table 2, the architecture
is the same for each temporal scale. Gesture localization is performed with an
another MLP with 300 hidden units (see Section 4.6). All hidden units of both
modules (frame-wise classification and following localization) have hyperbolic
tangent activations. Hyper-parameters were optimized on the validation data
with early stopping to prevent the models from overfitting, using dropout regu-
larization. A single scale predictor operates at frame rates close to real time (24
fps on GPU). For simplicity, fusion weights for the different temporal scales are
set to µs=1, as well as the weight of the baseline model (see Section 4.5).

— Submission for ChaLearn 2013. The earlier version of the architecture is defined
by its parameters in Table 3 (including slight further optimization after the com-
petition). In this case, all hidden units had ReLU activations. For the skeleton
descriptor, we used only inclination, azimuth and bending angles, as well as
pairwise distances.

Both deep learning architectures are implemented with the Theano library [31].
Threshold values for the audio preprocessing are set to τ1=0.03 and τ2 = 0.2 s (see
Section 4.2.3.2). In both cases, training was performed by SGD using NLL loss.
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ChaLearn 2014: Network architecture

Layer Filter size / n.o. units N.o. parameters Pooling

Paths V1, V2

Input D1,D2 72×72×5 - 2×2×1

ConvD1 25×5×5×3 1 900 2×2×3

ConvD2 25×5×5 650 1×1

Input C1,C2 72×72×5 - 2×2×1

ConvC1 25×5×5×3 1 900 2×2×3

ConvC2 25×5×5 650 1×1

HLV1 900 6 481 800 -
HLV2 450 405 450 -

Path M

Input M 860 -
HLM1 700 602 000 -
HLM2 700 490 700 -
HLM3 350 245 350 -

Path A (optional)

Input A 40×9 - 1×1

ConvA1 25×5×5 650 1×1

HLA1 700 3 150 000 -
HLA2 350 245 350 -

Shared layers

HLS1 1600 3 681 600 -
HLS2 84 134 484 -

Output layer 21 1 785 -

Table 2 – Hyper-parameters chosen for the deep learning models (a single temporal scale)
for the ChaLearn 2014 submission. For each temporal scale the architectural param-
eters are the same, although each network is trained independently.
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ChaLearn 2013: Network architecture

Layer Filter size / n.o. units N.o. parameters Pooling

Paths V1, V2

Input D1,D2 72×72×5 - 2×2×1

ConvD1 25×5×5×3 1900 2×2×3

ConvD2 25×5×5 650 1×1

HLV1 900 3 240 900 -
HLV2 450 405 450 -

Path M

Input M 420 -
HLM2 300 126 300 -

Path A

Input A 40×9 - 1×1

ConvA1 25×5×5 650 1×1

HLA1 700 3 150 000 -
HLA2 350 245 350 -

Shared layers

HLS1 (recurrent) 1550 5 535 050 -
HLS2 84 130 284 -

Output layer 21 1 785 -

Table 3 – Hyper-parameters chosen for the deep learning models in our post-competition
experiments on ChaLearn 2013 Multi-modal Gesture Recognition dataset (where the
color video channel was not used).
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ChaLearn 2014: Official ranking

# Team Score # Team Score

1 Ours (submission) 0.850 7 Camgoz et al. [42] 0.747
2 Monnier et al. [195] 0.834 8 Evangelidis et al. [88] 0.745
3 Chang [45] 0.827 9 Undisclosed authors 0.689
4 Peng et al. [230] 0.792 10 Chen et al. [47] 0.649
5 Pigou et al. [232] 0.789 . . .

6 Wu [318] 0.787 17 Undisclosed authors 0.271

Ours, improved results after the competition 0.870

Table 4 – Official ChaLearn 2014 “Looking at people” Challenge (track 3) results (include only
visual modalities).

ChaLearn 2014: Post-challenge results

Model
Without
motion
detector

With
motion
detector

(Virtual)
rank

ERT (baseline) 0.729 0.781 (6)

Ours (submission) 0.812 0.849 (1)

Ours (submission) + ERT (hybrid) 0.814 0.850 1

Ours (improved) 0.821 0.868 (1)

Ours (improved) + ERT (hybrid) 0.829 0.870 (1)

Table 5 – Performance of different proposed architectures on visual modalities, during and
after the ChaLearn 2014 competition (reported as Jaccard Index). The table also
illustrates the contribution of the additional localization step in the overall scores.

4.7.4 Experiments on the original ChaLearn 2014 LaP dataset

The top scores of the ChaLearn 2014 “Looking at people” Challenge (track 3) are re-
ported in Table 4. We remind the reader, that in the official competition that year the
audio was not included in the modality set, therefore all results, presented in this
table, as well as in Table 5, we obtained using visual modalities only.

Our winning entry, correponding to a hybrid model (i.e. a combination of the pro-
posed deep neural architecture from and the baseline model) surpasses the second
best score by a margin of 1.61 points in terms of Jaccard index. We also note, that not
only the hybrid model demonstrates the best performance, but also the multi-scale
neural architecture alone, as well as the best performing single-scale neural model
alone still outperform the closest competitor (see Table 5 and 6).

In a post-challenge work, we were able to further improve the score by 2.0 percent-
age points to 0.870 by introducing additional capacity into the model (in accordance
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[Augmented] ChaLearn 2014: Per-scale / per-modality scores

Step Pose Video Pose & Video Audio All

2 0.823 0.818 0.856 0.709 0.870
3 0.824 0.817 0.859 0.731 0.873
4 0.827 0.825 0.859 0.714 0.880

all 0.831 0.836 0.868 0.734 0.881

Table 6 – Post-competition performance of the proposed deep learning architecture at differ-
ent temporal scales (where gesture localization is refined by the additional binary
motion detector). All numbers reported in the table are the Jaccard Index.

with Table 3), optimizing architectures of video and skeleton paths and employing a
more advanced training and fusion procedure (ModDrop), which was not used for
the challenge submission.

In the same Table 5, the reader can observe comparative performances of the base-
line and hybrid models for visual modalities. In spite of low scores of the isolated
ERT baseline model, fusing its outputs with the ones provided by the neural archi-
tecture is still slightly beneficial, mostly due to differences in feature formulation in
the video channel (adding ERT to mocap alone did not result in a significant gain).

Detailed information on the performance of neural architectures for each modality
and at each scale is provided in Table 6, including the multi-modal setting and per-
modality tests (not including, however, the baseline model).

Our experiments have proven, that necessary information can be extracted at any
scale given sufficient model capacity (which is typically higher for small temporal
steps). Trained independently, articulated pose models corresponding to different
temporal scales demonstrate similar performance, if predictions are refined by the
gesture localization module. Video streams, containing information about hand
shape and articulation, are also little sensitive to the sampling step and demonstrate
good performance even for short spatio-temporal blocks.

The overall highest score is nevertheless obtained in the case of a dynamic pose
with a maximal duration, roughly corresponding to the length of an average gesture
(i.e. 17 frames, corresponding to a temporal sampling stride s=4).

Tables 7 and 8 illustrate the performance of proposed modality-specific architectures
in comparison with results reported by other participants of the challenge. For
both visual channels, articulated pose and video data, our methods significantly
outperform the proposed alternative solutions.

For each combination, we also provide results obtained with a classification mod-
ule alone (without additional gesture localization) and coupled with the binary mo-
tion detector (see Table 5). The experiments have shown that the localization module
contributes significantly to overall classification-localization performance, expressed
in term of the Jaccard Index.



122 multimodal gesture recognition

ChaLearn 2014: Path M

Model Jaccard index

Evangelidis et al. [88], submitted entry 0.745
Camgoz et al. [42] 0.747
Evangelidis et al. [88], after competition 0.768
Wu and Shao [318] 0.787
Monnier et al. [195] 0.791
Chang [45] 0.795
Ours, submitted entry 0.808
Ours, after competition 0.831

Table 7 – Official ChaLearn 2014 “Looking at people” Challenge (track 3) results: performance
of methods proposed by different participants solely on mocap (articulated pose)
data.

ChaLearn 2014: Paths V1 + V2

Model Jaccard index

Wu and Shao [318] 0.637
Pigou et al. [232] 0.789
Peng et al. [230] 0.792
Ours, submitted entry 0.810
Ours, after competition 0.836

Table 8 – Official ChaLearn 2014 “Looking at people” Challenge (track 3) results: performance of
methods proposed by different participants on video data (including both depth
and RGB videos).

ChaLearn 2014: Path A

Method used Recall, % Precision, % F-measure, % Jaccard index

Phoneme recognition 64.70 50.11 56.50 0.256
Learned representation 87.42 73.34 79.71 0.545

Table 9 – Comparison of two approaches to gesture recognition from audio: a method based
on phoneme recognition (proposed in our earlier work, described in Sec. 4.2.3.1)
and the representation learning pipeline presented in Sec. 4.2.3.2. The additional
localization refinement step was not used in these experiments.
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Figure 50 – Examples of gestures: correctly recognized, correctly ignored, false detections.
Examples of gestures: correctly recognized and correctly ignored (the first row),
false detections due to high similarity between gesture elements (the second row).

An example of the final output of the proposed framework is shown in Figure 50,
including correct gesture detection and a failure case.

4.7.5 Experiments on the ChaLearn 2014 LaP dataset augmented with audio

In order to demonstrate how the proposed visual model can be further extended
with arbitrary data modalities, we introduce speech to the existing setup. In this
setting, each gesture in the dataset is accompanied by a word or a short phrase
expressing the same meaning and pronounced by each actor while performing the
gesture. As expected, introducing a new data channel resulted in significant gain
in classification performance which was increased by 1.3 points of the Jaccard index
(shown, along with other modalities, in Table 6).

As before, an audio-specific neural network was first optimized and discrimina-
tively pre-trained on the audio data alone. Next, the same fusion procedure was
employed without any change. In this case, the quality of predictions produced by
the audio path depends on the temporal sampling frequency: the best performance
is achieved for dynamic poses of duration ∼0.5 s (see Table 6).

Although the overall score after adding the speech channel is improved signif-
icantly, the audio modality alone does not perform so well, especially when the
additional refinement of gesture localization is not performed (shown in Table 9).
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This can be partly explained by natural gesture-speech desynchronisation, which
results in poor audio-based gesture localization. In this dataset, starting and ending
points of each gesture are annotated based on video recordings, while pronounced
words and phrases are typically shorter in time than movements. Moreover, depend-
ing on a style of each actor, vocalization can be either slightly delayed to coincide
with gesture culmination, or can be slightly ahead in time announcing the gesture.
Therefore, audio signal alone does not allow the model to robustly predict positions
of starting and ending points of a gesture, which results in poor Jaccard scores.

Table 9 shows comparative performance of the proposed solution based on learn-
ing representations from mel-frequency spectrograms with our baseline model, which
involves traditional phoneme recognition. Here, we report the values of Jaccard in-
dices for the reference, but, as it was mentioned above, accurate gesture localization
based exclusively on the audio channel is not possible for reasons outside of the
model’s control. To make a more meaningful comparison of the classification per-
formance, we report recall, precision and F-measure for each model. In this case we
assume that the gesture was correctly detected and recognized if temporal overlap
between predicted and ground truth gestures is at least 20%.

The obtained results show that in the given context employing the deep learn-
ing approach drastically improves performance in comparison with the traditional
framework based on phoneme recognition.

4.7.6 Experiments on the ChaLearn 2013 Multi-modal Gesture Recognition dataset

Finally, we report comparative performance of our earlier prototype, which was
used during our participation in ChaLearn 2013 Multi-modal Gesture Recognition chal-
lenge, as well as in some later work. Initially, we were placed the 6th (still outper-
forming other competitors on visual modalities), and after performing post-competition
analysis, we were able to improve our performance and achieve the highest score
(with architecture parameters provided in Table 2). The official challenge ranking is
provided in Table 10.

As the reader may see from Table 10, most of other participants used traditional
methods in their framework, which are based on feature engineering, random forest
classifiers or modeling temporal transitions with HMMs. More detailed scores, in-
cluding per-modality performance, are provided in Table 11, which also shows the
contribution of recurrent modeling.

As we have said before, the goal of this competition was to output a sequence
of gesture classes present in a given video, without indicating gesture positions.
To adapt to this protocol, in this framework, a predicted label for each dynamic
pose l(t) is calculated via finding the most probable class from the corresponding
distribution of probabilities o(t) produced by the RNN and thresholding:

l(t) =

⎧
⎪⎨

⎪⎩

argmax
k

(ok(t)), if max(ok(t)) > τ,

0, else.
(123)

where τ is a parameter which is set empirically and which we will explain in a
minute. Here, the zero value corresponds to the non-gesture class. Note, that the
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ChaLearn 2013: Official ranking

Rank ED Audio Pose Depth Color Method (keywords)

1 0.128 + + − − HMM, kNNa

2 0.154 + + − − random forest, kNN
3 0.168 + + − − random forest, AdaBoostb

4 0.172 + − + + Fisher vectors, SVM, GMM, kNN
5 0.173 − + + + HMM, GMM
6 0.177 + + + − neural architecture (ours)c

7 0.245 + + − − deep Boltzmann machines
8 0.258 + + − + HMM, SVMd

. . .

17 0.177 − − + − random forest

Ours, improved results after the competition

- 0.108 + + + − neural architecture (ours)

Table 10 – Official results of the ChaLearn 2013 Multi-modal Gesture Recognition Challenge
(based on [86]). Published work based on the entries includes: a. Wu et al. [319],
b. Bayer and Silbermann [22], c. our earlier work, and d. Nandakumar et al. [206].

ChaLearn 2013: Per-modality scores

Modalities used Recall Precision ED

Independent dynamic poses (MLP)

Depth 0.6569 0.6895 0.4454
Pose 0.7627 0.8010 0.3063
Audio 0.8588 0.8981 0.1665

Depth, Pose 0.7898 0.8285 0.2705

Depth, Pose, Audio 0.8896 0.9130 0.1255

Modeling temporal dependencies (RNN

#

)

(Depth, Pose, Audio)

#

0.9004 0.9236 0.1081

Random predictions 1.4747

Table 11 – Experimental results of per-modality tests on the ChaLearn 2013 Multi-modal Ges-
ture Recognition Challenge dataset. Increasing recall and precision and decreasing
edit distance indicate an improvement in performance.
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Input (I): 196 pixels
per segment Hidden layer 1 (HL1):

125 HU per segment

Hidden layer 2 (HL2):
40 HU per segment

10 output
classes

Figure 51 – "Multi-modal" setting for the MNIST dataset. Each digit is divided into 4 non-
overlapping segments. A set of modality-specific units HL1 is first discrimina-
tively pretrained on each image segment independently. The fusion is performed
with a shared layer HL2 and the output layer.

argmax expression in the equation above can also result in zero. All neighboring
dynamic poses assigned to the same labels are then aggregated into a single gesture.

Finally, it was communicated by the challenge organizers, that the number of ges-
ture events per video in the test set should be between 8 and 12, with an average
of 10. To adjust sensitivity of our gesture detector accordingly, we exploited this
information by adapting the threshold τ through a simple iterative procedure. We
proceeded through each test sequence, applying our model, and noting the esti-
mated number of gestures. If this was below 8, we lowered τ. If this was above 12,
we increased τ. This was repeated until convergence. Note that the test labels were
never touched during this procedure.

We also provide values of precision and recall, calculated by comparing output to
ground truth gesture sequences and establishing correspondences between detected
gestures (Table 11). This correspondence is a byproduct of the edit distance algo-
rithm. In this case we do not differentiate among gesture classes, i.e. each gesture
positively contributes to the overall recall and precision values if it was detected
with the correct label.

4.8 empirical evaluation of different fusion strategies

In this section, we explore relative advantages of different training strategies, in-
cluding such aspects as pre-training, initialization of shared layers and general and
modality-specific regularization (dropout, ModDrop).

We start with preliminary experiments on MNIST dataset [171], to illustrate the
idea, and then provide analysis and comparative scores on the ChaLearn 2014 LaP
dataset augmented with audio channel.
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MNIST: Fully connected setting

Training mode Errors # of parameters

Dropout, 784-1200-1200-10 [127] 107 2 395 210 N

Dropout, 784-500-40-10 (ours) 119 412 950 0.17N

Table 12 – Experiments on the original MNIST dataset: scores of fully connected single-
modal architecture and a more compact network, which was used as a starting
point for our experiments.

MNIST: “Multi-modal” setting, 196×4-125×4-40-10

Pretraining (HL1) Dropout (I) ModDrop (I) Errors # of parameters

no no no 142

118 950 0.05N
no yes no 123

yes no no 118

yes yes no 102

yes yes yes 102

Table 13 – Experiments on the original MNIST dataset: in the multi-modal setting, the first
hidden layer is split between 4 channels, which results in a 196×4(I)-125×4(HL1)-
40(HL2)-10 tree-structured architecture.

4.8.1 Preliminary fusion experiments on MNIST dataset

For our preliminary experiments, as a sanity check of the concept, we transform
the MNIST dataset [171] to imitate multi-modal data. A classic deep learning bench-
mark, MNIST dataset consists of 28×28 grayscale images of hand written digits
(from 0 to 9), where 60000 examples are used for training and 10000 images form
the test set. In this work, we use the original version of it with no noise and data
augmentation. We also avoid any additional data preprocessing and stay with the
simplest architecture consisting of a set of fully connected neurons.

To explore the idea of multi-modal fusion, we cut each digit image in 4 quarters
and assume that each image part corresponds to one modality (see Fig. 51). In spite
of the apparent simplicity of this formulation, in the following section we show that
obtained results reflect well the dynamics of a real multi-modal setup.

