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Abstract

Object detection and human action recognition are two active fields of research in com-
puter vision, which have applications ranging from robotics and video surveillance,
medical image analysis, human-computer interactions to content-based video annota-
tion and retrieval. At this time, building such robust recognition systems still remain
very challenging tasks, because of the variations in action/object classes, different pos-
sible viewpoints, as well as illumination changes, moving cameras, complex dynamic
backgrounds and occlusions. In this thesis, we deal with object and activity recognition
problems. Despite differences in the applications’ goals, the associated fundamental
problems share numerous properties, for instance the necessity of handling non-rigid
transformations. Describing a model object or a video by a set of local features, we for-
mulate the recognition problem as a graph matching problem, where nodes represent
local features, and edges represent spatial and/or spatio-temporal relationships between
them. Inexact matching of valued graphs is a well known NP-hard problem, therefore
we concentrated on finding approximate solutions. To this end, the graph matching
problem is formulated as an energy minimization problem. Based on this energy func-
tion, we propose two different solutions for the two applications: object detection in
images and activity recognition in video sequences. We also propose new features to
improve the conventional Bag of words model, which is widely used in computer vi-
sion. Experiments on both standard datasets and our own datasets, demonstrate that
our methods provide good results regarding the recent state-of-the-art in both domains.

Key-words: Object recognition, object localization, activity recognition, graph matching,
pairwise features, multiple actions.
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This part consists of two chapters:

In chapter 1, we give a general introduction of this thesis. First, we present the prob-

lem of object detection and activity recognition, on which this thesis focuses. Then, the

context and the motivation of this work are described. Finally, we present the objective

of this thesis, and outline the contributions.

In chapter 2, we review the existing graph matching methods in computer vision.

Our idea differs from most other surveys in that we always highlight the difference

between purely graph matching methods and graph matching techniques, which can be

applied in vision. Besides, we also focus on recent work, which has not been discussed

in previous surveys.
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Chapter 1
General introduction

Object recognition is one of the fundamental challenges in computer vision, which has

been studied for more than four decades [Ull96]. The goal of object recognition is to find

all instances of a given object in an image. Figure 1.1 shows an example of recognizing

a dog in an image. With a little effort, humans can recognize a large variety of objects,

even through severe appearance variations due to changes in pose, illumination, texture,

deformation, and under occlusion. In contrast, general robust object recognition is still

beyond the capacities of current artificial vision systems. The main reasons do not seem

to result from a lack of sufficient research in this domain [Ull96], the problems lie in

the inherent difficulties of the object recognition problem. Many approaches have been

proposed to object recognition in natural scenes. Indeed, there are many important

applications in the following fields, in which object recognition task is involved:

Industrial machine vision: object recognition capabilities can be used to factory au-

tomation, inspection, and quality control in an industrial environment.

Robotics and video surveillance: normally, video surveillance often imply recognizing

scenarios: moving object extraction, moving object recognition and tracking, e.g.

face recognition for video surveillance. Similarly, a robot agent should integrate

object identification and detection algorithms to recognize new models from the

physical environment. Therefore, reliable object recognition algorithms are neces-

sary for such domains.

Medical image analysis: reliable recognition algorithms are necessary to identify and

highlight the features and anomalies on medical images. For example, Radiologists

usually use Computer-Aided Detection applications to review medical images.

Content-based image and video indexing and retrieval: with the increase of multime-

5
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This is a dog

Find the dog in this image Expected result

Figure 1.1: An example of object recognition. The model here is the dog (left), which
will be searched in the scene image (midle).

Figure 1.2: An example of human activities. These are the activities from the KTH
dataset [SLC04].

dia applications from a variety of sources on the World Wide Web, efficient object

recognition algorithms are needed to achieve reliable indexing methods, which

help storing multimedia data (image, video, ...) in databases.