In this setting, we define two main objectives for the multi-signal training. First,
we optimize the architecture and the training procedure to obtain the best overall
performance on the full set of modalities. The second goal is to make the model
robust to missing signals or high level of noise in separate channels. To explore
the latter aspect, during test time we “cover” one or more image quarters (or add
pepper noise to one or more image parts).
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MNIST: ModDrop tests

Training mode Dropout Dropout + ModDrop

Missing segments, test error, %

All segments visible 1.02 1.02
1 segment covered 10.74 2.30
2 segments covered 35.91 7.19
3 segments covered 68.03 24.88

Pepper noise 50% on segments, test error, %

All clean 1.02 1.02
1 corrupted segment 1.74 1.56
2 corrupted segments 2.93 2.43
3 corrupted segments 4.37 3.56
All segments corrupted 7.27 6.42

Table 14 – Effect of the ModDrop training on MNIST dataset: this additional modality-wise
regularization makes the deep network predictions more robust to missing signals
and noise in one or several input channels.

Currently, the state of the art for a fully connected 782-1200-1200-10 network with
dropout regularization (50% for hidden units and 20% for the input) and tanh acti-
vations [127] is at the level of 107 errors on MNIST test set (see Table 13).

In this case, the number of units in the hidden layer is unnecessarily large, which
is a basis of efficiency of dropout-like strategies. When real-time performance is a
constraint, this redundancy in the number of operations becomes a serious limita-
tion. Instead, switching to a tree-structured network (i.e. a network with separated
modality-specific input layers connected with a set of shared layers) is helpful for in-
dependent modality-wise tuning of model capacity (which in this case does not have
to be uniformly distributed over the input units) and minimizing the redundancy.

For this multi-modal setting we use optimized number of units (125) for each
channel and do not apply dropout on the hidden units (which in this case turns out
to be harmful due to compactness of the model), limiting ourselves to 20% dropping
of input pixels. In addition, we apply ModDrop on the input, where the probability
of each segment to be dropped is 0.1.

The experiments shown in Tables 14 and 13 have demonstrated that:
— separate pre-training of "modality-specific" paths generally yields better perfor-

mance and leads to significant decrease in the number of network parameters
due to attributing each channel with proper model capacity (see the 4th row of
the bottom part of Table 13: in the case of pre-training the better performance
(102 errors) obtained with 20 times less parameters);

— additional modality specific regularization, ModDrop, while does not affect the
overall performance on MNIST (Table 13), makes the model significantly less
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step s = 2
step s = 3
step s = 4

(1) intensity video
(2) depth video
(3) video, one hand
(4) video, two hands
(5) articulated pose
(6) visual signal
(7) audio signal
(8) all, one scale
(9) all, multi-scale
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Figure 52 – Evolution of the validation error when the training moves from one stage to
another. Starting from single-modality inputs, the networks learns to fuse color
and video for each hand (point 3), then combines hands together (4), adds the
articulated pose information (6), then audio (7), and finally integrates per-block
predictions obtained at each of the temporal scales (9).

sensitive to missing signals and noise (see Table 14 where for each experiment
one or more image part is covered or corrupted).

4.8.2 Fusion experiments on the ChaLearn 2014 LaP dataset augmented with audio

In a real multi-modal setting, optimizing and balancing a tree-structured neural
architecture is an extremely difficult task, as its separated parallel paths vary in
complexity and operate on different feature spaces. The problem becomes even
harder given the constraint of real time performance and therefore it is necessary to
minimize the number of operations in the network.

The whole history of our experiments on the ChaLearn 2014 LaP dataset has
shown that insufficient modeling capacity of one of modality-specific subnetworks
leads to drastic degradation in performance of the whole system due to multiplica-
tive nature of the fusion process. Those bottlenecks are typically difficult to find
without thorough per-channel testing.

As we have previously described in this chapter, we start by optimizing the archi-
tecture and hyper parameters for each modality separately through a discriminative
pre-training. During the fusion, input paths are initialized with pre-trained values
and fine tuned while training the output shared layers.

Furthermore, the shared layers can also be initialized with pre-trained diagonal
blocks as described in Section 4.3.2, which results in significant speed up in the
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ChaLearn 2014: Training strategies

Pretraining Dropout Initial. ModDrop Accuracy, %

no no no no 91.94
no yes no no 93.33
yes no no no 94.96
yes yes no no 96.31
yes yes yes no 96.77
yes yes yes yes 96.81

Table 15 – Comparison of different training strategies on the ChaLearn 2014 LaP dataset
augmented with audio. “Pretraining” column corresponds to modality-specific
paths while “Initial.” indicates whether or not the shared layers have also been
pre-initialized with pre-trained diagonal blocks. In all cases, dropout (20%) and
ModDrop (probability 0.1) are applied to the input signal. The accuracy corre-
sponds to per-block (or per-dynamic pose) classification on the validation set.

training process. We have observed, that in this case, setting the biases of the shared
hidden layer plays the key role and leads to convergence to a better solution.

Evolution of the validation error at different stages of the training process on the
Chalearn 2014 LaP dataset in shown in Figure 52.

As in the case of MNIST experiments, we apply dropout on the input signal (with
the found optimal probability of dropping 20%), as well as per-channel ModDrop
with probability of 0.1. As before, dropping hidden units during training led to
degradation in performance in our architecture due to its compactness.

A comparative analysis of efficiency of training strategies is reported in Table 15.
Here, we provide scores in terms of a validation error of per dynamic pose classi-
fication as a direct indicator of convergence of the training process. Differences in
effectiveness of different strategies agree well with what we have observed previ-
ously on MNIST. Modality-wise pre-training and regularization of the input have
a strong positive effect on the performance. Interestingly, in this case ModDrop
resulted in further improvement in scores even for the complete set of modalities
(while simply increasing of dropout rate did not have the same effect).

Analysis of the network behavior in conditions of noisy or missing signals in one
or several channels is provided in Table 16. Once again, ModDrop regularization
resulted in much better network stability with respect to signal corruption and loss.

4.9 conclusion

In this part of the thesis, we have described and analyzed dynamics of a gener-
alized method for gesture and near-range action recognition from a combination of
range video data and articulated pose.

As we have seen, one of the key aspects of our multi-modal approach is that each
of the visual modalities captures spatial information at a particular spatial scale
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ChaLearn 2014: ModDrop tests

Modality Dropout Dropout + ModDrop

Accuracy, % Jaccard index Accuracy, % Jaccard index

All present 96.77 0.876 96.81 0.880

Missing signals in separate channels

Left hand 89.09 0.826 91.87 0.832
Right hand 81.25 0.740 85.36 0.796
Both hands 53.13 0.466 73.28 0.680
Mocap 38.41 0.306 92.82 0.859
Audio 84.10 0.789 92.59 0.854

Pepper noise 50% in channels

Left hand 95.36 0.874 95.75 0.874
Right hand 95.48 0.873 95.92 0.874
Both hands 94.55 0.872 95.06 0.875
Mocap 93.31 0.867 94.28 0.878
Audio 94.76 0.867 94.96 0.872

Table 16 – Effect of the ModDrop training on ChaLearn 2014 "Looking at people" dataset aug-
mented with audio channel. As before, ModDrop training results in more stable
output predictions even in conditions of missing or corrupted signals. Further-
more, In this case of real multi-modal setting it also improves model performance
on a complete set of modalities.

(such as motion of the upper body or a hand), and the whole system operates at
three temporal scales.

This model can be further extended and augmented with arbitrary channels (de-
pending on available sensors) by introducing additional parallel pathways, without
significant changes in the general structure (the concept is illustrated by augment-
ing the video with speech). Furthermore, multiple spatial and temporal scales per
channel can easily be integrated.

Finally, we have explored various aspects of multi-modal fusion in terms of joint
performance on a complete set of modalities as well as robustness of the classifier
with respect to noise and dropping of one or several data channels. As a result,
we have proposed a modality-wise regularization strategy (ModDrop) allowing to
obtain stable predictions even in the case of corrupted input signals.
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Quoy des mains ? nous requerons, nous promettons, appellons, congedions, menaçons,
prions, suplions, nions, refusons, interrogeons, admirons, nombrons, confessons, repentons,
craignons, vergoignons, doubtons, intruisons, commandons, incitons, encorageons, jurons,

tesmoignons, accusons, condamnons, absolvons, injurions, mesprisons, deffions, despittons,
flatons, applodissons, benissons, humilions, moquons, reconsilions, recommandons, exaltons,

festoyons, rejouïssons, complaignons, attristons, desconfortons, desesperons, estonnons,
escrions, taisons : et quoy non ? d’une variation et multiplication à l’envy de la langue.

— Michel de Montaigne, Essais

5
H A N D P O S E E S T I M AT I O N

In this chapter, we propose a strategy for hand pose estimation based on a deep regres-
sor, which is trained on two different kinds of input. Raw depth data is fused with an
intermediate representation in the form of a segmentation of the hand into parts. This
intermediate representation contains important topological information and provides
useful cues for reasoning about joint locations. The mapping from raw depth to seg-
mentation maps is learned in either an unsupervised or weakly supervised way from
two different datasets: (i) a synthetic dataset created through a rendering pipeline
including densely labeled ground truth (pixelwise segmentations); and (ii) a dataset
with real images, for which ground truth joint positions are available (but not dense
segmentations). Loss for training on real images is formulated in either an unsuper-
vised or weakly supervised fashion. In the former strategy, the network is trained to
penalize local and global inconsistencies in segmentation outputs. In the latter case,
the loss is generated from a patch-wise restoration process, which aligns tentative seg-
mentation maps with a large dictionary of synthetic poses. The underlying premise
is that the domain shift between synthetic and real data is smaller in the intermediate
representation, where labels carry geometric and topological meaning, than in the raw
input domain. Our experiments on the NYU Hand Pose Dataset [296] show that the
proposed training method, including the weakly supervised adaptation step, decreases
the error of joint localization by 15.7%.

5.1 introduction

In the previous chapter, we have discussed how information about fine move-
ments of hands and fingers can complement and enrich visual and audio signals when
being part of a multi-modal system. Now it is time to refocus our attention on the
hands specifically, and to discuss the problem of hand articulation analysis, starting by
identifying its challenges, its significance and its potential relation to other building
blocks of gestural interfaces.

Our next goal, which motivates this chapter, will be to go beyond gesture clas-
sification and to estimate hand motion with greater accuracy, allowing for richer
human-machine interactions. From an application perspective, this would ensure,
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Figure 53 – The role of hand pose estimation in a human-computer interaction framework
(see text for description).

for example, tight coupling between users and objects of interest, such as a cursor,
or a manipulated virtual object.

In general, the problem of hand pose estimation is conventionally formulated as
identifying positions of several key points in a hand, typically corresponding to its
anatomical joints – similar to what we have seen in the case of a skeletal represen-
tation of a full body, which is provided by the Kinect SDK. Numerous examples of
hand pose estimation frameworks, built on this principle, were given earlier in the
state-of-the-art review (see Chapters 2.3 and 3.6). Made possible by the introduction
of these cheap and reliable consumer depth sensors, such skeletal representations
have revolutionized the field, effectively putting visual recognition into the hands of
non-specialists in vision. However, while robust skeleton tracking is now possible
in real time, at least in controlled settings [266], most systems provide coarse body
joints and do not give the positions of individual joints of the hand.

Generally, estimating hand pose is inherently more difficult than tracking a full
body skeleton. Given the relatively low resolution of commodity sensors and the
strong noise they produce, fingers in these conventionally obtained depth images
are usually composed of only a few pixels. For this reason, existing methods of
hand pose estimation are mostly applicable in situations where the hands are close
to the sensor. This is suited to interfaces where the user interacts with a computer
in close proximity. However, applications in domotics, mobile robotics and games,
which interest us the most, do not fall into this category.

Thinking about possible ways of representing a hand pose, it is important to keep
in mind the final goal to which it serves. Assuming that the target application corre-
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sponds to one or another form of a gestural interface, Figure 53 summarizes several
ways of how hand pose estimation can be integrated in such a framework.
— Strategy (1) corresponds to our previously discussed case of establishing direct

correspondence between a depth map and a discrete gesture label, or other ges-
ture parameters. Except for the simplest case of gesture classification, to the
best of our knowledge, there is no existing work on direct continuous real-valued
mapping of raw depth frames into dynamically changing physical parameters of
virtual objects (such as, for example, motion, rotation or scaling).

— Strategy (2) reflects the principle of most existing pose estimation frameworks,
e.g. [296, 289, 290, 215, 216], where the goal is defined as minimization of the
error, in Euclidean sense, between estimated positions of hand joints and the
ground truth. The appealing advantage of this hand pose representation, ex-
pressed as joint positions, is that it allows for creating physical simulations by
parameterizing a virtual 3D model of a hand with obtained estimates. However,
the final stage of binding the obtained estimates and an interaction interface is
typically left out of the scope of these methods.

— Strategy (3) introduces an additional intermediate step into the joint position esti-
mation pipeline (such as, for example, hand segmentation into parts) [266, 152].
We will talk about potential advantages and shortcomings of this strategy a bit
later.

— Finally, strategy (4) expresses a hypothesis that in a more general case, instead
of joint positions, some different internal hand pose representation can be used
to build a gestural interface (such as, for example, segmentation of a hand into
parts, as shown in the figure).

It the pose itself is not required by the application and assuming an infinite amount
of annotated data (meaning annotations of target interactions), end-to-end training
exploiting Strategy (1) would probably be the best solution, except that this assump-
tion is hardly realistic. In practice, introducing intermediate representations and
auxiliary training objectives into the pipeline allows for enforcing certain priors and
injecting additional knowledge about hand structure in the model. In this setting,
however, the question which representation is optimal for which application, remains
open.

On the other hand, existence of an optimal representation per se would not provide
guarantees that such a representation could be learned, both in principle and, in
particular, given available resources for creating training data. In this perspective,
search for optimality is often substituted for an idea of creating a model, which could
encode as much as possible information about a hand in the most compact way. Another
desirable model property is generality, making it possible to use the representation
for a wide range of applications.

A practical issue which arises at this step is data annotation. Most existing hand
pose estimation benchmarks (see Chapter 2.3.1) contain a certain amount of depth
images annotated with key locations (joints). However, manual labeling of large
datasets is expensive and, in addition, inaccurate, especially when the image reso-
lution is low. Automated methods, in turn, exploit additional wearable equipment
or cumbersome acquisition setups requiring installation and calibration of several
sensors [296], with the output still being imperfect.
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Figure 54 – Our model learns from labeled synthetic data and unlabeled real data. Left:
synthetic depth input images, middle: ground truth segmentation maps for syn-
thetic input, right: Real depth images captured with the Kinect sensor.

Alternatively, 3D modeling software offers a tempting opportunity to create po-
tentially infinite amount of training data, which can be labeled, for example, not
only with joint positions, but also with hand segmentation into parts. While man-
ual pixel-wise annotation of large real datasets does not seem to be an option, such
a representation, being dense and essentially spatial, may provide useful cues for
learning. Examples of synthetic images with corresponding ground truth annota-
tions in the form of segmentation maps, as well as similar poses captured with a
real depth camera, are shown in Figure 54 (images taken from our dataset, which
was created for this work).

Having explored the end-to-end Strategy (1) in the context of gesture recognition
(see Chapter 4), this time we accommodate the setting of hand pose estimation to
go deeper into Strategies (3) and (4), exploring the idea of learning rich intermediate
representations both from solely synthetic annotated data and from heterogeneous
labels of mixed real-synthetic sets. In this context, we also implement and optimize
Strategy (2), which maps the depth maps into joint locations directly, and consider
it as a baseline for our work.

Segmentations of the body or hand into parts were one of the of the most widely
used representations when consumer depth cameras first became popular [266, 288].
A typical pipeline of such an approach is shown in Figure 53, path (3), where the
segmentation is first obtained from raw input data and then used as the unique input
for the estimation of joint positions.

This idea of using intermediate representations (i.e. segmentations, or others) re-
cently seems to have lost the favor of the machine learning community, which now
prefers direct regression of joints from raw data. However, in this work we argue
that an innovative use of segmentations can boost the performance of direct regres-
sion based methods, as long as the new representations are complementary rather
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than the sole input to regression. In this case, the main arguments we develop are
the following:

— an intermediate pose representation, which is defined as a segmentation into
parts, contains rich structural and topological information, since the label space itself
is structured. Labels have adjacency, topological and geometric relationships,
which can be leveraged and translated into loss for weakly-supervised training;

— a regression of joint positions is easier and more robust if the depth input is com-
bined with a rich semantic representation like a segmentation into parts, pro-
vided that this semantic segmentation is of high fidelity;

— incorporating additional rich information provided by a network, which is trained
on a vast amount of cheap and adjustable synthetic data, results in additional ex-
ternal supervision for the training, which is especially crucial when the size of a
labeled real dataset is strictly limited.

Along these lines, the research priorities of this work, along with the imposed
constraints, are formulated as follows.

(1) We explore frontiers and possibilities of a purely learning based and data-driven
strategy, with no explicit use of 3D rendering during test time.
(2) In order to minimize the burden of real data annotation, we create a large
dataset of densely labeled synthetic data, aiming on injecting knowledge from ren-
dered images in the training process.
(3) We perform unsupervised or weakly-supervised domain adaptation of the pre-
trained model from synthetic images to real depth maps (described below).
(4) Our primary goal is to perform accurate pose estimation from a single frame,
without incorporating dynamic information at this step of development.
(5) Real time inference (with no expensive optimization during test time) is neces-
sary, having in mind human-computer interaction as a target application.

To implement principles (2) and (3) in a structured machine learning setting, we
tackle the problem of pixel-wise segmenting hands into parts, first in a supervised man-
ner by training a deep neural network on synthetic data, followed by transductive
adaptation of the learned model from the synthetic to real domain. In this context,
we propose two domain adaptation scenarios, including unsupervised and weakly-
supervised formulations (illustrated in Figure 55), which we describe below.