Similar to object recognition, recognizing human activities from video sequences is

one of the most active fields in computer vision. For a little history, one of the earliest

pioneering studies on the nature of human motion was the investigations done by the

contemporary photographers Etienne Jules Marey and Eadweard Muybridge [Muy01]

in the 1850s. They photographed moving subjects in all kinds of activities - walking,

running, playing games, climbing stairs, etc, and revealed several interesting aspects of

human and animal locomotion. The earliest computer vision attempt to motion-based

approaches is the classic Moving Light Display experiments by Johansson [Joh73], who
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gave a great analysis of human motion perception in the field of neuroscience.

The goal of activity recognition is to recognize common activities in life-world such

as walking, jogging, jumping, climbing, etc. Figure 1.2 shows an example of such activ-

ities. We can state the problem in a simple way: given a video sequence, which contains

one or more persons performing an activity, activity recognition means to recognize

what activities are being performed, where and when?

Activity recognition has attracted considerable attention in recent years from the

computer vision community because of its potential applications, which are described

as follows:

Human-machine interaction: most of existing approaches to human-machine commu-

nication are modeled by explicitly typed, through spoken instructions, or with

dedicated hardware (joysticks, game pods, etc). Implicit human-machine com-

munication has received considerable attention recently. The main idea of such

approaches is to interpret human behavior in daily activities. An application of

such systems for example is detecting changes in cognitive behaviors of patients

with dementia (see http://immed.labri.fr/ for a concrete example). In such

systems, a camera is attached to each patient, which captures their behaviors, and

send the information to a computer. Based on installed activity recognition algo-

rithms, the computer will analyse the captured behaviours and make decisions.

Another nice example is the Microsoft’s Kinect, which enables human-machine

interaction in games.

Monitoring and video surveillance: example applications are detecting abnormal be-

haviors in a very crowded environment, e.g. detecting abandoned luggage and

left luggage in an airport. Nowaday, we can encounter video surveillance systems

in banks, supermarkets, parking, museums, etc. However, most of these systems

are still limited to capure movies and videos from enviroment, making an urgent

need for automatic analysis of human behavior. Efficient activity recognition algo-

rithms are necessary to achieve this goal.

Content-based video annotation and retrieval: most traditional approaches to content-

based video retrieval have mainly focused on visual features such as color, shape,

texture, and motion [RM97]. Despite their success, these methods can represent

only low-level information. In [MI00], the authors showed that high-level informa-

tion such as human activities are necessary to video annotation.

In this thesis, we deal with object and activity recognition problems. Despite differ-

ences between in the application goals, both applications share the same type of pattern

http://immed.labri.fr/
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matching problem. Describing a model object or a video by a set of local features, we

propose a framework for shape matching, which can be applied to both object recogni-

tion and action detection. In next section, the motivation and the context of this thesis

are presented.

1.1 Research context and Motivation

This thesis was partially funded by an industrial contract from the company Pinka1, and

partially by a grant from the project ANR-Canada of the LIRIS Laboratory. The research

in this thesis was therefore carried out within these two projets.

Pinka is an animation production company located in Annecy, France. The goal of

this project is to help creating 3D animated films from 2D storyboards. The storyboards

are hand drawn by the artists in charge of the scenario of the movie, mostly with tra-

ditional non electronic pens. Then, often the modeling specialists manually create the

3D scenes based on the storyboards, using existing 3D models stored in a database,

which is repetitive and very time consuming. Hence the company’s desires to perform

it automatically with a computer vision algorithm. Particularly, the aim of this work is

to recognize each 3D model from the corresponding piece of sketch (in the storyboard

plan), along with its 3D viewing angle, its scale and its rotation angle in the drawing

plane, so that it can be automatically and correctly placed in the 3D scene. An illustra-

tion of the problem can be found in figure 1.3. In fact, such a problem belongs to the

class of hand-drawn recognition problems, which have not received much attention until

now. The practical application of this project is not restricted to the company. Indeed,

in an image retrieval system, it is interesting to sketch an object and tell computer to

find all images containing instances of this model from a database. Motivated by such

an object retrieval application, we investigated a method for recognizing object classes

in both natural and storyboard scenes from a hand-drawn model.

Our second application deals with the development of methods to abnormal activity

detection in video sequences. Most of existing methods usually involve supervised al-

gorithms, which are used to distinguish normal and abnormal activities. In this project,

we focused on multiple activity recognition, i.e. the detection and localization (in time

and in space) of the activities of different people performing different activities in the

same video and possibly simultaneously. Due to the lack of publicly available challeng-

ing datasets for multiple activity recognition, in the case of this project, a new dataset of

more than 400 videos was collected by our partners of the ANR Canada project, called

1http://www.pinka-prod.com/
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Figure 1.3: Illustration of the database of existing 3D models (left) and a hand-drawn
storyboard scene (right). Our objective is to detect the 3D models in the scene story-
board.

Figure 1.4: Illustration of several activities from the canada dataset. In these videos,
multiple activities occur simultaneously.

canada dataset. Figure 1.4 illustrates several activities from this dataset. One of the main

contributions of this thesis is the design of a method capable of detecting multiple activ-

ities performed by several people at the same time in a video sequence. While there are

many applications for activity recognition, very few methods exist for multiple activity

detection.

1.2 Problem Statement and Objectives

Our goal is to recognize objects and actions of interest in images, storyboard scenes, as

well as in video sequences. Although a lot of methods have been proposed for object

recognition, few results are available in the literature about stroke images (e.g., story-

boards). Similarly, it should be noted that very little work in literature has been done for

multiple activity recognition. This is due to the fact that sketch recognition, as well as

activity recognition problems face a lot of common challenges, which can be described
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as follows:

Poor information. As opposed to natural images, drawings are very poor on texture in-

formation or not textured at all, and it is therefore difficult to extract local features

of the target object from the scene. This makes it necessary to resort to methods

taking into account a very large part of the object. Simularly, texure information

in videos - although available - is not related to the requested activity and can

therefore not be used.

Occlusion. Occlusion problems are inevitable in sketch recognition. Figure 1.6 gives an

example of such occlusions in drawing images. Another example of occlusions

occurring in storyboard scenes is shown by the trees in figure 1.3. In a video

sequence, the occlusion problem usually appears in the video areas captured from

crowded environments such as airports or supermarkets. There is another kind of

occlusions in activity recognition, called the self-occlusion problem, which is due

to motion overlapping in the same region [ATKI10]. In general, it is difficult to

deal with occlusion problems in video processing.

Deformation problem. Figure 1.5 shows two examples of deformations in sketched im-

ages: a) a reduced image of a 3D caravan model (top), three different hand-drawn

caravans (bottom), and b) non rigid tranformations typical to the articulated mo-

tion of living beings. Thus, successful approaches to sketch recognition must cope

with the object deformation problem. In activity recognition, there are significant

spatial and temporal variations for the same action when performed by different

people or even by the same people.

Inter-class and intra-class variations. Inter-class and intra-class variations are the cen-

tral issues of any pattern recognition problem, they characterize the difficulty of

the problem. In sketch recognition, intra-class variations are often larger than

inter-class variations, as shown in figure 1.8 for an example. We can see that while

the variations among the bushes are quite large, the differences between the two

classes (trees and bushes) are quite low. In the case of activity recognition, the

intra-class variation between postures of the same class is usually high for many

actions, e.g. a walking person may be from left to the right, from right to the left

or directly facing the camera. Also, different people perform different actions in

different ways, e.g. walking actions can differ in speed and stride length. In addi-

tion, the inter-class variation is low for many actions of different classes, e.g. slow

running resembles jogging although the application might require the distintion
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of these two activities. A successful recognition approach should be able to deal

with these difficulties.

Scale variation. In object recognition from natural images, the scale variation problem

has partially been solved by the power of the features, e.g. SIFT features from

[Low99]. However, in sketch recognition, the traditional approach of assigning a

local scale value to a feature is not possible due to the lack of texture (see figure 1.7

for an example). Thus, an efficient method is needed to cope with these problems.