— Weakly supervised adaptation.
In the weakly supervised setting, we present a new method for the regression of
hand joint positions, which is based on joint training of several learners working
on heterogeneous real-synthetic labels (see Figure 55b). For this setting, we em-
ploy an intermediate pose formulation based on a segmentation into parts and
show that this representation is a powerful tool in the special context of training
with multiple heterogeneous training sets. The segmentor is first trained on the
synthetic label data following weakly supervised adaptation of the model to the
real set and, finally, shifting to the new joint localization objective.
This model is learned from two training sets: (i) a (possibly small) set of real
images acquired with a consumer depth sensor. Ground truth joint positions
are assumed to be available and can be obtained, for instance, by multi-camera
motion capture systems; (ii) a second (and possibly very large) set of synthetic
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Figure 55 – Our adaptations of Strategies (3) (on the right) and (4) (on the left), introduced
in Figure 53, which are based on learning intermediate pose representations in
the form of hand segmentation into parts. The input image is taken from the
NYU Hand Pose Dataset [296].

training images produced from 3D models by a rendering pipeline, accompanied
by dense ground truth in the form of a segmentation into hand parts. This
ground truth is easy to come by, as it is usually automatically created by the
same rendering pipeline.

The proposed weakly supervised training-adaptation method exploits the rich ge-
ometrical and topological information of the intermediate representation. During
the training process, predicted segmented patches from real images are aligned
with a very large dictionary of labeled patches extracted from rendered synthetic
data. The novelty here lies in the fact, that we do not match input patches,
but patches taken from the intermediate representation, which include the to-be-
inferred pixel label and its local context.

— Unsupervised adaptation.
Another possible scenario is when annotations for the real data are not available
in any amount. In this case, our goal is to train the hand segmentor solely on
the synthetic data and then perform unsupervised model adaptation to the real
domain. This approach was explored in our earlier work, where we did not
perform estimation of hand joint positions, optimizing solely for the quality of
produced segmentation maps (in the spirit of Strategy (4), assuming that this
output can be useful for tasks other than estimating joint positions).
Our main contribution to the unsupervised adaptation scenario (shown in Fig-
ure 55a) is the way in which structural information is treated in the learning
process. Instead of combining the pre-trained predictor with a structured model,
for instance a graphical model, we integrate structural information directly into
the learning algorithm, aiming to improve the prediction model per se. As a
consequence, at test time, image pixels are classified independently, keeping the
advantages of low computational complexity and retaining the ability to paral-
lelize.
The information integrated into the training procedure is related to prior infor-
mation, which can be assumed over a segmented image. Our unsupervised
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method is based on two contributions. Firstly, contextual information is extracted
from local context in unlabeled samples through a learned model trained on syn-
thetic labeled examples. Secondly, similar to body part maps, ground truth hand
part segmentation maps are assumed to contain a single connected region per part,
which commonly holds if we ignore rare exceptions occurring due to severe self
occlusion. We show that this information can be formalized and leveraged to
integrate unlabeled samples into the training set in an unsupervised adaptation
setting.
Although we focus on the application of hand pose estimation, the proposed
method is also applicable to other problems involving segmentation of entities,
for example, objects, people, and scenes into parts.

In the following discussion, we will show that the intermediate representation (the
segmentation into parts) is able to improve pose regression performance if it is com-
bined with raw depth input, and a key component to obtaining this improvement is
getting reliable segmentations for real data. We will consider the weakly supervised
setting first, as this technology is more advanced and was evaluated in terms of ac-
curacy of hand joint positions, and then we will review our earlier findings in the
context of unsupervised transductive adaptation.

5.2 weakly supervised pipeline : method overview and definitions

In our framework, the set of training images consists of depth maps and is denoted
as D={I(i)}, i=1. . .|D|. Generally, in this chapter, we will talk about two training
subsets: synthetic data labeled with pixel-wise segmentations into parts and real data
weakly annotated with key points, a.k.a. joints.

Let us introduce notation that will be used to formalize the training algorithm.

Inputs and corresponding annotations
— From the entire set of depth maps, L samples are synthetic and densely annotated,

which we denote as DS={I
(i)
S }, where i=1. . .L, L<|D|.

— The subset of weakly labeled real images is denoted as DR = {I
(i)
R }, where i=L+1..|D|.

— The set of ground truth segmentation maps corresponding to the synthetic data DS

is denoted as G = {Y(i)}, where i=1. . .L, L"|D|.
— The set of ground truth hand joint locations corresponding to the subset of real

data DW is denoted as J = {J(i)}.
— Pixels in the different maps are indexed using a linear index j: I(i,j) denotes

the jth pixel of the ith depth map I.
The synthetic frames are rendered using a deformable 3D hand model. A large

variety of viewpoints and hand poses (typical for interactive interfaces) is obtained
under manually defined physical and physiological constraints. In Section 5.4.2.1,
we will provide a more detailed description of the data creation process. Our in-
termediate representation is a segmentation into 20 parts, illustrated in Figure 63.
Among these, 19 parts correspond to finger parts, 1 part to the palm. The back-
ground is considered to be subtracted in a preprocessing step and is not part of the
segmentation process.
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For the sake of generalization, and also keeping in mind that manual dense la-
beling of real data is tedious and impractical, we do not assume that ground-truth
segmentation of real data is available in any amount. Instead, in parallel with su-
pervised learning on annotated synthetic images, we use weakly labeled frames (i.e.
frames annotated only with positions of key points, or joints) for global optimization
and model adaptation during training time.

Learning pathways

— fs(θs) : I(i,j)→Y
(i,j)
s denotes a segmentation learner with parameters θs map-

ping each pixel j=1 . . .M in a depth map i (having depth value I(i,j)) into a
corresponding pixel of an output segmentation map Ys with elements Y(i,j)

s , hav-
ing one of possible K possible values corresponding to hand segments, indexed
by k=1 . . . K. Recall that Y with no subscript stands for ground truth segmentation
maps.

— fr(θr) : {I, Ys}→J denotes a regression learner parameterized by vector θr, which
learns a mapping from raw depth data combined with segmentation maps (out-
put by the segmentation learner fs(θs)) to the set of joint positions J.

The probabilistic setting of our training algorithm makes it convient to introduce
a difference between a random variable and its realization. In the following and as
usual, uppercase letters denote random variables or fields of random variables and
lower case letters denote realizations of values of random variables or of fields of
random values. Realizations of random fields Ys, Yc and Y defined above are thus
denoted as yc, yd and y, respectively. Furthermore, P(X=x) will be abbreviated as
P(x) when it is convenient.

Considering Strategy (3) from Figure 53 and setting the target goal as localization
of hand joint positions, our learning pipeline can be decomposed into three main
strategic steps:

(1) supervised pre-training of the segmentation learner fs(θs) on the synthetic train-
ing data DS,
(2) weakly supervised adaptation of the segmentation learner fs(θs) to the real data
DR (where the labels of the real data, i.e. joint locations, are used to guide the
process),
(3) training the regression learner fr(θr) using the weakly labeled real set DR.

In practice, we do not make a strong differentiation between steps (1) and (2). In-
stead, during training, once the segmentation learner starts to produce meaningful
predictions on the synthetic data, we proceed with injecting a gradually increasing
amount of real samples and perform supervised and weakly-supervised updates in-
terchangeably. The training loss function Q in this case is formulated as follows:

Q = Qs +Qr, (124)

where Qs is a synthetic (supervised) term and Qr is a real (weakly-supervised) term.
In the following sections, we will first discuss the pre-training step with the Qs ob-
jective (Section 5.2.1) and then proceed with describing our strategy for formulating
the weakly supervised term Qr (Section 5.3).
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Figure 56 – The proposed deep convolutional architecture of the segmentation learner
fs(θs).

5.2.1 Segmentation Learner: supervised training

The supervised term in equation (124) classically links the predicted class of each
pixel to the ground truth hand part label. For the segmentation learner fs(θs) it is
formulated as negative log-likelihood (NLL) for pixel-wise classification:

Qs(θs |DS ) = −
L∑

i=0

M∑

j=0

logP
(
Y
(i,j)
s = y(i,j)

∣∣∣I(i,j)S ; θs
)

. (125)

Recall here, that Y(i,j)
s denotes the output of the segmentation learner and y(i,j) is a

ground truth label for the pixel I(i,j)S .
Structurally, the segmentation learner fs(θs) is based on a modified convolutional

network architecture (see Figure 56). We will describe its parameters in more detail
in the experimental part (Section 5.4). At this step, however, it is important to un-
derstand that the generated segmentations have the same spatial resolution as the
input depth maps.

5.2.2 Weakly supervised transductive adaptation

In this section, we present a weakly supervised strategy for performing transductive
adaptation of the segmentation learner fs(θs) to the real data.

In our weakly supervised setting, we rely on ground truth annotations for joint
positions J, which can be obtained in several ways: in [266], external motion capture
using markers is employed, while in [296], training data is acquired in a multi-view
setting from three different depth sensors and an articulated model is fitted offline
(the NYU Hand Pose Dataset presented in the latter paper is used in our work, along
with our synthetic data).
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Figure 57 – A functional overview of the weakly supervised transductive adaptation pipeline.
Blue data flow corresponds to supervised training of the segmentation learner
fs(θs). Green flow corresponds to weakly supervised training of fs(θs). Red
arrows show supervised training of the regressor fr(θr), which will be discussed
in Section 5.2.4.

The proposed method leverages two different mappings learned on two training
sets. The functional decomposition as well as the dataflow during training and
testing are outlined in Figure 57. In this case, the segmentation learner fs(θs) is
pre-trained on the synthetic data DS (shown in blue), and then fine-tuned in a sub-
sequent step by weakly supervised training on real data DR, resulting in a refined
prediction model. This latter step is shown as green data flow in Figure 57.

At the adaptation step, since no ground truth segmentation maps exist for the real
data, we generate a loss function for training based on two sources:

— sparse information in the form of ground truth joint positions J, and
— a priori information on the local distribution of part labels on human hands

through a patch-wise restoration process, which aligns noisy predictions with
a large dictionary of synthetic poses.

The weakly supervised training procedure is shown as green data flow in Fig-
ure 57. Each real depth image is passed through the pre-trained segmentation
learner fs(θs), resulting in a segmentation map Ys. This noisy predicted map is
restored through a restoration process fnn, described further below.
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Figure 58 – Illustration of the patchwise restoration process. On the left: search for the
nearest neighbor in the patch dictionary, on the right: integration procedure.

The quality of the restored segmentation map is estimated by comparing it to the set
of ground truth joint positions J for this image. In particular, for each joint, a cor-
responding part-label is identified, and the barycenter of the corresponding pixels
in the segmentation map is calculated. A rough quality measure for a segmentation
map can be given as the sum (over joints) of the L2 distances between barycen-
ters and ground truth joint positions. The quality measure is used to determine
whether the restoration process has lead to an improvement in segmentation quality,
i.e. whether the barycenters of the restored map are closer to the ground truth joint
positions than the barycenters of the original prediction. For images where this is
the case, the segmentation learner is updated for each pixel, minimizing NLL using
the labels of the restored map as artificial ground truth.

5.2.3 Patchwise restoration

For the restoration step, we proceed patchwise and extract patches of size P×P

from a large set of synthetic segmentation images G, resulting in a dictionary of
patches P={p(l)}, l∈{1 . . .N} (shown in Figure 58).

In our experiments, we used patches of size 27×27 and a dictionary of 36 mil-
lion patches was extracted from the training set (see Section 5.4). As also reported
in [275], the range of poses which can occur in natural motion is extremely large,
making full global matching with pose datasets difficult. This motivates our patch-
based approach, which aims to match at a patch-local level rather than matching
whole images.

A given real input depth image IR is aligned with this dictionary in a patchwise
process using the intermediate representation. For each pixel j (here, a single index
j identifies a given pixel, for compactness of notation), a patch qj is extracted from
the segmentation produced by the learner fs(θs), and the nearest neighbor is found
by searching the dictionary P:

(q(j)) = arg min
p(l)∈P

dH(q(j),p(l)), (126)
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where dH(q,p) is the Hamming distance between the two patches q and p. The
search performed in equation (126) can be calculated efficiently using KD-trees.

In the naïve setting, a restored label for pixel j could be obtained by choosing
the label of the center of the retrieved patch n(j). This however leads to noisy
restorations, which suggest the need for spatial context. Instead of choosing the
center label of each patch only, we propose to use all of the labels in each patch (see
Figure 58). For each input pixel, the nearest neighbor results in a local window of
size W×W are integrated. In particular, for a given pixel j, the assigned patches n(k)

of all neighbors k are examined and the position of pixel j in each patch is calculated.
A label is estimated by voting, resulting in a mapping fnn(.):

fnn(q
(j)) = arg max

l

∑

k∈W×W

I(l = n(k,j@k)), (127)

where n(k)=(q(j)) is the nearest neighbor result for pixel k, n(j,m) denotes pixel
m of patch n(j), I(ω)=1 if ω holds and 0 else, and the expression j@k denotes the
position of of pixel j in the patch centered on neighbor k.

This integration bears some similarity to work by Ganin and Lempitsky [97],
where information of nearest neighbor searches is integrated over a local window,
albeit through averaging a continuous mapping. It is also similar to the patchwise
integration performed in structured prediction forests [160].

If real-time performance is not required, the patch alignment process, formalized
by equation (126), can be regularized with a graphical model including pairwise
terms favoring consistent assignments, for instance, a Potts model or a term favor-
ing patch assignments with consistent overlaps. Interestingly, this produces only
slight gains in performance, especially given the higher computational complexity.
Moreover, the gains vanish if local integration (equation (127)) is added.

5.2.4 Regression Learner

Finally, the regression learner fr(θr), taking a real depth image IR as an input and
producing 3 coordinates for a given joint, also incorporates the information provided
by the segmentation learner fs(θs) into its training.

Structurally, it resembles an inception unit [285, 179] where the output of the
first convolutional layer after max pooling as passed through several parallel feature
extractors capturing information at different levels of localization. The structural
organization of this module is shown in Figure 59.

The output of the first convolutional layer c1 (followed by pooling p1) is aligned
with the segmentation maps Ys produced by the segmentation learner fs(θs). From
each feature map, for a given joint we extract a localized region of interest filtered
by the mask of a hand part to which it belongs (or a number of hand parts which
are naturally closest to this joint). These masks are calculated by performing mor-
phological opening on the regions, which have the corresponding class label in the
segmentation map.

Once the local region is selected, the rest of the feature map area is set to 0. The
result, along with the original feature maps is then fed to the next layer, i.e. an
inception module.
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Figure 59 – Organization of the regression learner fr(θr), mapping input depth maps DR

into predicted joint locations given additional information produced by the seg-
mentation learner fs(θs). All functional modules are shown in red and produced
feature maps are shown in blue. The gray area corresponds to masked regions
on the feature maps.

The rest of the training process is organized in such a way that the network’s
capacity is split between global structure of the whole image and the local neighborhood,
and a subset of inception 3 × 3 filters is learned specifically from the local area
surrounding the point of interest.

5.3 unsupervised pipeline : method overview and definitions

In this section, we introduce an alternative strategy to the weakly supervised
pipeline described in the previous section. This research corresponds to our earlier
work and is dedicated to unsupervised transductive adaptation.

First of all, we must note, that lately, there has been renewed interest in semantic
segmentation or semantic labeling methods in the community, in which an image of
a natural scene (typically RGB) is segmented into semantically meaningful regions
(e.q., road, water, sky, building, vegetation). In these tasks, taking into account
structural (contextual) information in addition to local appearance information is pri-
mordial. Contextual information often allows the model to disambiguate decisions
where local information is not discriminative enough. In principle, increasing the
support region of a learning machine can increase the amount of context taken into
account for the decision. In practice, this places all of the burden on the classifier,
which needs to learn a highly complex prediction model from a limited amount of
training data, most frequently leading to poor performance. An elegant alternative
is to apply multi-scale approaches. Farabet et al. [90] propose a multi-scale convolu-
tional net for scene parsing which naturally integrates local and global context.

Our proposed method is similar to auto-context [298, 234] in that the output of an
initial classifier is fed into a second classifier, which is learned to integrate the context
of the pixel to predict. However, whereas auto-context models aim at repairing the
errors of individual classifiers, our model uses contextual information to extract
structural information from unlabeled images in a unsupervised setting. The ability
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Figure 60 – A functional overview of the unsupervised transductive adaption pipeline. Blue
data flow corresponds to supervised training of the segmentation learner fs(θs)
and the context learner fc(θc) using synthetic data DS. Green flow corresponds
to the adaptation step using real data DR with no ground truth annotations.

to seamlessly combine unlabeled samples and labeled training data is an important
motivation behind the field of deep learning of representations [28, 314].

A functional overview of our unsupervised transductive adaptation is presented in
Figure 60. Here, we do not consider the regression learner fr(θr) explicitly, however,
it could be plugged in and take as in input, as in the weakly supervised pipeline,
the depth images along with the produced segmentations.

In this framework, in addition to the segmentation learner, which was described in
Section 5.2, we employ an additional context learner fc(θc) : N(i,j)→Y

(i,j)
c [149], pre-

dicting the pixel label Y(i,j)
c from its neighborhood N(i,j) on the same segmentation

map. The neighborhood is punctured, i.e. the center pixel to be predicted, j, is miss-
ing. Intuitively, this classifier learns to repair segmentation maps produced by the
segmentation learner fs(θs).

Just as the segmentation learner, the context learner fc(θc) is first pre-trained in
a purely supervised way on the synthetic images (as described in Section 5.2.1, see
Figure 61). The pre-training of the context learner is divided into two steps. First,
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Figure 61 – The two learning pathways involving a direct learner fs(θs) and a context
learner fc(θc). The context learner operates on punctured neighborhood maps
n(i,j), where the (to be predicted) middle pixel is missing.

ground truth label maps are used as the training input. After convergence of the seg-
mentation learner fs(θs), its output is used instead for input to the context learner,
and the context learner is fine-tuned to cope with realistic output segmentation
maps.

The objective function Qc for training the context learner fc(θc) is also a nega-
tive log-likelihood loss for pixelwise classification. Learning of θc proceeds in two
steps. First, ground truth segmentation maps are fed to the learner, denoted as n(i,j)

G ,
minimizing NLL:

Q
(1)
c (θc |G) = −

L∑

i=0

M∑

j=0

logP
(
Y
(i,j)
c = y(i,j)

∣∣∣N(i,j) = n
(i,j)
G ; θc

)
. (128)

After convergence, in a second phase, segmentation maps produced by the segmen-
tation learner fs(θs) are fed into the context learner, denoted as n

(i,j)
fs

.

Q
(2)
c (θc |fs(DS)) = −

L∑

i=0

M∑

j=0

logP
(
Y
(i,j)
c = y(i,j)

∣∣∣N(i,j) = n
(i,j)
fs

; θc
)

. (129)

During this step, parameters of the segmentation learner θs are kept fixed.

The context learner fc(θc) learns a prior distribution over segmentation maps. It
could very well be used during the testing phase to improve the classification accu-
racy of the method, as it is frequently done in auto-context models [234]. However,
we preferred to remove this classifier from the testing pipeline to maximize speed
and minimize latency.

Instead, the context learner is used during training only to fine-tune the segmen-
tation learner on real data. Since no ground truth is supposed to be available for real
data, training at this step is unsupervised. We use the trained context learner fc(θc)
to create loss for training of the segmentation learner fs(θs) without ground truth
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Figure 62 – Global structural information which can be extracted from a segmented image
even if ground truth labels are not available. Small circles with thin black bor-
ders contain segmented pixels, which are far away from the principal pixel mass
of the given hand part, indicated by the barycenter of the hand part. The global
unsupervised loss term Qglb punishes these results. Large circles with thick
blue borders show the same content after a single parameter update of the seg-
mentation learner fs(θs) using this global term Qglb.

labels. The underlying hypothesis here is that the domain shift between synthetic
data and real data is smaller in the target domain (segmentation maps) than it is in
the input domain (depth maps).

In the proposed unsupervised adaptation strategy, following optimization criteria
are based on, first, consistency of each predicted pixel class with its local neighbor-
hood on the output segmentation map Ys (produced by the segmentation learner
and estimated from the output of the context learner) and, second, global compact-
ness and homogeneity of the predicted hand segments (see Figure 60).

The unsupervised loss function Qu measures structural properties of the pre-
dicted segmentation at two different scales, either on context (at a neighborhood
level), or globally on the full image. The estimated properties are then related to
individual pixelwise loss:

Qu = f(Qloc, Qglb), (130)

where Qloc is a local term, Qglb is a global term, and f denotes the way how they are
integrated. The definitions of each term are discussed in the rest of this section.

5.3.1 Local structural term

The term Qloc in equation (130) is introduced for capturing local structure. It
favors predictions which are consistent with other outputs in a local neighborhood.
In particular, it favors those classification results, where the segmentation learner
fs(θs) agrees with the context learner fc(θc).
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This term is formulated as a conditional negative likelihood loss. For each given
pixel, if both classifiers fs(θs) and fc(θc) (the latter one operates on the output of
the former one) agree on the same label, this pixel is used to update parameters
θs of the segmentation learner and the error is minimized using the classical NLL
scenario treating the predicted label as corresponding to the ground truth:

Qloc(θs |DR ) = −
M∑

j=0

I
Y

(i,j)
s =y

(i,j)
c

logP
(
Ys = y

(i,j)
c

∣∣∣I(i,j); θs, θs
)
, (131)

where Iω=1 if ω holds and 0 else. In this case the parameters θc of the context
learner remain unchanged. The indicator function is non-smooth with respect to the
parameters. For backpropagation, we treat it as a constant once both segmentation
maps are computed (similar to the way max pooling is dealt with in classical deep
networks)

We would like to stress again, that during test time the context learner is not used,
and outputs of the segmentation learner fs(θs) are considered as the final predic-
tions. This way, we keep the test architecture as simple as possible and focus mainly
on developing an effective training procedure to learn meaningful data representa-
tions that are robust to noise typical of real-world data.

5.3.2 Global structural term

The second term Qglb in equation (130) captures global structure. It favors output
predictions, which fit into global image statistics, and penalizes the ones, which do
not, by changing parameters of the segmentation learner fs(θs) in the direction of a
more probable class. Technically, this term aims on to minimize variance (in terms
of pixel coordinates) of each hand segment. Figure 62 illustrates the type of errors
which can be corrected in this strategy, to give the reader an intuitive understanding
of the ongoing process.

Although ground truth labels are not available for the real images dealt with in
this part, there is still intrinsic structural information, which can be extracted from
a segmented image and which is related to strong priors we can impose on the
segmentation map. In particular, unlike in general segmentation problems, this term
exploits an assumption that body and hand part segmentation maps contain a single
connected region per hand part label (ignoring cases of strong partial self-occlusion,
which are extremely rare).

In Figure 62, small circles with thin black borders contain segmented pixels which
are not connected to the principal region of the given hand part, indicated by the
barycenter of the pixels of this hand part. The global unsupervised loss term Qglb

punishes these results. Large circles with thick blue borders show the same content,
produced by the segmentation learner fs(θs) after a single iteration of the adaptation
process using Qglb.
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We formalize this concept as follows. For each class k present in the output
map Ys, produced by the segmentation learner, barycentric coordinates of the corre-
sponding segment are calculated:

Rk =

∑

j:Y
(i,j)
s =k

P(y(i,j)
s |I(i,j))r(i,j)

∑

j:Y
(i,j)
s =k

P(y(i,j)
s |I(i,j))

, (132)

where pixel coordinates, in vector form, are denoted as r(i,j).
If

∣∣r(i,j) − Rk

∣∣ > τ, i.e. the pixel (i, j) is close enough to its barycenter (τ is es-
timated from the labeled synthetic data), then the pixel is considered as correctly
classified and used to update parameters of the segmentation learner θs. The loss
function term for one pixel (i, j) is given as follows:

Q+
glb(θs

∣∣∣y(i,j)
s ) = −F

(i)
ys logP

(
Ys = y

(i,j)
s

∣∣∣I(i,j), θs, θc
)
, (133)

where F
(i)
k is a weight related to the size of class components:

F
(i)
k = |{j : Y(i,j)

s = k}|−α, (134)

and α>0 is a gain parameter. In the opposite case, when
∣∣r(i,j) − Rk

∣∣ " τ, the current
prediction is penalized and the class γ corresponding to the closest segment in the
given distance τ is promoted:

Q−
glb(θs

∣∣∣y(i,j)
s ) = −F

(i)
γ logP

(
Ys = γ

∣∣∣I(i,j), θs, θc
)
, (135)

where
γ = argmin (|r(i,j) − Rk|). (136)

This formulation is related to the k-means algorithm. However, data points in our
setting are embedded in two spaces: the space spanned by the network outputs (or,
alternatively, feature space), and the 2D geometric space of the part positions. As-
signing cluster centers requires therefore optimizing multiple criteria and distances
in heterogeneous spaces. Other clustering costs could also be adopted.

5.3.3 Integrating local and global structure

Finally, local structure and global structure are fused, emphasizing agreement
between both terms. In particular, activation of the penalizing global term (which
favors parameters pushing a pixel away from currently predicted class) is confirmed
by similar structural information captured by the local term (Qloc=0):

Qu = βlocQloc +βglb

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Q+
glb if

∣∣r(i,j) − Rk

∣∣ " τ,

Q−
glb if

∣∣r(i,j) − Rk

∣∣ > τ and Qloc = 0,

0 else,

(137)
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where βloc and βglb are weight coefficients, defined empirically.

Fusing the two terms, Qloc and Qglb, in a non-trivial way is essential as they are
acting in an adversarial way. The local term alone leads to convergence to a trivial
solution when all pixels in the image are assigned to the same class by both clas-
sifiers. The global term favors multi-segment structure composed of homogeneous
regions, while exact shapes of the segments may be distorted as to not satisfy the
desirability of of compactness. The two terms acting together, as well as mixing the
labeled and unlabeled data, allows the classifier to find a balanced solution.

5.4 experimental results

In this section, we will begin by discussing the performance of the proposed weakly
supervised transductive adaption strategy, first in terms of quality of produced seg-
mentation maps from real images. After, we will show how the obtained intermedi-
ate representations of hand poses can improve the quality of hand joint localization.
Finally, at the end of the section, we will also provide empirical evaluation of the
framework exploiting the unsupervised adaptation pipeline.

However, before we proceed with this evaluation, let us discuss aspects of the
datasets we considered, and justify the architectural solutions chosen for each of the
learners.

5.4.1 Data collection and rendering

As we have described previously, the proposed framework requires a large amount
of synthetic images, as well as real data for model adaptation and, optionally, local-
ization of hand joints.

— Synthetic dataset. For this project, we have created a vast collection of 170 974
synthetic training samples, including both normalized 8 bit depth maps and
ground truth segmentations with image resolution 640×640 pixels. An addi-
tional set of 6 000 images is used for validation and testing.
The rendering was performed using the Poser commercial software and a number
of highly detailed 3D human models, including both genders (see Figure 63).
Hand shapes, proportions, poses and orientations were generated with a random
set of parameters. Each pose was captured from 5 different camera view points
chosen arbitrarily for each frame.
During this process, the 3D renderer was automated by a Python script, sampling
the parameters randomly from predefined ranges, which were defined in accor-
dance with anatomical constraints (set empirically, see Table 17). For each rigid
segment of the arm, including the hand, we modified its twist, side-side and bend
angles, and scaled its length and thickness with a random coefficient from the
range [0.95, 1.05]. Furthermore, we introduced additional scale coefficients for
groups of bones, which needed to be modified together in order to look realistic
(for example, lengths of different fingers are correlated). Complex hand parame-
ters, built in the software, such as grasp and spread were also sampled randomly
from specified ranges ([−10, 10] and [0, 70], respectively). Yaw and pitch of the
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Figure 63 – On the left: an example of a 3D human model used for data generation in Poser,
on the right: labeling order of the ground truth hand segments.

Object minBend maxBend minSide maxSide minTwist maxTwist

Shoulder 0 75 −15 65 0 50

ForeArm 0 110 −10 10 −85 85

Hand −70 50 −20 20 −20 20

Index0 −10 10 −15 15 −15 10

Index1 −30 70 −15 10 −5 5

Index2 −10 115 0 0 −4 4

Index3 −10 110 0 0 0 0

Mid0 −10 10 −10 10 −10 10

Mid1 −30 70 −10 10 −5 5

Mid2 −10 115 0 0 −4 4

Mid3 −8 110 0 0 0 0

Ring0 −10 10 −9 13 −10 10

Ring1 −30 70 −13 10 −4 4

Ring2 −10 115 0 0 0 0

Ring3 −12 110 0 0 0 0

Pinky0 −10 15 −10 15 −13 7

Pinky1 −30 70 −18 15 −4 4

Pinky2 −10 115 0 0 0 0

Pinky3 −12 110 0 0 0 0

Thumb −30 20 −15 30 −35 50

Table 17 – Anatomical constraints for hand elements, used for the data generation in Poser.
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camera were chosen from a discrete range [0◦, 180◦] with an angular granularity
of 10◦.
An example of a generated ground truth segmentation map is shown in Figure 63,
where the hand is divided into 20 segment classes. Background pixels were set
to 0 and assigned with a zero class label.

— Real dataset [unsupervised pipeline]. For our earlier experiments on the unsu-
pervised adaptation, we have collected an unlabeled our own real set consisting
of 3, 000 images captured with the Kinect depth sensor. In order to evaluate
the segmentation performance on real-world data, we have manually densely
annotated 50 test samples from this data.

— Standard benchmark [weakly-supervised pipeline]. In the more recent experi-
ments, which included the proposed weakly supervised adaptation, as well as
estimation of hand joint positions, we used the NYU Hand Pose Dataset [296] 1.
Unfortunately, this corpus had not yet been released at the time when the first
group of experiments on unsupervised adaptation was performed. As we have
previously mentioned in Section 2.3.1, it consists of 72, 757 training and 8, 252 test
images, annotated with positions of 36 key points, among which 14 are typically
used for evaluation of state-of-the-art hand pose estimation frameworks.
To evaluate the performance of various segmentation and restoration methods
in the weakly supervised framework, we have manually segmented 100 images
from this dataset (referred to as NYU-100 in the following discussion). These 100
images were solely used for evaluation and never entered any training procedure.

5.4.2 Experimental setup

The summary of architectural hyper-parameters of all neural models, discussed in
this chapter, is provided in Table 18. Both segmentation and regression architectures
(as well as the context learner) have ReLU activation functions at each layer and
employ batch normalization [136]. During the test time, the regression learner uses
the batch normalization parameters estimated on the training data, however, in the
segmentation network, batch normalization is performed across all pixels from the
same image, for both training and test samples.

All deep learning architectures were implemented using the Torch7 library [60].
Approximated NN-search using KD-trees (for patchwise restoration) was performed
using the FLANN library [197].

Below, we discuss certain technical aspects of the explored segmentation and
recognition frameworks in more detail.

5.4.2.1 Data handling

In the weakly supervised framework, we extract hand images of normalized met-
ric size (taking into account depth information) and normalize them to 48×48 pixels.
In the earlier experiments on the unsupervised pipeline, higher resolution bounding
boxes of 80×80 pixels were used instead.

1. http://cims.nyu.edu/~tompson/NYU_Hand_Pose_Dataset.htm
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All images were first preprocessed by local contrast normalization with a kernel
size of 9×9. For supervised training of the segmentation learner (and the context
learner, if applicable), the full set of 170, 974 synthetic training images was used.

In the weakly supervised framework, a third of this set was also used to extract
patches for the patch alignment mapping fnn, giving a dictionary of 36M patches of
size 27×27 extracted from 56, 991 images.

Local integration, as given in equation (127), was performed using sliding win-
dows of size W×W = 17×17 pixels.

5.4.2.2 Training parameters

The learning rate for the regression learner was initially set to 0.05 with linear
decay corresponding to 1% of the initial value. For the segmentation learner, we
set the learning rate to 0.1 and employed exponential weight decay with a value of
10−5. Batch size of 64 was used for the regression learner, while the segmentation
model was trained on each image separately, considering its pixels as a batch. Even
though the number of pixels belonging to different classes is typically unbalanced,
initially normalizing the gradients accordingly did not affect the final segmentation
performance after convergence and was removed in the final implementation. All
predictors were trained by gradient descent using the Adam [157] update rule.

At the segmentation step, the training procedure was started with purely super-
vised learning by backpropagation which proceeded until 50% of the synthetic train-
ing data was seen by the network. From this moment on, we replaced 10% of the
training set with unlabeled real world samples.

In the unsupervised adaptation framework, the parameters balancing different
terms were set to βloc=0.1, βglb=1.2.

5.4.2.3 Segmentation learner: remarks on the architecture

As we have seen in Section 5.2.1, the direct and the context learners are based
on a convolutional network architecture and have the same general structure (see
Figure 56), which includes three consecutive convolutional layers F1, F2 and F3 with
rectified linear activation units (ReLU). Layers F1 and F2 are followed by 2×2 max
pooling and reduction.

The structure of these learners is motivated by the idea of performing efficient
pixelwise image segmentation preserving original resolution of the input, and is
inspired by the OverFeat networks which were proposed for object detection and
localization [262]. As opposed to most existing methods for scene labeling, instead
of randomly sampling pixels (or patches), training of the segmentation learner fs(θs)
is performed image-wise, i.e. all pixels from the given image are provided to the
classifier at once and each pixel gets assigned with an output class label based on
information extracted from its neighborhood.

Applying the convolutional classifier with pooling/reduction layers to an image
in the traditional way would lead to loss in resolution by a factor of 4 (in the given
configuration). On the other hand, simply not reducing the image resolution will
prevent higher layers from learning higher level features, as the size of the filter sup-
port does not grow with respect to the image content. To avoid this dilemma, we
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Network architectures

Layer Filter size / units Pooling

Segmentation learner fs (also fc)

Depth input 48×48 -
Convolutional layer 1 32×5×5 2×2

Convolutional layer 2 64×5×5 2×2

Convolutional layer 3 128×5×5 1×1

Hidden layer 500 -
Hidden layer 500 -

Output 20×48×48 -

Regression learner fr

Depth input 24×24 -
Convolutional layer c1 32×3×3 2×2

Convolutional layer c211, c221 16×1×1

Convolutional layer c212, c222 8×3×3

Pooling p231 - 2×2

Convolutional layer 232 8×1×1

Convolutional layer 241 16×1×1

Hidden layer fc 1200 -
Output 14×3 -

Table 18 – Hyper-parameters chosen for the deep networks.

employ specifically designed splitting functions originally proposed for image scan-
ning in [106] and further exploited in OverFeat networks [262]. Intuitively speaking,
each feature map at a given resolution is reduced to four different feature maps of
lower resolution using max pooling. The amount of elements is preserved, but the
resolution of each map is lower compared to the maps of previous layers.

In more detail, let us consider the output of the first convolutional layer F1 of the
network. Once the output feature maps are obtained, four virtual extended copies
of them are created by zero padding with 1) one column on the left, 2) one column
on the right, 3) one row on top, 4) one row in the bottom. Therefore, each copy
will contain the original feature map, but shifted in four different directions. On
the next step, we apply max pooling (2×2, with stride 2×2) to each of the extended
maps producing four low-resolution maps. By introducing the shifts, pixels from
all extended maps combined together can reconstruct the original feature map as if
max pooling with stride 1×1 had been applied. This operation allows the network
to preserve results of all computations for each pixel on each step and, at the same
time, perform the necessary reduction, resulting in a significant speed up during
training and testing.
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Weakly supervised transductive adaptation: evaluation

Method Training data per pixel per class

Fully supervised training only synth. 51.03 39.38
Unsupervised adaptation synth. + real 52.16 (+1.13) 44.17 (+4.79)
Weakly supervised adaptation synth. + real 57.18 (+6.15) 47.20 (+7.82)

Table 19 – The contribution of the weakly-supervised adaptation on the segmentation accu-
racy. The reported results were obtained on 100 manually labeled images of the
NYU Hand Pose Dataset [296] (NYU-100).

After pooling, convolutions of the following layer F2 are applied to all four low-
resolution maps separately (but in parallel). The same procedure is repeated after
the second convolutional layer F2, where each of four branches is split again into
four, producing 16 parallel pathways overall. If necessary, the algorithm can be
extended to an arbitrary number of layers and employed each time when reduction
is required.