Activity recognition also features a large variabilities in the spatio-temporal scale,

e.g. the duration of the same actions in different videos may not be equally long.

It is often useful to distinguish between two types of problems:

• Classification – It is defined as a problem of assigning class labels to the scene,

i.e. the “recognition” (in a broad sense) of a class of objects or actions, e.g. cars,

walking, etc.

• Recognition – The objective is to determine which, if any, of a given set of specific

objects (e.g. my red Ferrari) or actions (e.g. gaits) appear in a given scene (image,

video).

The two different types of problems are often addressed differently. In general, and

in the point of view of classification, object and activity recognition often consist of three

main stages:

a) Feature extraction and Representation: this stage first extracts features from objects

or actions of interest, which can be either global or local (i.e., sets of primitives).

Then, the object or action is represented by the features.

b) Learning models: machine learning algorithms, either generative or discriminative,

are used to learn object or action models. The following learning methods are often

employed: Support vector machines (SVM), Baysian networks, adaboost, Hidden

Markov Models (HMM), conditional random fields (CRF), etc.

c) Recognition: this step decides whether or not object or action instances are present

in the scene (image or video) using the models learned from the above step.

However, from the point of view of detection, there exist many methods, which do not

need training, i.e. matching methods. Such methods usually consist of the following

stages:
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a) Feature extraction and Representation: similar to the same stage described above,

objects or actions of interest can be represented by either global or local (i.e., sets of

primitives) from the extracted features.

b) Matching: this stage performs feature matching. If the objects or actions of interest

are represented globally, this stage computes distances between two vectors. Oth-

erwise, it needs to perform feature correspondences. There are several algorithms

designed for this perpose, like Hough voting, graph matching, RANSAC, etc.

c) Verification: this step decides whether or not object or action instances are present in

the scene (image or video) by using a threshold chosen from experiments.

In this thesis, unless otherwise specified, we slightly relax the distinction between class-

fitication and recognition, and use both terms for the same kind of algorithm. In partic-

ular, the classification problem can be solved by matching a new object/activity against

a set of labelled objects/activities using a k-nearest neighbor approach. This is what we

chose for our technique described in chapter 7.

Depending on how to represent an object or an action of interest, i.e. using global or

local features, a classification/recognition problem can be broadly classified as a global

or a local approach. Global methods extract features on the whole object at once, while

local methods extract features on each local primitive (i.e. interest points, edges, regions,

etc.). Because there is no need to perform feature correspondence matching, global

approaches have the advantage of requiring less computation compared to the local

ones. They, however, may fail in many practical applications due to partial occlusion

or clutter. Local methods, based on the extraction and representation of local features,

overcome the global ones. Probably one of the most widely used local methods is Lowe’s

SIFT algorithm [Low99], which is invariant to location, scale and rotation, and robust to

affine transformations. A SIFT (scale-invariant feature transform) descriptor represents

a histogram of local gradient information around extrema in a pyramid of Difference

of Gaussian (DoG) images (i.e. in scale space). Other local approaches consider other

type of features, e.g. the Boundary Fragment Models (BFM) from [OPZ06b, SBC05], and

k-adjacent segments (kAS) from [FFJS08b]. Both BFM and kAS use contour information

as basic features, but they mainly differ in how to exploit spatial information, i.e. BFM

method learns a codebook of contour fragments referenced to an object’s centroid, while

kAS approach partitions contour segments into lines and combines several adjacent lines

to form a robust feature (cf. chapter 3).

Although many impressive results have been reported, most of the existing methods

share a common weakness that they have been developed to deal with rigid objects
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with limited intra-class variation, which makes it difficult to apply them to articulated

models, as described above. Morever, some features like SIFT, BFM, and kAS do not

carry enough information in a sketch image.

Based on the difficulties mentioned above, and on the analysis of state-of-the-art

approaches, we can point out hereafter, the main points that need to be considered in

finding the solution for both sketch and activity recognition problems:

Local features. Global features are not suitable for our context because of their lack in

handling occlusions.