All outputs of the third convolutional layer F3 are flattened and classified with an
MLP, producing a label for each pixel. Finally, the labels are rearranged to form the
output segmentation map corresponding to the original image.

The direct and the context learners have the same architecture with the only differ-
ence, that the middle parts of the first layer filters of the context learner are removed.
It helps to prevent the network from converging to a trivial solution, where a pixel
label is produced by directly reproducing its input. This is especially important
on the initial training stage, when the context learner is trained on ground truth
segmentation maps.

5.4.3 Weakly supervised adaptation of fs(θs): empirical evaluation

In this set of experiments on the weakly supervised adaptation we used a man-
ually annotated subset of 100 images from the newly released NYU Hand Pose
Dataset [296] for testing and the training subset from the same corpus for modal
adaptation.

Table 19 shows the contribution of weakly supervised training, where sparse an-
notation (joint positions) are integrated into the training process of the segmentation
learner fs(θs). This procedure achieves an improvement of +6.15 percentage points
per pixel and +7.82 percentage points per class, an essential step in learning an
efficient intermediate representation.

Figure 64 shows improvement in the classification accuracy for each pixel class,
which is consistent for all hand parts. Examples of produced segmentations are
provided in Figure 65.

The performance of the offline step of restoration is evaluated in Table 20. We em-
phasize once more that training was performed on synthetic while we test on real
images, thus of an unseen distribution. This domain shift is clearly a problem, as ac-
curacy on the synthetic dataset is very high, 90.16%. Using patchwise restoration of
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Figure 64 – Average segmentation accuracy per class obtained with the supervised method
(in black) and after the weakly supervised adaptation of the segmentation
learner fs(θs) to the real data (in red). These results were obtained using 100
manually labeled images from the NYU Hand Pose Dataset [296] (NYU-100).
The horizontal axis shows numbers of hand segments (see Figure 63).

the predicted real patches with the large dictionary of synthetic patches gives a per-
formance increase of +3.5 percentage points per pixel and +7 percentage points per
class. This corroborates our intuition that the intermediate representation carries im-
portant structural information. Integration of patch-labels over a local window with
equation (127) is essential, pure NN-search without integration performs poorly. The
same table highlights that the weakly supervised pipeline generally outperforms the
unsupervised solution.

In order to optimize the restoration step, we also compare local integration equa-
tion (127) to potentially more powerful regularization methods by implementing a
CRF-like discrete energy function.

In this case, instead of choosing the nearest neighbor in patch space for each
pixel as described in equation (126), a solution is searched which satisfies certain
coherence conditions over spatial neighborhoods. To this end, we create a global
energy function E(x) defined on a 2D-lattice corresponding to the input image to
restore:

E(x) =
∑

i

u(xi) +α
∑

i∼j

b(xi, xj), (138)

where i∼j indices neighbors i and j. Each pixel i is assigned a discrete variable xi
taking values between 1 and N=10, where xi=l signifies that for pixel i the l−th

nearest neighbor in patch space is chosen. For each pixel i, a nearest neighbor search
is performed using KD-trees and a ranked list of N neighbors is kept defining the
label space for this pixel. The variable N controls the degree of approximation of
the model, where N=∞ allows each pixel to be assigned every possible patch of the
synthetic dictionary.

The unary data term u(x) guides the solution towards approximations with low
error. It is defined as the Hamming distance between the original patch and the
synthethic patch.
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Weakly supervised transductive adaptation: restoration performance

Method per pixel per class

No restoration 51.03 39.38
NN-search – no integration 48.76 (−2.27) 39.72 (+0.34)
NN-search – integration with equation (127) 54.55 (+3.52) 46.38 (+7.00)
CRF – Potts-like model 53.10 (+2.07) 43.64 (+4.26)
CRF – Hamming distance on overlapping area 52.45 (+1.42) 42.68 (+3.30)

Table 20 – Restoration (=segmentation) accuracy on 100 manually labeled images of the
NYU Hand Pose Dataset [296] (NYU-100). This restoration step is used exclu-
sively for training purposes and is not performed during the test time.

We tested two different pairwise terms b(xi, xj):
— Potts-like terms – a Potts model classically favors equality of labels of neighbor-

ing sites. In our setting, we favor equality of the center pixels of the two patches
assigned to xi and xj.

— Patch-overlap distance – the alternative pairwise term is defined as the Ham-
ming distance between the two synthethic patches defined by xi and xj, in par-
ticular, the distance restricted to the overlapping area.

In this setup, inference was performed through message passing using the open-
GM library [6], and the hyper-parameter α was optimized through grid-search. Inter-
estingly, local patch integration with equation (127) outperformed the combinatorial
models significantly while at the same time being much faster.

To conclude this section, we would like to note that the absolute segmentation per-
formance of 54.55% may seem to be low. However, in the pose estimation framework
for the full body, described in [266], the body part segmentation accuracy corresponds
to 60%, while this was a far simpler problem. However, this level of performance
is reported to be sufficient for joint estimation, even solely from the segmentation
maps. In our framework, unlike [266], the segmentation map is not the sole input
for regression.

5.4.4 Joint position estimation: empirical evaluation

Finally, we aim to evaluate how the introduced intermediate representation, in the
form of segmentation maps, can help joint position estimation.

Table 21 illustrates the effect of incorporating segmentation information on the
regression learner performance. In the top part of the table we provide information
on our own baselines, in the middle there are results of other deep learning methods
reported in the literature. The error is expressed as mean distance in mm (in 2D or
3D) between the predicted position of each joint and its ground truth location. In
comparison to a single network regressor, the 2D mean error was improved by 15.7%.
The second best model, cascade regression, was inspired by the work of [297], where
the initial rough estimation of hand joints positions is then improved by zooming in
on the regions indicated by the first round of predictions.
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(a) (b) (c) (d) (e) (f)

Figure 65 – Different segmentation results: (a) input image; (b) output of the segmentation
learner after supervised training; (c) after restoration; (d) output of the segmen-
tation learner after joint training; (e) ground truth segmentation; (f) estimated
joint positions. The image itself was not part of the training set.

The distribution of 2D and 3D accuracies reached by the best model is shown
graphically in Figure 66. Examples of joint localization performed by the regression
learner are given in Figure 67.

We need to mention here, that prior to augmenting the classical regression method
with the unsupervised pipeline, we spent additional time on careful optimization of
this baseline by tuning its architecture and the training regime. Introducing the
batch normalization and Adam optimization appeared to be crucial and allowed us
to reach higher performance than in the literature, even in the baseline case. Before
that, we were able to reproduce the results originally reported in [215].

Naturally, the quality of the network outputs can be further improved by optimiza-
tion through inverse kinematics, as it has been done, for example, in [296]. However,
the focus of this work is to explore the potential of pure learning approaches with
no priors enforcing structure on the output.

The bottom part of the table contains non deep learning methods. In a recent work
by Tang et al. [290], where the optimization of hand pose estimation is formulated
as an inverse kinematics problem, the authors report performance similar to [296] in
terms of 2D UV-error (no error in mm provided).
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Localization of hand joints

Method Mean 2D Median 2D Mean 3D Median 3D

Direct regression 13.27 10.56 17.26 14.45
Cascade direct regression 12.56 9.94 16.88 14.10
Regression + segmentation 11.18 8.67 14.94 13.62

DeepPrior [215] - 12.0†[134] 19.8† -
Multi-Scale [215] - - 27.5† -
Deep [215] - - 30.5† -
Shallow [215] - - 34.5† -
Tompson et al. [296] 7.05 6.54 21.0†[215] -

Xu and Cheng [323] - 58.0†[134] - -
Keskin et al. [152] - 72.5†[134] - -

Table 21 – Joint position estimation error on the NYU dataset. † indicates that values were
estimated from plots if authors do not provide numerical values (a reference indi-
cates where performance was reported, if not in the original paper).
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Figure 66 – Joint estimation accuracy: proportion of correctly detected joints as a function of
a threshold on the mean error or max error. The regression model includes the
segmentation outputs produced by the weakly adapted segmentation learner.

5.4.5 Computational complexity

For the weakly supervised framework, all models have been trained and tested
using GPUs, except the patchwise restoration process which is pure CPU code and
not used at test time. Estimating the pose of a single hand takes 31 ms if the seg-
mentation resolution is set to 24×24 pixels (which includes the forward passes of
both learners fs(θs) (12ms) and fr(θr) (18 ms) and 58ms for 48×48 segmentation
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Figure 67 – Visualization of estimated hand skeletons produced by the regression learner
fr(θr). The regressor takes into account the intermediate representation pro-
duced by the segmentation network, which was tuned in a weakly supervised
fashion.

outputs (40ms) for fs(θs), corresponding to the results reported in the experiments
section).

Training of the segmentation network requires up to 24 hours to minimize valida-
tion error, while the regression network is trained in 20 min on a single GPU.

The reported results were obtained using a cluster configured with two E5-2620
v2 Hex-core processors, 64GB RAM and three Nvidia GTX Titan Black cards with
6GB memory per card.

5.4.6 Unsupervised adaptation of fs(θs): empirical evaluation

The effect of the unsupervised transductive adaptation on the quality of segmen-
tation was estimated using our own set of manually annotated real images. These
experiments were conducted significantly earlier, when the NYU Hand Pose Dataset,
used for evaluation of the weakly supervised pipeline, had not yet been released.

The comparative performance of different modifications of the pixel-wise segmen-
tation learner fs(θs), which were trained by including and excluding different un-
supervised terms of the loss function is summarized in Table 22. In general, ex-
ploiting unlabeled real data for unsupervised training and network regularization
has proven to be beneficial, especially for reconstruction of small segments (such as
finger parts), which leads to a significant increase of average per-class accuracy. The
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Unsupervised transductive adaptation

Loss function Training
data

Test
data

Accuracy Average per class

Qs (supervised baseline) synth.
synth. 85.90% 78.50%

real 47.15% 34.98%

Qs +Qloc +Qglb all
synth. 85.49% 78.31%

(semi-supervised, ours) real 50.50% 43.25%

Table 22 – The contribution of the unsupervised adaptation to the segmentation accuracy.
The reported results were obtained on our own dataset of real depth images.
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Figure 68 – Average segmentation accuracy per class obtained with the supervised method
(in black) and after the unsupervised adaptation of the segmentation learner
fs(θs) to the real data (in red). These results were obtained using our own
dataset of real images. The horizontal axis shows numbers of hand segments
(see Figure 63).

bar plot on Figure 68 demonstrates significant improvement of recognition rates for
almost all classes, except for the first, base palm class, which can be seen as a back-
ground for a hand image against which finger segments are usually detected. This
illustration reflects the fact that more confident detection in the case of the unsuper-
vised network adaptation comes together with a certain increase in the amount of
false positives.

Table 23 illustrates the impact of one update of the segmentation learner parame-
ters using different loss functions. This is estimated on a given image, which was
used for computing the gradients (and averaged over the test set). We note that a
combination of two competitive unsupervised terms (local and global) produces a
more balanced solution than the same terms separately.
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Unsupervised transductive adaptation: term-wise tests

Terms Qloc Qglb
+ Qglb

++Qglb
− Qloc+Qglb

++Qglb
− Qsd

Requires labels no no no no yes

Gain in % points +0.60 +0.36 +0.41 +0.82 +16.05

Table 23 – Performance improvement on a real image after a single iteration of updating
parameters of the segmentation learner fs(θs), using different supervised and
unsupervised terms. Estimated as an average over 50 real images from our own
dataset.

We would like once again to stress the importance of pre-training the segmenta-
tion and context learners on the synthetic data in order to be capable of producing
structurally representative initial predictions for the unlabeled data. Furthermore,
the frequency of supervised gradient updates during the final training stage should
remain significant to prevent training from diverging.

Output segmentation maps produced by the proposed method, including unsu-
pervised adaptation of the segmentation learner, are shown in Figure 69. Figure 70
visualizes several problematic images, where the baseline supervised network per-
forms poorly. It demonstrates, that our algorithm is capable of finding regions,
which would not have otherwise been reconstructed, and often leads to more consis-
tent predictions and a reduction in the amount of noise in the segmentation maps.

5.5 conclusion

In this chapter, we have presented a number of ideas on how hand pose estima-
tion can be improved by introducing an intermediate representation in the form of
segmentation maps. We showed that the additional structured information of this
representation provides important cues for joint regression which leads to lower es-
timation error. Unlike most deep learning methods which require large amounts
of labeled data, we do not assume that ground-truth segmentation of real data is
available, and synthetic data plays in this case the primary role.

Our main contributions concern training procedures which may exploit i) context
learning; ii) unsupervised learning of local and global structure, balancing a prior
for large homogenous regions with pixel-wise accuracy; and iii) weakly supervised
learning where the quality of image restoration is point-wise evaluated from weak
annotations in the form of hand joint positions. In the last case, the weak supervision
is dealt with by patch-wise alignment of real data to synthetic data performed in
the space of the intermediate representation, exploiting its strong geometric and
topological properties.

By integrating structural information into learning rather than the model archi-
tecture, we retain the advantages of very fast test-time processing and the ability to
parallelize.

Finally, we would like to note, that in theory, even the earlier approach, which
explored segmentation refinement from local and global consistency, could benefit
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Figure 69 – Output segmentation maps produced by the segmentation learner fs(θs)
adapted to the real data using the unsupervised strategy. The samples are taken
from our dataset of real images captured with the Kinect depth sensor.

Figure 70 – Challenging examples. Top row: examples where the baseline method has dif-
ficulty in segmentation. Bottom row: outputs produced by the segmentation
learner after the unsupervised adaptation.
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from additional guidance by weak annotations. At the same time, the patch-wise
restoration could be used alone, in unsupervised fashion, with no quality additional
check. In the latter case, however, the restoration process typically causes more
dramatic changes in the appearance of the segmentation maps, which, in the case of
failure, may result in degradation of the pretrained model. Finally, other restoration
strategies, such as impainting or more complex model based optimization can be
incorporated to further improve the quality of produced segmentation maps.
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Why are people born? Why do they die? Why do they want to spend so much of the
intervening time wearing digital watches?

— Douglas Adams, The Ultimate Hitchhiker’s Guide to the Galaxy

And starting today, all passwords must contain letters, numbers, doodles, sign language
and squirrel noises.

— Scott Adams, Dilbert

6
A U T H E N T I C AT I O N F R O M M O T I O N

In this chapter, we present a large-scale study, which investigates the potential ca-
pability of temporal deep neural networks in interpreting natural human kinematics,
and introduce the first method for active biometric authentication with mobile iner-
tial sensors. Our patners at Google have created a first-of-its-kind dataset of human
movements, passively collected by 1500 volunteers using their smartphones daily over
several months. We (1) compare several neural architectures for efficient learning of
temporal multi-modal data representations, (2) propose an optimized shift-invariant
dense convolutional mechanism (DCWRNN) and (3) incorporate the discriminatively-
trained dynamic features in a probabilistic generative framework taking into account
temporal characteristics. Our results demonstrate that human kinematics convey im-
portant information about user identity and can serve as a valuable component of
multi-modal authentication systems. Finally, we show that the proposed method can
be successfully applied in the visual context, for example, for gesture recognition.

6.1 introduction

Problems such as action and gesture recognition, as well as pose estimation, are all
examples of classical computer vision tasks, which benefit from hundreds of vision
and machine learning research teams exploring their territory. As we have seen
in the state-of-the-art review (Chapters 2 and 3), image- and speech-specific feature
descriptors have been designed and polished for decades, while the deep learning
community has already made tremendous progress in learning visual and audio
representations.

At the same time, there exist numerous areas of research where analytical (tradi-
tional) descriptors have not (yet) matured, and therefore learning data representa-
tions is the main hope to leap beyond the current level of understanding of under-
lying processes. In this sense, deep learning opens up new frontiers for identifying
patterns in data which is not completely understood.

However, so far applied deep learning research has been mostly driven by the
demand in web-based applications, being stimulated by an immediate availability
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Figure 71 – In our mobile setting, an accelerometer captures linear acceleration and a gyro-
scope provides angular velocity (photo taken from [214]).

of practically infinite amounts of training data. Lack of such vast data collections,
however, often becomes the first and sometimes fundamental obstacle for applying
deep learning methods in other domains.

In this work, we begin the exploration of terra incognita and raise the question of
how to understand and interpret natural human kinematics at scale, using learned
representations of data extracted from inertial physical sensors (see Fig. 71). Can a
smartphone, held in your hand, for example, recognize you by your motion patterns,
whether or not you are interacting with the device?

This particular formulation is motivated by the idea of facilitating the daily inter-
action between people and their devices, while still providing security guarantees.
For the billions of smartphone users worldwide, remembering dozens of passwords
for all services we need to use and spending precious seconds on entering pins or
drawing sophisticated swipe patterns on touchscreens becomes a source of frustra-
tion. For this reason, in recent years, researchers in different fields have sought fast
and secure authentication alternatives that would make it possible to remove this
burden from the user [273, 35].

Historically, biometrics research has been hindered by the difficulty of collecting
data, both from a practical and legal perspective. For this reason, previous studies
have been limited to tightly constrained lab-scale data collection, poorly represent-
ing real world scenarios: not only due to the limited amount and variety of data,
but also due to essential self consciousness of participants which are asked to perform
the tasks in laboratory conditions.

In response, our partners at Google ATAP created an unprecedented dataset of
natural prehensile movements (i.e. those movements in which an object is seized
and held, partly or wholly, by the hand [207]) collected by 1,500 volunteers over
several months of daily use.

Apart from data collection, the main challenges in developing a continuous au-
thentication system for smartphones are (1) efficiently learning task-relevant repre-
sentations of noisy inertial data, and (2) incorporating them into a biometrics setting,
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characterized by limited resources. Limitations include low computational power for
model adaptation to a new user and for real-time inference, as well as the absence
(or very limited amount) of negative samples.

In response to the above challenges, in this chapter we will be talking about de-
veloping a non-cooperative and non-intrusive method for on-device authentication
based on two key components, namely temporal feature extraction by deep neural
networks, and classification via a probabilistic generative model.

Unlike in gesture recognition and hand pose estimation, where we have been fo-
cusing mostly on learning representations from a single frame or from spatio-temporal
dynamic blocks, here we will go deeper into exploration of explicit temporal deep
learning models. For this purpose, we start by assessing several popular deep ar-
chitectures, which include one-dimensional convolutional nets and recurrent neural
networks for feature extraction.

Furthermore, apart from the application itself, our main contribution of this work
is in developing a shift-invariant temporal architecture capable of modeling multiple
temporal scales. This new model has been specifically developed for the biometric
application at hand. However, it is applicable to other problems, in particular in
computer vision. We will provide additional experimental validations on the gesture
recognition problem discussed in Chapter 4 at the end of this chapter.

Finally, with respect to the original biometric application, we model the extracted
features in a generative framework based on Gaussian Mixture Models specific to
temporal representations.

6.1.1 Authentication from motion: historical remarks

To give appropriate credit, we must say that exploiting wearable or mobile in-
ertial sensors for authentication, action recognition or estimating parameters of a
particular activity has been previously explored in different contexts.

Gait analysis has attracted significant attention from the biometrics community
as a non-contact, non-obtrusive authentication method resistant to spoofing attacks.
A detailed overview and benchmarking of existing state-of-the-art is provided by
Nickel et al. [213]. Derawi et al. [75], for example, used a smartphone attached to
the human body to extract information about walking cycles, achieving 20.1% equal
error rate. Tessendorf et al. analysed parameters of periodic motion provided by
inertial sensors to evaluate and improve rowing skills [293].

There also exist a number of works which explore the problem of activity and ges-
ture recognition with motion sensors, including methods based on deep learning.
In [92] and [39], exhaustive overviews of preprocessing techniques and manual fea-
ture extraction from accelerometer data for activity recognition are given. Perhaps
most relevant to this study is [236], the first to report the effectiveness of RBM-based
feature learning from accelerometer data, and [34], which proposed a data-adaptive
sparse coding framework.

Convolutional networks have been explored in the context of gesture and activity
recognition from inertial data [81, 335]. Lefebvre et al. [173] applied a bidirectional
LSTM network to a problem of 14-class gesture classification, while Berlemont et
al. [32] proposed a fully-connected Siamese network for the same task.
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Finally, motion data has been used to provide additional characteristics for touch
events, such as clicking, swiping and typing on touchscreens [273].

We believe that multi-modal frameworks, however, are more likely to provide
meaningful security guarantees for the task of biometric authentication. In this
context, Khoury et al. [156] have been exploiting a combination of face recognition
and speech, while earlier Vildjionauite et al. [304] combined voice with gait.

6.2 method overview

The ultimate goal of the application presented in this chapter is to discriminate be-
tween authentic users and impostors based on a time series of inertial measurements.
For this purpose, we propose a method which is based on two main components:
— a feature learning pipeline which associates each user’s motion sequence with a

collection of discriminative features,
— a lightweight biometric model, which takes those learned features as inputs and

performs user verification on a mobile device.
While the feature extraction component is probably the most interesting aspect of

our technique, we will delay its discussion to Section 6.4 to first define the general
context of the task. Therefore, in the next sections, we begin by discussing the data
format and the biometric model.

6.2.1 Movement data

As is the case of any rigid body, a smartphone, has 6 physical degrees of freedom,
including translation and rotation along three perpendicular axes in its coordinate
system. These 6 motion components are captured with an accelerometer and a gy-
roscope, that measure linear acceleration and angular velocity, respectively (shown
in Figure 71). For this study, the force of gravity is removed from the accelerometer
recordings by applying a high-pass Butterworth filter.

We note that in this work, we chose not to use the magnetic field data (even if such
sensor is present in the device) due to its low reliability in indoor environments in
proximity to other electronic devices, and its dependence of the orientation and the
intensity of the ambient magnetic field on geolocation.

In our setting, each reading (i.e. a single measurement) in a synchronized raw input
stream of accelerometer and gyroscope data has the form:

{ax, ay, az,ωx,ωy,ωz} ∈ R6,

where a represents linear acceleration, ω represents angular velocity and x, y, z de-
note projections of these vectors on corresponding axes, aligned with the smart-
phone. There are two important steps, which we take prior to feature extraction,
namely obfuscation and preprocessing, which we discuss below.

6.2.1.1 Obfuscation-based regularization

First of all, we must note that there are many nuances in this framework and data
collection, that mush be addressed in order to pose the biometric problem correctly.
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In this context, it is important to differentiate between the notion of device and user.
In the dataset we collected (Section 6.5), each device is assigned to a single user,
thus all data is considered to be authentic. However, in real-world scenarios, such
as theft, authentic and imposter data may originate from the same device. For this
reason, it is crucial to keep in mind that the problem of user authentication should
be disentangled from identification of a device signature.

In a recent study [68], it was shown that under lab conditions, a particular device
could be identified by a response of its motion sensors to a given signal. This hap-
pens due to imperfection in calibration of a sensor resulting in constant offsets and
scaling coefficients (gains) of the output, that can be estimated by calculating integral
statistics from the data. Formally, the measured output of both the accelerometer
and gyroscope can be expressed as follows [68]:

a = ba + diag(γa)ã, (139)
ω = bω + diag(γω)ω̃, (140)

where ã and ω̃ are real acceleration and angular velocity vectors, ba and bω are
offset vectors and γa and γω represent gain errors along each coordinate axis.

To partially obfuscate the inter-device variations and ensure decorrelation of user
identity from device signature in the learned data representation, we introduce low-
level additive (offset) and multiplicative (gain) noise per training example. Follow-
ing [68], the noise vector is obtained by drawing a 12-dimensional (3 offset and 3
gain coefficients per sensor) obfuscation vector from a uniform distribution:

µ ∼ U12[0.98, 1.02].

In the context of a deep learning framework (employed for following feature learn-
ing), this procedure, if repeated and randomized for each training sample at each
iteration, also serves as a source of data augmentation and can be seen as an addi-
tional regularization technique.

6.2.1.2 Data preprocessing

In addition to raw measurements, we use acceleration and angular velocity to
extract a set of angles α{x,y,z} and ϕ{x,y,z} describing the orientation of vectors a

and ω in the phone’s coordinate system (shown in Figure 71):

αx = arctan

[
ax√

ay
2 + az

2

]

, αy = arctan

[
ay√

ax
2 + az

2

]

, (141)

αz = arctan

[
az√

ay
2 + az

2

]

. (142)

Also, we compute magnitudes of these vectors, |a| and |ω|, and normalize each of
the projected components x, y, z:

||a|| =
√

a2
x + a2

y + a2
z, (143)

ax,n =
ax

||a||
, ay,n =

ay

||a||
, az,n =

az

||a||
(144)
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Figure 72 – Overview of the proposed biometric model. On the left: training pipeline, in-
cluding feature learning, creating a universal background model (UBM) and its
MAP adaptation to client devices. On the right: threshold estimation, score
normalization and testing pipeline (see Section 6.3 for description).

This set of equations is provided using the notation of the accelerometer stream,
but for the gyroscope the calculations are identical.

Finally, the normalized coordinates, angles and magnitudes are combined in a
14-dimensional vector x(t) with t indexing the frames (readings):

x(t) = {||a||, ax,n, ay,n, az,n,αx,αy,αz, ||ω||,ωx,n,ωy,n,ωz,n,ϕx,ϕy,ϕz} ∈ R14.
(145)

To avoid introducing additional systematic errors and signal corruption, we do
not perform any additional denoising of the raw signal.

6.3 biometric model

Many methodological choices we make in this work are motivated by specific
constraints enforced by the application. For example, relying on cloud computing
to authenticate a mobile user is unfeasible due to privacy and latency. Although
this technology is well established for many mobile services, our application is es-
sentially different from others (such as, for example, voice search), as it involves
constant background collection of particularly sensitive user data. Streaming this
information to the cloud would create an impermissible threat from a privacy per-
spective for users and from a legal perspective for service providers.

For these reasons, the biometric user authentication must be performed on the
device and is constrained by available storage, memory and processing power. Fur-
thermore, adapting to a new user should be quick, resulting in a limited amount of
training data for the positive class. This data may not be completely representative of
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typical usage. Consequently, a purely discriminative setting, which would involve
learning a separate model per user, or even fine-tuning a model for each new user
would hardly be feasible.

Instead, in this work, we adapt a generative model, namely a Gaussian Mixture
Model (GMM), in order to estimate a general data distribution in the dynamic mo-
tion feature space and create a universal background model (UBM).

The UBM is learned offline, i.e. prior to deployment on the phones, using a large
amount of pre-collected training data. For each new user, we use a very small
amount of enrollment samples to perform online (i.e. on-device) adaptation of the
UBM to create a client model. The two models are then used for real time inference
of trust scores allowing continuous authentication.

In the rest of this section, we will review the process of UBM learning, adaptation
and scoring in more detail.

6.3.1 Universal background model and client models

As we have mentioned, learning a separate GMM for each user is suboptimal with
respect to the objective to shorten the training phase and minimize computation.
Furthermore, background data collection typically results in a highly unbalanced
dataset in terms of variety of represented gesture patterns. Instead, we perform a
background collection of data from hundreds of users, learn a unsupervised univer-
sal background model (UBM), which is then used as a prior for online adaptation of
the model to a given user.

Let y=f({x(t)}) ∈ RN be a vector of features extracted from a raw sequence of
prehensile movements (which is done by one of the deep neural networks that will
be described later, in Section 6.4).

To create the UBM, probability densities are defined over these feature vectors as
a weighted sum of M multi-dimensional Gaussian distributions parameterized by
a set Θ={µi,Σi,πi}, where µi is a mean vector, Σi a covariance matrix and πi a
mixture coefficient:

p(y|Θ) =
M∑

i=1

πiN(y;µi,Σi), (146)

where Ni(y) =
1√

(2π)N|Σi|
e
−
(y − µi)

′Σi
−1(y − µi)

2 . (147)

This UBM p(y|ΘUBM) is learned by maximising the likelihood of feature vectors
extracted from the large training set using the expectation-maximisation (EM) algo-
rithm.

Each client model p(y|Θclient) is adapted from the UBM. Both models share the
same weights and covariance matrices to avoid overfitting from a limited amount of
enrollment data. Along the lines of [248], maximum a posteriori (MAP) adaptation
of mean vectors for a given user is performed. This has an immediate advantage over
creating an independent GMM for each user, ensuring proper alignment between
the well-trained background model and the client model by updating only a subset
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of parameters that are specific to the given user. In particular, given a set of Q

enrollment samples {yq} from the new device, we create a client-specific update to
the mean of each mixture component i as follows:

Ei({yq}) =
1

ni

Q∑

q=1

Pr(i|yq)yq, (148)

where ni =
Q∑

q=1

Pr(i|yq), Pr(i|yq) =
πipi(yq)∑M
j=1 πjpj(yq)

. (149)

Finally, the means of all Gaussian components are updated according to the fol-
lowing rule:

µ̂i = αiEi({yq}) + (1−αi)µi, where αi =
ni

ni + r
, (150)

where r is a relevance factor balancing the background and client models. In our
experiments, we set r = 4 (estimated empirically).

6.3.2 Model scoring

Given a set of samples Y={ys} from a given device, user authenticity is estimated
by scoring the feature vectors against the UBM and the client model, thresholding
the log-likelihood ratio:

Λ(Y) = logp(Y|Θclient)− logp(Y|ΘUBM). (151)

As a final step, zt-score normalization [13] is performed to compensate for inter-
session and inter-person variations and reduce the overlap between the distribution
of scores from authentic users and impostors.

An offline z-step (zero normalization) compensates for inter-model variation by
normalizing the scores produced by each client model to have zero mean and unit
variance in order to use a single global threshold:

Λz(Y|Θclient) =
Λ(Y)− µ(Z|Θclient)

σ(Z|Θclient)
, (152)

where Y is a test session and Z is a set of impostor sessions. Parameters are defined
for a given user once model enrollment is completed. Then, the T-norm (test nor-
malization) compensates for inter-session differences by scoring a session against a
set of background T-models.

Λzt(Y) =
Λz(Y|Θclient)− µz(Y|ΘT)

σz(Y|ΘT)
. (153)

The T-models are typically obtained through MAP-adaptation from the universal
background model in the same way as all client models, but using different subsets
of the training corpus. The Z-sequences are taken from a part of the training data
which is not used by the T-models.
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Figure 73 – Learning data representations: (a) static convnet directly operating on sequences,
aggregating temporal statistics by temporal pooling; (b) explicitly modeling tem-
poral transitions by with recurrent connections.

6.4 learning effective and efficient representations

Finally, we proceed with a description of the feature extraction step, the main
contribution of this work. Learning effective and efficient data representations is
key to our entire framework, since its ability to perform in the real-world is defined
by such criteria as latency, representational power of extracted features and inference
speed of the feature extractor. The first two conditions are known to contradict each
other as performance of a standalone feature typically grows with integration time.

Two paradigms, which strike a balance between representational power and speed,
have dominated the feature learning landscape in recent years. We have presented
them in Chapter 3, but we recall them here briefly for convenience. These are multi-
scale temporal aggregation via 1-dimensional convolutional networks (shown in
Figure 73a), and explicit modeling of temporal dependencies via recurrent neural
networks (shown in Figure 73b).

The former model, popular in speech recognition [119], involves convolutional
learning of integrated temporal statistics from short and long sequences of data (re-
ferred to as short-term (ST) and long-term (LT) convnets in the experimental Section
6.6). Short-term architectures produce outputs at a relatively high rate (1 Hz in our
implementation) but fail to model context. Long-term networks can learn mean-
ingful representations at different scales, but suffer from a high degree of temporal
inertia and do not generalize to sequences of arbitrary length.

Recurrent models, which explicitly model temporal evolutions, can generate low-
latency feature vectors built in the context of previously observed user behavior. The
dynamic nature of their representations allow for modeling richer temporal struc-
ture and better discrimination among users acting under different conditions.

There have been a sufficiently large number of neural architectures proposed for
modeling temporal dependencies in different contexts: the baseline methods, which
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are first benchmarked in this work, were earlier described in Section 3.2.1, where we
gave a review of existing state-of-the-art deep temporal models. In our experiments,
we evaluate the perfomace on the vanilla RNN, the LSTM and the Clockwork archi-
tectures (see Section 6.6). Furthermore, in the rest of this section, we introduce a
new shift-invariant model based on modified Clockwork RNNs, initially proposed
by Koutnik et al.[161].

Given the low correlation of individual frames with user identity, we found it
strongly beneficial to make the set of input layers convolutional regardless of model
type, thereby forcing earlier fusion of temporal information.

All temporal feature extractors are first pretrained discriminatively for a multi-
device classification task. After the following removal of the output layer, the activa-
tions of the penultimate layer are provided as input to the generative model, which
is described in Section 6.2.

6.4.1 Dense convolutional clockwork RNNs

Among the existing temporal models we considered, the Clockwork mechanisms
[161] appear to be the most attractive, due to low computational burden associated
with them, in combination with their high modeling capacity. This architecture has
been previously reviewed in Chapter 3, but let us briefly remind the reader its main
working principles.

The Clockwork mechanism is essentially a RNN with the hidden recurrent layer
partitioned into several groups of fast and slow units having different update rates
(see the top image in Figure 74). In this work, we assume that the values of the
update periods increase exponentially as nk (as in the original paper), where n is a
base and k is the number of the band.

In this context, the fast units are connected to all other bands (shown in red in
Figure 74) and integrate both high and low frequency information. The slower units
(shown in green and blue in Figure 74) model only low frequency signals.

The update rule of the CWRNN is formulated as follows (reproduced from equa-
tion (55) and corresponds to the k-th band of output h at iteration t):

h(t)
k =

⎧
⎨

⎩
ψ
(

W(k)x(t) + U(k)h(t−1)
k

)
if (t mod nk)=0,

h(t−1)
k otherwise.

where U(k) and W(k) are rows k from matrices U and W, matrix of recurrent
weights U has an upper triangular structure and in accordance with the connectivity
between frequency bands.

One of important shortcomings of the CWRNN model is that, due to inactivity of
slow units for long periods of time, the efficiency of their training is scaled down ex-
ponentially from high to low frequencies. As a result, in practice the low-frequency
bands barely contribute to the overall network performance during test time. In
addition, in our setting, where the goal is to learn dynamic data representations
serving as input to a probabilistic framework, this architecture has one more weak-
ness, which stems from the fact that different bands are active at any given time
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Figure 74 – Comparison of the original Clockwork RNN, proposed by Koutnik et al. [161],
and its modification called Dense Clockwork RNN, proposed in this work.

step. As a result, the network will respond differently to the same input stimuli ap-
plied at different moments in time. This shift-variance convolutes the feature space
by introducing a shift-associated dimension.

In this work, we propose a solution to both issues, namely twined or dense clockwork
mechanisms (dubbed DCWRNN), which are shown in Figure 74 (in the bottom) in
comparison with the original Clockwork RNN (on top).

In such a network, during inference at each scale k there exist nk parallel threads
shifted with respect to each other, such that at each time a unit belonging to one of
the threads fires, updating its own state and providing input to the higher frequency
units. All weights between the threads belonging to the same band are shared, keep-
ing the overall number of parameters in the network the same as in the original
clockwork architecture. Without loss of generality, and to keep the notation unclut-
tered of unnecessary indices, in the following we will describe a network with a
single hidden unit hk per band k. The generalization to multiple units per band
is straightforward, and the experiments were of course performed with the more
general case.

The feedforward pass for the whole dense clockwork layer (i.e. all bands) can be
stated as follows:

h(t) = ψ
(

Wx(t) +∆(UH)
)
, (154)

where H = [ h(t−1) . . .h(t−nk) . . .h(t−nK) ] is a matrix concatenating the history of
hidden units and we define ∆(·) as an operator on matrices returning its diagonal
elements in a column vector. To simplify the presentation, we have not made explicit
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Figure 75 – Updates made by the vanilla RNN (top), the Clockwork RNN [161] (middle) and
our proposed Dense CWRNN (bottom). To illustrate the concept, we show in
blue those units and weights that are updated or read at the example time step
t=6.

the fact that the first layers are convolutional, however, it can be absorbed into the
input-to-hidden matrix W.