Spatial and/or temporal relations. Simple collections (“bag”) of local features are not

sufficient to recognize objects and activities of interest. We, therefore, take into ac-

count the spatial and/or temporal relationships between the local features. Spatial

model has to deal with non rigid deformation.

Structured data. Hand-drawn images and activities usually undergo non rigid defor-

mations, thus there are no global transformations (affine, rigid, isometry, etc) be-

tween the model and its instances in the sketch scenes or video scenes. This re-

quires flexible matching between structural features, e.g. graphs which represent

the data as sets of nodes and edges between the nodes.

Traditional methods often work with non-structured data (histograms or vectors),

which - in the context of sets of several local features collected or local primitives -

requires abandoning the spatial relationships of the features. The bag of words model

is particularly widely used [CD01, VZ02, DC04, DS03, LP05]. The trade-off is a loss

in discriminative pover. This reveals the problematics of this thesis: investigating new

methods, which do not require any learning, for dealing with the main points described

above. To this end, we formulate the recognition problem as a graph matching problem,

and find the solutions through the optimization of a cost (energy) function measuring

the quality of matching between two graphs as well as the attributes associated with

them (node and edge attributes) - see chapter 2. Indeed, graphs are a powerful way

to model features extracted from objects where nodes represent local features (local

parts) and egdes represent geometric relationships (spatial and temporal relationships)

between them. An example of different graph topologies is shown in figure 1.9. In this

thesis, we are interested in generic graphs for representing objects or actions of interest.

Once the graphs have been constructed, an important question arising in the context

of pattern recognition is how to perform efficiently graph matching, which, depending

on the concrete formulation, can be difficult or NP-hard - see chapter 2. The main
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issue of graph matching is the problem of computation time and memory space. This

is a big problem when applying graph matching to pattern recognition because the

computational complexity increases with the size of the graph. In this thesis, our main

objective is to develop approximate solutions to graph matching problems for the two

applications we are interested in, and for which the computation of exact solutions is

hard or even impossible.

1.3 Contribution of this thesis

We focus on object recognition and activity recognition from model templates. As dis-

cussed so far, we formulate both problems as graph matching problems. In this thesis,

we make several contributions toward that end, which are summarized below:

• We present a decoupled method for solving energy functions. In such a method,

the problem is separated into two stages: matching and verification. One of ad-

vantages of this approach is that we do not need to solve the pairwise or higher

order terms in the energy function, which is known to be NP-hard [KZ04]. This

method was tested on a real dataset and a publicly available one, in the context of

sketch recognition.

• Graph matching techniques have been studied intensively in the field of pattern

recognition, but no method has yet been given for recognizing human activities -

a straightforward application of these techniques to video recognition is difficult.

While most of state-of-the-art graph matching methods concentrate on finding ef-

ficient algorithms for solving the assignment matrix (i.e., the matrix describing

the correspondence between two graphs), we focus our attention to complemen-

tary problems: how to construct more expressive graphs and how to efficiently

estimate edge compatibilities of the assignments. To this end, we adapt a spectral-

based method for high order graph matching to activity recognition. In particular,

we propose a modified version of third-order graph matching for video matching.

• In activity recognition, the temporal order of the local features is very important

for characterizing action. However, such an information has been largely ignored

in state of the art. We propose a new feature, which encodes both the appearance

and spatio-temporal relationships of the local features. Our proposed feature has

been tested on two stardard datasets for action recognition.
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1.4 Thesis outline

We organize this thesis into three parts: part I consists of two chapters. In the first chap-

ter, we present the goal of this thesis, and describe our approach to the problematics.

Then, we describe existing methods for graph matching, on which this thesis is based.

Part I I and I I I present our contributions to object detection and activity recogni-

tion, respectively. Each of these parts starts with an overview, and follows with our

contributions to the related domains. The remainder of this manuscript is organized as

follows.

Part II: Object recognition

Chapter 3 presents a review of the state of the art in object recognition. We aim

at recognizing hand-drawn sketches, which consitute very poor texture information.