The intuition for this equation is given in Figure 75, where we visually compare
the update rules of the original CWRNN and the proposed DCWRNN using an
example of a network with 5 hidden units each associated with one of K=5 base
n=2 bands.

To be consistent, in this figure we employ the same matrix form as in the orig-
inal CWRNN paper [161] and show components, which are inactive at time t, in
dark gray. To indicate the general structure of recurrence, we also provide such a
representation for the valilla RNN.

As its was mentioned in Section 3.2.1, in the original CWRNN, at time instant
t=6, for instance, only units h1 and h2 are updated, i.e. the first two lines in the
corresponding network from Figure 75. In the dense network (the bottom row), all
hidden units hk are updated at each moment in time.

In addition, what was a vector of previous hidden states h(t−1) in the original
CWRNN, is now replaced with a lower triangular history matrix H of size K×K,
which is obtained by concatenating several columns from the history of activations h.
Here, K is the number of bands. Time instances are not sampled consecutively, but
strided in an exponential range, i.e. n,n2, . . . nK. Finally, the diagonal elements of
the dot product of two triangular matrices form the recurrent contribution to the
vector h(t). The feedforward contribution is calculated in the same way as in a
standard RNN.
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In practice, implementing the lower-triangular matrix, which containes the history
of previous hidden activations in the DCWRNN, requires usage of an additional
memory buffer, whose size can be given as

m =
K∑

k=1

|hk|(n
k−1−1), (155)

whereas here we have stated the general case of |hk|!1 hidden units belonging to a
recurrent band k.

During training, updating all bands at a constant rate is important for prevent-
ing simultaneous overfitting of high-frequency and underfitting of low-frequency
bands. In practice it leads to a speedup of the training process and improved perfor-
mance. Finally, due to the constant update rate of all bands in the dense network,
the learned representations are invariant to local shifts in the input signal, which is
crucial in unconstrained settings when the input is unsegmented (the concept of
shift-invariance is demonstrated in Section 6.6).

6.5 data collection

The large scale dataset, which we introduce in this work, is a part of a more
general multi-modal data collection effort performed by Google ATAP, known as
Project Abacus. We have already provided a brief description of this project in the
introduction part of this thesis (Section 1).

The reader may remember, that the ultimate purpose of this study was to ex-
plore biometric mobile user authentication in a multi-modal framework, therefore
the collected data also includes images, voice, data recorded from the touch screen.
The motion data, which interests us the most, was acquired from three sensors: ac-
celerometer, gyroscope and magnetometer.

This study included approximately 1,500 volunteers using the research phones
as their main devices, and we made every effort to ensure that the data collected
representative of their regular and natural usage.

Motion data was recorded from the moment after the phone was unlocked until
the end of a session (i.e., until it was locked again). For this study, we set the
sampling rate for the accelerometer and gyroscope sensors to 200 Hz and for the
magnetometer to 5 Hz. However, to prevent drain on the battery, the accelerometer
and gyro data were not recorded when the device was at rest. This was achieved
by defining two separate thresholds for signal magnitude in each channel. Finally,
accelerometer and gyroscope streams were synchronized on hardware timestamps.

Even though the sampling rate of the accelerometer and the gyroscope was set
to 200 Hz for the study, we noticed that intervals between readings coming from
different devices varied slightly. To eliminate these differences and decrease power
consumption, for our research we resampled all data to 50 Hz.

For the following experiments, data from 587 devices were used for discrimina-
tive feature extraction and training of the universal background models, 150 devices
formed the validation set for tuning hyperparameters, and another 150 devices rep-
resented clients (users) for testing.
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DCWRNNCWRNNRNNInput

Figure 76 – On spatial invariance. From left to right: original sequence and traces of RNN,
CWRNN and DCWRNN units. The first row: reading while walking, the second
row: typing while sitting.

6.6 experimental results

In this section, before proceeding to the large-scale evaluation of the proposed
framework, we use an existing public (but relatively small) inertial dataset to demon-
strate the ability of the proposed DCWRNN to learn shift-invariant representations.
After that, we describe our study involving the large-scale Google Abacus dataset
collected in the wild.

6.6.1 Visualization: HMOG dataset

To explore the nature of inertial sensor signals, we performed a preliminary anal-
ysis on the public HMOG dataset [325] containing similar data, but collected in
constrained settings as a part of a lab study. This data collection was performed
with the help of 100 volunteers, each completing 24 sessions of predefined tasks,
such as reading, typing and navigation, while sitting or walking.

Unfortunately, direct application of the whole proposed pipeline to this corpus is
not so relevant due to 1) absence of task-to-task transitions in a single session and
2) insufficient data to form separate subsets for feature learning, the background
model, client-specific subsets for enrollment, and still reserve a separate subset of
impostors for testing that haven’t been seen during training. In addition, the state-of-
the-art authentication method, introduced together with the HMOG dataset, is based
mostly on touch data captured from the touch screen, and exploits acceleration and
rotations as sources of additional features specifically extracted around touch events.
To the best of our knowledge, there are no existing methods performing authentication on
a smartphone solely from inertial data.

A detailed visual analysis of accelerometer and gyroscope streams has proven that
the inertial data can be seen as a combination of periodic and quasi-periodic sig-
nals (from walking, typing, natural body rhythms and noise), as well non-periodic
movements. This observation additionally motivates clockwork-like architectures
allowing for explicit modelling of periodic components.
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In this subsection, we describe the use of HMOG data to explore the shift-invariance
of temporal models that do not have explicit reset gates (i.e. RNN, CWRNN and
DCWRNN). For our experiment, we randomly selected 200 sequences of normal-
ized accelerometer magnitudes and applied three different networks each having 8
hidden units and a single output neuron. All weights of all networks were initial-
ized randomly from a normal distribution with a fixed seed. For both clockwork
architectures we used a base 2 exponential setting rule and 8 bands.

Finally, for each network we perfomed 128 runs (i.e. 2K−1) on a shifted input: for
each run x the beginning of the sequence was padded with x−1 zeros. The resulting
hidden activations were then shifted back to the initial position and superimposed.

Figure 76 visualizes the hidden unit traces for two sample sequences from the
HMOG dataset, corresponding to two different activities: reading while walking
and writing while sitting. This figure shows that the RNN and the dense version of
the clockwork network can be considered shift-invariant (all curves overlap almost
everywhere, except for minor perturbance at the beginning of the sequence and
around narrow peaks), while output of the CWRNN is highly shift-dependent.

For this reason, in spite of their atractiveness in the context of multi-scale peri-
odic and non-periodic signals, the usage of the CWRNN for the purpose of feature
learning from unsegmented data may be suboptimal due to high shift-associated
distortion of learned distributions, which is not the case for DCWRNNs.

6.6.2 Large-scale study: Google Abacus dataset

We now evaluate our proposed authentication framework on the real-world Google
Abacus dataset, which was described in Section 6.5, and compare it to other tempo-
ral models, as well as purely convolutional learning.

For this purpose, we perform two rounds of evaluation. The first one compares
performance of feature representations, learned by different models, in a discrimina-
tive task of 1-to-N device classification. This is the same task considered in learning
features. The second one corresponds to the final goal of this work and evaluates
performance of the previously extracted features, but in the authentication setting
and as a part of the generative biometric model, described in Section 6.3.

Tables 24 and 25 provide the complete set of architectural hyper-parameters, both
for the baseline and for the proposed solutions, that were chosen based on a held-
out validation set. For convolutional nets, we distinguish between convolutional
layers (Conv, which include pooling) and fully-connected layers (FCL). For recurrent
models, we report the total number of units (in the case of CWRNN and DCWRNN,
over all bands). To make a fair comparison, we set the number of parameters to be
approximately the same for all of the temporal models.

The short-term (ST) Convnet is trained on sequences of 50 samples (corresponding
to a 1 s data stream), long-term (LT) Convnets take as input 500 samples (i.e. 10 s).
All temporal architectures are trained on sequences of 20 blocks of 50 samples with
50% of inter-block overlap to ensure smooth transitions between blocks (therefore,
also a 10 s duration). For the dense and sparse clockwork architectures we set the
number of bands to 3 with a base of 2. All layers in all architectures use tanh
activations.
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Network architecture: feedforward learning

Layer Filter size / # of units Pooling

Input 500×14 (50× 14) -
Conv1 25×9×1 8×1 (2×1)
Conv2 25×9×1 4×1 (1×1)
Conv3 25×9×1 1×1

FCL1 2000 -
FCL2 1000 -

Output 587 -

Table 24 – Hyper-parameters of baseline feedforward convolutional architectures: values in
parentheses are for short-term (ST) Convnets when different from long-term (LT).

Network architecture: sequential learning

Layer Filter size / # of units Pooling

Input 10×50×14 -
Conv1 25×7×1 2×1

Conv2 25×7×1 2×1

Conv3 25×7×1 1×1

Recurrent RNN 894, LSTM 394, -
CWRNN and DCWRNN 1000 -

Output 587 -

Table 25 – Hyper-parameters: values in parentheses are for short-term (ST) Convnets when
different from long-term (LT).

The dimensionality of the feature space produced by each of the networks is PCA-
reduced to 100. GMMs with 256 mixture components are trained for 100 iterations
after initialization with k-means (100 iterations). MAP adaptation for each device is
performed in 5 iterations with a relevance factor of 4.

For zt-score normalization, we exploit data from the same training set and create
200 T-models and 200 z-sequences from non-overlapping subsets. Each T-model is
trained based on UBM and MAP adaptation. All hyper-parameters were optimized
on the validation set.

The networks are trained using stochastic gradient descent, dropout in fully con-
nected layers, and negative log likelihood loss. In the temporal architectures, we
add a mean pooling layer before applying the softmax. Each element of the input is
normalized to zero mean and unit variance.

All deep nets were implemented with Theano [31] and trained on 8 Nvidia Tesla
K80 GPUs. UBM-GMMs were trained with the Bob toolbox [7] and did not employ
GPUs.
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Feature learning: evaluation

Model Accuracy, % # parameters

ST Convnet 37.13 6 102 137

LT Convnet 56.46 6 102 137

Conv-RNN 64.57 1 960 295

Conv-CWRNN 68.83 1 964 254

Conv-LSTM 68.92 1 965 403

Conv-DCWRNN 69.41 1 964 254

Table 26 – Performance and model complexity of the feature extractors. These results as-
sume one user per device and accuracy is defined based on whether or not the
user is in the top 5% of classes according to the output distribution.

6.6.2.1 Feature learning: evaluation

Let us now proceed with the first step of the experiments evaluating the perfor-
mance of data representations learned with different models.

We first performed a quantitative evaluation of the effectiveness of feature extrac-
tors alone as a multi-class classification problem, where one class corresponds to
one of 587 devices from the training set. This way, one class is meant to correspond
to one user, which is equal to a device in the training data (assuming devices do not
change hands). To justify this assumption, we manually annotated periods of non-
authentic usage based on input from the smartphone camera and excluded those
sessions from the test and training sets. Experiments showed that the percentage of
such sessions is insignificant and their presence in the training data has almost no
effect on the classification performance.

Note that for this test, the generative model was not considered and the feature
extractor was simply evaluated in terms of classification accuracy. To define accu-
racy, we must consider that human kinematics sensed by a mobile device can be
considered as a weak biometric and used to perform a soft clustering of users in
behavioral groups. To evaluate the quality of each feature extractor in the classifi-
cation scenario, for each session we obtained aggregated probabilities over target
classes and selected the 5% of classes with highest probability. After that, the user
behavior was considered to be interpreted correctly if the ground truth label was
among them.

The classification accuracy obtained with each type of deep network with its corre-
sponding number of parameters is reported in Table 26. These results show that the
vanilla convolutional architectures generally perform poorly, while among the tem-
poral models the proposed dense clockwork mechanism Conv-DCWRNN appeared
to be the most effective, while the original clockwork network (Conv-CWRNN) was
slightly outperformed by the LSTM.

We would like to note here, that the not so significant advantage of the DCWRNN
over the LSTM should not be immediately seen as a weakness. The DCW mecha-
nism should be considered as a way to efficiently distribute the recurrent weights
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User authentication: evaluation

Model EER, % HTER, %

Raw features 36.21 42.17
ST Convnet 32.44 34.89
LT Convnet 28.15 29.01
Conv-RNN 22.32 22.49
Conv-CWRNN 21.52 21.92
Conv-LSTM 21.13 21.41
Conv-DCWRNN 20.01 20.52
Conv-DCWRNN, zt-norm 18.17 19.29
Conv-DCWRNN (per device) 15.84 16.13
Conv-DCWRNN (per session) 8.82 9.37

Table 27 – Performance of the GMM-based biometric model using different types of deep
neural architectures. EER is given on the validation set, while HTER is estimated
on the final test set using the same threshold.

over temporal scales, which can be straightforwardly incorporated into any gated
architecture, when needed by an application. A Conv-DCWLSTM may achieve su-
perior results, but this is beyond the scope of our work.

6.6.2.2 User authentication: evaluation

When moving to the binary authentication problem, an optimal balance of false re-
jection and false acceptance rates, which is not captured by classification accuracy,
becomes particularly important.

In this setting, we use a validation subset to optimize the generative model for
the minimal equal error rate (EER). The obtained threshold value θEER is then used
to evaluate performance on the test set using the half total error rate (HTER) as a
criterion:

HTER =
FAR(θEER) + FRR(θEER)

2
, (156)

where FAR and FRR are false acceptance and false rejection rates, respectively.
For the validation set, we also provide an average of per-device and per-session

EERs (obtained by optimizing the threshold for each device/session separately) to
indicate the upper bound of performance in the case of perfect score normalization
(see italicized rows in Table 27).

An EER of 20% means that 80% of the time the correct user is using the device,
s/he is authenticated, only by the way s/he moves and holds the phone, not neces-
sarily interacting with it. It also means that 80% of the time the system identifies
the user, it was the correct one. These results align well with the estimated quality
of feature extraction in each case and show that the context-aware features can be
efficiently incorporated in a generative setting.
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ChaLearn 2014: sequential learning

Model Jaccard Index Accuracy N parameters

Single network† (Chapter 4) 0.827 91.62 1 384 621

Ensemble†† (Chapter 4) 0.831 91.96 4 153 863

Conv-RNN 0.826 91.79 3 974 581

Small Conv-LSTM 0.815 91.50 3 976 863

Large Conv-LSTM 0.825 91.89 4 900 621

Conv-CWRNN 0.834 92.38 3 972 496

Conv-DCWRNN 0.841 93.02 3 972 496

Table 28 – Performance of the proposed DCWRNN architecture on the Chalearn 2014 Looking
at People dataset (mocap modality). Network parameters: input 183×9, conv. layer
25×3×1, 2 fully connected layers with 700 units, the recurrent layer (RNN-280,
CWRNN-300, DCWRNN-300, Small LSTM-88, Large LSTM-300), 21 output class.
† taken from Table 6, †† taken from Table 7.

To compare GMM performance with a traditional approach of retraining, or fine-
tuning a separate deep model for each device (even if not applicable in a mobile
setting), we randomly drew 10 devices from the validation set and replaced the
output layer of the pretrained LSTM feature extractor with a binary logistic regres-
sion. The average performance on this small subset was 2% inferior with respect
to the GMM, due to overfitting of the enrollment data and poor generalization to
unobserved activities. This is efficiently handled by mean-only MAP adaptation of
a general distribution in the probabilistic setting.

Another natural question is whether the proposed model learns something spe-
cific to the user style of performing tasks rather than a typical sequence of tasks
itself. To explore this, we performed additional tests by extracting parts of each
session where all users interacted with the same application (a popular mail client,
a messenger and a social network application). We observed that the results were
almost identical to the ones previously obtained on the whole dataset, indicating
low correlation with a particular activity.

6.7 model adaptation for a visual context

Finally, we would like to stress that the proposed DCWRNN framework can also
be applied to other sequence modeling tasks, including the visual context. The
described model is not specific to the data type and there is no particular reason
why it cannot be applied to the general human kinematic problem (such as, for
example, action or gesture recognition from motion capture).

To support this claim, we have conducted additional tests of the proposed method
within a task of visual gesture recognition, a task presented in Chapter 4.

Namely, we provide results on the mocap modality from the same ChaLearn 2014
Looking at People gesture dataset [87], which was previously used in our gesture
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recognition experiments. As we have already seen, this dataset contains about 14000
instances of Italian conversational gestures with the aim to detect, recognize and lo-
calize in continuous noisy recordings. Generally, this corpus comprises multimodal
data captured with the Kinect and therefore includes RGB video, depth stream and
mocap data. However, only the last channel is used in this round of experiments.

As before, model evaluation is performed using the Jaccard index, penalizing for
errors in classification as well as imprecise localization (see Section 4.7 for a detailed
description of the evaluation protocol).

Direct application of the GMM to gesture recognition is suboptimal (as the vo-
cabulary is rather small and defined in advance), therefore, in this task we perform
end-to-end discriminative training of each model to evaluate the effectiveness of
feature extraction with the Dense CWRNN model.

Following our state-of-the art gesture recognition method proposed in Chapter 4
(which was ranked 1st in the ECCV 2014 ChaLearn competition), we use the same
skeleton descriptor as input. However, as in the described authentication frame-
work, the input is fed into a convolutional temporal architecture instead of directly
concatenating frames in a spatio-temporal volume. The final aggregation and local-
ization step correspond to Chapter 4. Table 28 reports both the Jaccard index and
per-sequence classification accuracy and shows that in this application, the proposed
DCWRNN also outperforms the alternative solutions.