Only contour descriptors are suitable for such applications, we therefore review only

methods, which are based on contour features.

Chapter 4 presents our first contribution to object recognition. We proposed a de-

coupled method which consists of two steps: in a first step, we use only local features

(associated to each node) to peform matching between the model and the scene graphs.

Then we validate the result by verifying their geometric relationships.

Part III: Activity recognition

Chapter 5 presents some background knowledge on action recognition. We also

describe some publicly available datasets, which are used to test activity recognition

systems.

Chapter 6 introduces our improvements to the conventional Bag of Words (BoW)

representation. Most of existing works in activity recognition are mainly based on the

BoF paradigm, which discards spatio-temporal relations between local features. We

bring some improvements to BoF models by proposing a new feature, which encodes

both local appearances and geometric relationships between local points. Moreover, this

work gives us motivation to apply graph matching tecniques for action recognition.

Chapter 7 presents an adaptation of high order graph matching based on spetral

techniques for activity recognition. We consider the action recognition as a graph match-

ing one, in which template videos are used as the model graphs, and videos containing

activities to be recognized are the scene graphs.

Chapter 8 summarizes the contributions of this dissertation, gives some conclusions

of this work and provides several future perspectives for both object and activity recog-

nition.
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a)

b)

Figure 1.5: Examples of different types of deformations in drawings: a) The deformation
of caravans, which are given by the company Pinka; b) A dand drawn picture drawn by
a Chinese painter, Xu Beihong, in 1942. This illustrates non-rigid tranformations typical
for living beings.
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Figure 1.6: a) An example of occlusions that occur in the hand-drawn image. This
picture was drawn by a Belgian surrealist artist, René Magritte, in 1957; b) Illustration
of occlusions occuring in the storyboards from the company Pinka.

Figure 1.7: Illustration of scale variations from two drawn tents.
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Figure 1.8: Illustration of inter-class and intra-class variations in the hand-drawn im-
ages: the first two rows are the bushes and the last row shows some trees. These
hand-drawn images are from the company Pinka.

Figure 1.9: Example of graph topologies: a) Chain; b) Wheel or Ring; c) Tree; d) Star;
and e) Fully connected graph. This figure is reprinted from [OGM08].
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In this chapter, we first review the existing graph matching methods used in com-

puter vision. Then, we introduce our general framework, from which we propose three

different solutions for graph matching. It is not possible to review all the available

literature on graph matching, which has a long history on computer science. We pro-

vide here the minimum background needed for understanding this thesis and placing it

within appropriate context. The interested readers could refer to additional references

[CFSV04, CFSV07] for some futher reading. Our taxonomy is in some respects based on

the one introduced by Conte et al. in [CFSV04]. For each part of the taxonomy, we re-

view the widely used methods and describe more recent work in the field. Particularly,

we attempt to highlight the effects and impact of graph-based techniques and their use

in pattern recognition applications. Besides, we also focus on recent work, which has

not been discussed in previous surveys.
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2.1 Introduction

Graphs are flexible and powerful representation techniques, which have been success-

fully applied in computer vision and pattern recognition [CFSV04, DBKP09, LH05b,

TKR08a, ZS08]. In such domains, graphs are used to represent objects, and the recogni-

tion problem often turns into the task of graph matching, i.e searching a transformation

of one graph into another. In this chapter we briefly review efficient algorithms for

graph matching, including exact and inexact methods. Generally speaking, we can state

the object recognition problem through using graph matching techniques as follows:

let Gm = (Vm, Em, Fm) and Gs = (V s, E s, Fs) be two graphs (the model and the scene

graph, respectively), where E represents a set of edges, V a set of vertices, and F the

set of their associated unary measurements (i.e appearance features extracted from lo-

cal regions in the image, corresponding to the nodes V)1. In the following we denote

the number of nodes in both graphs as Nm = |Vm| and Ns = |Vs|, respectively. We

also denote by vm
i and vs

j for the i− th node in the model graph and the j− th node in

the scene, respectively. Object recognition using local features is then casted as a graph

matching problem which consists of finding correspondences between the nodes of the

two graphs, in which vertices (nodes) often represent local features (objects parts), and

edges represent the proximity relationships between nodes (cf. figure 2.2).

The advantage of graph matching compared to alternative techniques, e.g. RANSAC

[FB81], is that non-rigid tranformations can be handled easily. Here RANSAC is an

abbreviation for “RANdom SAmpling Consensus”, which is an iterative method to esti-

mate the parameters of a rigid transformation, e.g. a homography, from observed data,

which contains outliers. Generally, the graph matching methods can be divided into

two broad categories:

Exact methods – The first contains exact matching methods called graph isomorphism

and sub-isomorphism (cf. figures 2.1 and 2.3) that require a strict correspondence

between the two objects being matched or at least between subparts of them. Note

that apart from the term “exact”, this first category can also be known as structural

methods. The term structural (i.e., exact graph matching) means that the matches

are strictly based on graph structure (the set F is often null in this case). In practice,

most structural graph matching methods are mainly based on the exploitation of

the adjacency matrix. This matrix is an n× n matrix A = (aij), in which the entry

aij = 1 if there is an edge from vertex i to vertex j, and equals 0 if otherwise (e.g.,

1Note that for readability or according to the method at hand, we sometimes omit the features and
denote Gm = (Vm , Em) and Gs = (V s , E s) for the model and the scene graph, respectively.
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0 0 0 0 1 1 1 0
0 0 0 0 1 1 0 1
0 0 0 0 1 0 1 1
0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0
1 1 0 1 0 0 0 0
1 0 1 1 0 0 0 0
0 1 1 1 0 0 0 0





0 1 0 1 1 0 0 0
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
1 0 1 0 0 0 0 1
1 0 0 0 0 0 1 1
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
0 0 0 1 1 0 1 0


(i) (ii)

Figure 2.1: Exact and structural graph matching: node positions and features are not
used. There exists an isomorphism f between these two graphs: f (a) = 1, f (b) =
6, f (c) = 8, f (d) = 3, f (g) = 5, f (h) = 2, f (i) = 4, f (j) = 7. The corresponding adja-
cency matrices are also listed at the bottom.

see figure 2.1).

Inexact methods – The second category defines inexact matching methods, where a

strict correspondence between the two graphs being compared does not need to

be found. In a real application, exact matching methods are often inapplicable

due to the complexity of shape, distortions or errors in the underlying data. On

the other hand, inexact matching algorithms can deal with errors and noise, thus

inexact graph matching is also referred to as error-tolerant graph matching. These

methods are often attributed: due to the existence of noise and distortion, in real-

world applications of pattern matching, the graph structure itself is not sufficient to

recognize patterns, thus node attributes are needed. The attributes can be symbolic

(name, function, etc) or numerical (position, size, descriptors). Figure 2.2 illustrates

an example of inexact graph matching, which takes into account nodes’ attributes

(i.e., geometric information).
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Figure 2.2: Inexact and attributed graph matching is driven by the geometry associated
with the graphs. The values pi and fi for each node correspond, respectively, to the
position and the feature vector of the patch. xi is a variable indicating the assignment to
the scene node.

Before explaining the two types of matching problems, we briefly illustrate common

techniques for the creation of graphs from images.

2.2 Graph construction

Graph construction is the first step of the application of the graph matching techniques

to pattern recognition. For a given image, the creation of the corresponding graph is

composed of two steps:

Construct the nodes – The nodes of the graph often represent one of the following

types of information:

• Points of interest (2D or 3D): the interest points represent a rich set of local

points that are robust to geometric transformations of the image.

• Regions of interest.

• Edgels, i.e. contour fragments.

Construct the edges – Once the nodes are contructed, the edges of the graph are often

determined as follows:

• Full-connection: a fully-connected graph is a graph in which every pair of
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vertices is connected by an unique edge. This kind of graph is sometime used

in inexact matching methods restricted to finding rigid transformations.