6.8 conclusion

From a modeling perspective, the work presented in this chapter has demon-
strated that temporal architectures are particularly efficient for learning of dynamic
features from a large corpus of noisy temporal signals, and that the learned repre-
sentations can be further incorporated in a generative setting. With respect to the
particular application, we have confirmed that natural human kinematics convey
necessary information about person identity and therefore can be useful for user
authentication on mobile devices. The obtained results look particularly promis-
ing, given the fact that the system is completely non-intrusive and non-cooperative,
i.e. does not require any effort from the user’s side.

Non-standard weak biometrics are particularly interesting for providing the con-
text in, for example, face recognition or speaker verification scenarios. Further aug-
mentation with data extracted from keystroke and touch patterns, user location,
connectivity and application statistics (ongoing work) may be a key to creating the
first secure non-obtrusive mobile authentication framework.

Furthermore, in the final round of experiments, we have demonstrated that the
proposed Dense Clockwork RNN can be successfully applied to other tasks based
on analysis of sequential data, such as gesture recognition from visual input.

In its current state, the Google Abacus authentication dataset cannot be released
for the research community for security reasons, as it contains sensitive user infor-
mation obtained from background data collection. However, we believe that our
experience can be valuable for communities working on similar problems and, more
importantly, as an additional view on the process of spatio-temporal feature learning
applied to human kinematics and biometrics.
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7
S U M M A RY A N D F U T U R E W O R K

The presented manuscript summarized our three year long journey in both aca-
demic and industrial research, and we were honored to walk the reader step-by-step
through our experiences and our findings. Finally, it is time to make some closing
remarks, to highlight once again the key contributions of this thesis and to shed
some light on the potential directions of future research, some of which are already
work in progress, while others are merely intuitions.

For this final review, let us for the last time adopt the same order of presentation,
as in the main part of this thesis.

— Part 1. Multimodal gesture recognition.

In the initial stage of this work, we created and optimized a multi-modal system
for action and gesture recognition, with particular emphasis on fusion aspects
and means of increasing robustness of the system to signal degradation in real
world conditions. In a general multi-modal setting, we demonstrated how chan-
nels of arbitrary nature can be incorporated and effectively combined with already
functioning modalities, by introducing an audio signal in our vision based frame-
work. In addition to an extensive empirical evaluation, we theoretically derived
and analyzed the key properties of the proposed ModDrop fusion process.
While working on this project, we have participated in a number of scientific
competitions, including the ICMI 2013 ChaLearn Multi-modal gesture recogni-
tion challenge, were we placed 6th, and, a year later, the ECCV 2014 ChaLearn
Looking at People gesture recognition challenge, where we demonstrated the
best performance among all participants. Finally, we were named among the
winners of the CVPR 2015 OpenCV State-of-the-art Computer Vision challenge
in the category of gesture recognition.

In this multi-modal setting, probably the most puzzling and crucial question,
which still remains open, is how to further automate the process of optimiza-
tion of architectural and training hyper-parameters in such complex deep multi-
modal networks. Even though we made every effort to keep the formulation of
the fusion principles general, the optimization of learning data representations
on the initial stages of signal-specific processing is still based on manual tuning,
which is extremely time consuming and requires a certain level of expertise. The
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same applies to determining the particular order and localization of optimal fusing
points for different combinations of signals propagated in a deep architecture.
The first alternative is to treat each aspect of the fusion as a model hyperparam-
eter, and search for the optimal architecture using modern Sequential Model-
based Global Optimization approaches (e.g. Bayesian Optimization). This is the
simpler approach as it does not require that the objective be differentiable with
respect to the control parameters of the architecture.
The second alternative is to propose a type of network where the fusion structure
is differentiable such that the model architecture can be optimized by gradient-
based methods. This should make the model search much faster, but it requires
ingenuity in the design as more restriction is placed on the model structure.
In this context, a number of machine learning research teams have worked on
search strategies [30] for hyper-parameter optimization in deep learning archi-
tectures, as well as exploiting model compositionality [113, 163] for determining
an appropriate model structure, best explaining statistics of a given dataset. Re-
cently proposed Highway networks [278], allowing for adaptive routing of infor-
mation through extremely deep networks, may appear to be an important step
also in this direction. In any case, we hope and expect that more light will be
shed on this aspect in the near future.

Furthermore, training strategies for introducing explicit modeling of temporal de-
pendencies in such complex and sometimes cumbersome architectures require fur-
ther optimization. These temporal aspects were only briefly and preliminary ex-
plored in the presented work. From our current observations, augmenting the
network with recurrent connections followed by end-to-end training results in
slight improvement in its overall performance, but, at the same time, leads to
degradation of feedforward connections and, consequently, loss in effectiveness
of feature extraction from a single frame in each channel.

Our immediate task, however, is more earthbound and consists in the adaptation
of the proposed gesture recognition framework to the human-robot interaction set-
ting in the real world scenario. As the reader may remember, the primary goal
of the robotics project, funding this research, was to develop a gestural interface
for a domestic robot-companion, manufactured by our industrial partner (Awabot).
Furthermore, a similar functionality is planned to be adapted for telepresence sys-
tems, which are now being actively integrated in museums, conference halls and
even schools.
As it was previously mentioned in the introduction, in this project, together with
Awabot and our academic partners, we have developed a natural gesture vocabu-
lary based on psychological study using a Wizard of Oz technique. In this study,
the participants were asked to interact with a robot in the most natural and in-
tuitive (for them) way, while robot responses and actions were simulated by a
human operator. The whole variety of observed gesticulation was later summa-
rized and quantized into most frequent gesture classes. This defined vocabulary
of gesture types was used by us later as a basis for an extensive data collection
effort.
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The mentioned wizard-of-oz social study, performed by our academic partner
(Laboratoire d’Informatique de Grenoble), has empirically confirmed an impor-
tant intuitive assumption, that the intensity of human articulation in their inter-
action with a robot decreases with time, as soon as the robot demonstrates correct
understanding of communicated instructions. This phenomenon, sometimes re-
ferred to as socio-affective glue [12], should be taken into account by one who at-
tempts to make the human-interaction process truly casual and natural for users.
Algorithmically, it implies that the gesture recognition system should have built-
in capabilities for online learning, in order to be able to perform adaptation of the
robot to its owner’s style and especially to its evolution with time towards more
subtle articulation.

To summarize, in the context of multi-modal gesture recognition, these men-
tioned engineering challenges in human-robot interaction will be guiding our
efforts in the remaining months of this project, while the more abstract theoreti-
cal explorations are likely to be among our research priorities in coming years.

— Part 2. Hand pose estimation.

Advancing from gesture classification to the idea of sensing gesture parameters,
we have proposed a method for hand pose estimation from a single depth map,
formulated as localization of hand joints in 3D space.
The key to our approach is exploiting a rich intermediate representation of a hand
pose in the form of hand segmentation into parts. For this work, we have created
a large synthetic dataset of hand poses accompanied with ground truth segmen-
tations. In Chapter 5 we demonstrate that a model, which is initially trained to
perform segmentation on synthetic data, can be effectively adapted to real input
using a weakly supervised or unsupervised transductive adaptation pipeline. The ex-
act strategies for unsupervised and weakly supervised scenarios are described
and evaluated in the corresponding chapter. Finally, we show that such a struc-
tured intermediate representation, if used as a complementary input for a regres-
sion model (along with the conventionally used depth maps) can significantly
improve accuracy of estimation of hand joint positions.

Although the results obtained in this thesis already look promising, there is a
significant number of further improvements which are likely to be introduced in
our follow up work on hand pose estimation.

1. First of all, we are planning on increasing the effectiveness and efficiency of
segmentation and regression learners by introducing a preliminary step of
view point clustering, as it was previously done in a number of traditional
(non deep learning) frameworks [152, 153, 288] (see Section 2.3.4.1 for de-
scription and Figure 15 for a graphical illustration). These earlier works
have shown that training a separate model for each view point cluster fol-
lowed by adaptive switching between the models in test time, makes it pos-
sible to significantly reduce the required complexity of the model and there-
fore improve the overall performance and speed up computations.
In our particular case, as the reader may remember, adding the intermediate
representation to the input data is based on the premise that the label space
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holds important topological and geometrical information, and these infor-
mations are certainly already used during the restoration process. However,
their main usage will be as additional input for regression. In this context,
whereas the topological information is invariant to viewpoints, the geomet-
rical information is not. Getting information from a single viewpoint, a
network can easier translate this information into joint coordinates.

2. In addition, we are investigating potentially more effective strategies for the
step of weakly supervised adaptation of the segmentation learner (from the
synthetic input to real data). One of the possible approaches would be to
introduce an additional rendering pipeline, which would generate synthetic
segmented images given ground truth positions of hand joints in the real
dataset. In this case, the obtained segmentation maps could be used as an
approximate ground truth for adaptation of the segmentation model.

3. Furthermore, we believe that we have not yet exhausted the potential of
the proposed segmentation-based hand representation, meaning its role in
the hand pose estimation framework. Therefore, we are currently exploring
alternative and more effective ways to pass the segmentation information
(along with the depth input) to the regression network.

4. Finally, we are planning on incorporating an additional refinement step on
the final stage of the pipeline in order to penalize and filter out anatom-
ically implausible hand pose configurations (which is commonly done in
many state-of-the-art frameworks to boost the model performance). Such
refinement can be done by enforcing pose priors, which are statistically es-
timated from the training data, or by introducing an additional generative
pathway, based on rendering of a 3D hand model, or on an alternative solu-
tion.

So far, we have been mentioning different ways to improve the hand pose esti-
mation pipeline per se, but, in addition, there exist a more high level objective,
namely combining the gesture recognition interface and the hand pose estimation
pipeline in a single framework and, as before, integrating this system in the con-
text of human-robot interaction.
Our domestic companion robot (which we mentioned just before) is equipped
with a pico-projector, that serves to display digital content by projecting it on
some specified surface. In this sense, an additional gestural functionality, such
as navigation in menus, scrolling or zooming, would be extremely beneficial.
Naturally, this kind of application requires more accurate estimation of hand
motion parameters than in the case of simple gesture recognition. The same idea
applies to the context of interactive communication of navigating instructions to
a robot, in which case hand pose estimation would be required by a robot, for
example, to evaluate where the user is pointing.

Looking to the more distant future, we are interested in exploring less traditional
ways of formulating the hand pose estimation problem. For example, in gestural
interfaces, the step of exact localization of hand joints in space could be compro-
mised for an alternative pose representation (such as the same segmentation, for
example, or any other), or removed completely.
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Going in this direction, we are planning on exploring ways to directly map hand
movements into the response which is expected from the gestural interface. For train-
ing, such ground truth data annotations could be obtained through an imitation
process, i.e. by asking a user to reproduce a movement, which he or she would
perform to get the exact specified response from the system.
We have previously discussed potential advantages of such an approach in in-
troduction to Chapter 5, where we mentioned different strategies for building
gestural interfaces, which include the hand pose estimation step (see Figure 53).
In those terms, this possible direction of future research corresponds to exploring
Strategy (4) (or even Strategy (1), in the simplest case).
We believe that implementing this idea into the setting of end-to-end training,
by mapping the visual input into the desired response following the analysis of
learned representations would allow us to reach better a understanding of the
hand pose estimation problem. As a result, we hope to be able to formulate
alternative hand pose representations, which could be potentially more effective
and efficient in the specific context of target applications.

— Path 3. Authentication from motion.

In the final part of this thesis, we have tackled the problem of authentication
of smart phone users based on their motion patterns, which are captured by a
number of inertial sensors built in the smart phone (such as an accelerometer
and gyroscope). In this context, we have demonstrated that these inertial signals
indeed convey information about a user identity and therefore can be considered
as useful biometric cues. Accordingly, this channel has a potential for being
integrated in multi-modal mobile authentication frameworks.
From the modeling perspective, we have proposed a general improvement for an
existing temporal deep learning architecture (namely, the Clockwork RNN [161])
and demonstrated its efficiency not only in the authentication setting, but also
for gesture recognition from visual data.
In the authentication framework, the motion data representations, learned by the
proposed temporal model, are incorporated in a lightweight generative frame-
work allowing for the creation of a new client model directly on the device with-
out retraining of the feature extraction pipeline (which would be prohibitively
computationally expensive from a computational standpoint in the mobile set-
ting).
However, this is only the first step of a big project, and there is a significant
amount of work which remains to be done. First of all, it applies to further anal-
ysis of representations learned from this temporal data for better understanding
of what aspects of human motion are particularly characteristic from a biometric
point of view. One potential direction for future investigation could be consider-
ing motion patterns specifically in the context of particular applications (such as
browsing the Internet, writing emails, playing games or simply picking up the
phone).
The ultimate goal of this project, however, is incorporating this module in a larger
biometric framework and finding effective and efficient strategies for combining
signals of a different nature (including images, speech and touch data).
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This concludes our discussion of human motion analysis with deep learning meth-
ods. In addition to what has been accomplished, a tremendous amount of work still
remains to be done, and it is likely to take years before gesture-controlled telep-
resence systems are widely integrated in high schools, domestic robot companions
become a part of our daily lives and multi-modal mobile authentication is included
as a standard component in the Android operating system. However, we believe
that future efforts and future research will keep bringing new insights to make the
impossible things possible.
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SIGLE ECOLE DOCTORALE NOM  ET COORDONNEES DU RESPONSABLE 

 
CHIMIE 

 

CHIMIE DE LYON 
http://www.edchimie-lyon.fr 

 
Sec : Renée EL MELHEM 
Bat Blaise Pascal 3e etage 
secretariat@edchimie-lyon.fr 
Insa : R. GOURDON 

M. Stéphane DANIELE  
 Institut de Recherches sur la Catalyse et l'Environnement de Lyon 
IRCELYON-UMR 5256 
Équipe CDFA 
2 avenue Albert Einstein 
69626 Villeurbanne cedex 
directeur@edchimie-lyon.fr 
 

 
E.E.A. 

 
 

ELECTRONIQUE, 
ELECTROTECHNIQUE, AUTOMATIQUE 
http://edeea.ec-lyon.fr 
 
Sec : M.C. HAVGOUDOUKIAN 
Ecole-Doctorale.eea@ec-lyon.fr 

M. Gérard SCORLETTI 
Ecole Centrale de Lyon 
36 avenue Guy de Collongue 
69134 ECULLY  
Tél : 04.72.18 60.97 Fax : 04 78 43 37 17 
Gerard.scorletti@ec-lyon.fr 
 

 
E2M2 

 

EVOLUTION, ECOSYSTEME, 
MICROBIOLOGIE, MODELISATION  
http://e2m2.universite-lyon.fr 
 
Sec : Safia AIT CHALAL 
Bat Darwin  - UCB Lyon 1 
04.72.43.28.91 
Insa : H. CHARLES 
Safia.ait-chalal@univ-lyon1.fr 
 

Mme Gudrun BORNETTE 
CNRS UMR 5023 LEHNA 
Université Claude Bernard Lyon 1 
Bât Forel 
43 bd du 11 novembre 1918 
69622 VILLEURBANNE Cédex 
Tél : 06.07.53.89.13 
e2m2@ univ-lyon1.fr 
 

 
EDISS 

 
 

INTERDISCIPLINAIRE SCIENCES-
SANTE 
http://www.ediss-lyon.fr 
Sec : Safia AIT CHALAL 
Hôpital Louis Pradel - Bron 
04 72 68 49 09 
Insa : M. LAGARDE 
Safia.ait-chalal@univ-lyon1.fr 
 

Mme Emmanuelle CANET-SOULAS 
INSERM U1060, CarMeN lab, Univ. Lyon 1  
Bâtiment IMBL 
11 avenue Jean Capelle INSA de Lyon 
696621 Villeurbanne 
Tél : 04.72.68.49.09 Fax :04 72 68 49 16 
Emmanuelle.canet@univ-lyon1.fr 
 

 
INFOMATHS 
 

INFORMATIQUE ET 
MATHEMATIQUES 
http://infomaths.univ-lyon1.fr 
 
Sec :Renée EL MELHEM 
Bat Blaise Pascal  
3e etage 
infomaths@univ-lyon1.fr  
 

Mme Sylvie CALABRETTO 
LIRIS – INSA de Lyon 
Bat Blaise Pascal 
7 avenue Jean Capelle 
69622 VILLEURBANNE Cedex 
Tél : 04.72. 43. 80. 46 Fax 04 72 43 16 87 
Sylvie.calabretto@insa-lyon.fr 
 

 

Matériaux 
 

MATERIAUX DE LYON 
http://ed34.universite-lyon.fr 
 
Sec : M. LABOUNE 
PM : 71.70  –Fax : 87.12  
Bat. Saint Exupéry 
Ed.materiaux@insa-lyon.fr 
 

M. Jean-Yves BUFFIERE 
INSA de Lyon 
MATEIS 
Bâtiment Saint Exupéry 
7 avenue Jean Capelle 
69621 VILLEURBANNE Cedex 
Tél : 04.72.43 71.70 Fax 04 72 43 85 28 
Ed.materiaux@insa-lyon.fr 
 

 
MEGA 

 
 

MECANIQUE, ENERGETIQUE, GENIE 
CIVIL, ACOUSTIQUE 
http://mega.universite-lyon.fr 
 
Sec : M. LABOUNE 
PM : 71.70  –Fax : 87.12  
Bat. Saint Exupéry 
mega@insa-lyon.fr 
 

M. Philippe BOISSE 
INSA de Lyon 
Laboratoire LAMCOS 
Bâtiment Jacquard 
25 bis avenue Jean Capelle 
69621 VILLEURBANNE Cedex 
Tél : 04.72 .43.71.70  Fax : 04 72 43 72 37 
Philippe.boisse@insa-lyon.fr 
 

 
ScSo 

ScSo* 
http://recherche.univ-lyon2.fr/scso/ 
 
Sec : Viviane POLSINELLI 
         Brigitte DUBOIS 
Insa : J.Y. TOUSSAINT 
viviane.polsinelli@univ-lyon2.fr 
 

Mme Isabelle VON BUELTZINGLOEWEN 
Université Lyon 2 
86 rue Pasteur 
69365 LYON Cedex 07 
Tél : 04.78.77.23.86  Fax : 04.37.28.04.48 
 

*ScSo : Histoire, Géographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, Anthropologie 