• Proximity: proximity graphs are contructed by connecting the neighbour

nodes based on thresholding techniques (i.e. the distances between the nodes).

• Adjacency: the edges of the graph are etablished from the adjacency relations

of image regions (e.g. in a segmented-image).

• Delaunay: the edges are constructed by connecting each node to its natural

neighbors such that for each edge we can find a circle containing the two

edge’s nodes but not containing any other nodes. The lack of stability restricts

the usefullness of this choice.

We give hereafter an overview of standard techniques for exact as well as inexact

graph matching methods.

2.3 Exact graph matching

Generally, exact graph matching is an edge-preserving mapping from the vertices of one

graph (Gm) to the vertices of another graph (Gs) in the sense that vertices adjacent in Gm

must also be adjacent in Gs. Usually, appearance features F are not used. There are

several forms of exact graph matching as follows:

• Graph isomorphism: there must be a bijective correspondence (i.e. one-to-one

correspondence) between the vertices of the two graphs that preserves edges of

both graphs - implying that the numbers of vertices and edges of the two graphs

must be the same (cf. figure 2.1).

• Subgraph isomorphism: that is a slightly form of graph isomorphism, which re-

quires an isomorphism to hold between one of the graphs and a subgraph of the

other. In practice, this is useful for searching objects in larger scenes.

• Monomorphism: this is an instance of subgraph isomorphism, in which the mapped

subgraph allows additional edges.

• Homomorphism: this is an instance of Monomorphism, in which more than one

vertex of Gm may be mapped to the same vertex of Gs.

• Maximum common subgraph isomorphism (cf. figure 2.3): the two graphs are

similar as they have a subpart including their adjacent edges in common. In other

words, the largest part of two graphs that is identical in terms of structure, is
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Figure 2.3: Illustration of a maximum common subgraph isomorphism between two
graphs.

refered to the maximum common subgraph. In literature the problem of finding

the maximum common subgraph isomorphism is usually related to the maximum

clique problem.

In the following we briefly review some typical methods for exact graph matching.

As mentioned before, these methods only exploit the graphical structure to establish

correspondences, and do not model geometry and/or features associated to each node.

2.3.1 Tree search-based algorithms

Most of the algorithms for exact graph matching are tree-based search methods with

backtracking. We present Ullmann’s algorithm [Ull76], which is one of the most pop-

ular algorithm used in exact graph matching, despite of its age. It addresses all of the

forms of exact graph matching mentioned above, but is less suited for maximum com-

mon subgraph isomorphism. This method is designed to find all of the isomorphisms

between a given graph Gm = (Vm, Em) and subgraphs of a another graph Gs = (V s, E s).

It uses a mapping matrix M with Nm rows and Ns columns, with elements mij ∈ {0, 1},
where mij = 1 means the ith vertex in Gm corresponds to the jth vertex in Gs, such that

each row contains a single 1 and each column has no or a single 1.

∑Ns

j=1 mij = 1, ∀i ∈ {1, 2, ..., Nm}

∑Nm

i=1 mij ∈ {0, 1}, ∀i ∈ {1, 2, ..., Nm}
(2.1)

Let Am = [am
ij ] and As = [as

ij] be adjacency matrices of Gm and Gs, respectively. If a

permutation matrix M can be found, which permutes rows and columns of As, resulting

in a matrix C:

C = M(MAs)T (2.2)
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And the following expression is true:

(am
ij = 1)⇒ (cij = 1), ∀i, j ∈ {1, 2, ..., N1}, (2.3)

then M specifies an isomorphism between Gm and a subgraph of Gs, i.e. if Am =

C for a certain M, then the two graphs are isomorphism. The Brute-Force algorithm

exhaustively evaluates every possible matrices M. As an enhancement for this algorithm,

not all possible matrices M holding the constraint 2.1 are verified, but only those that

map vertices Vm to vertices Vs of the same or a higher degree2. This is performed by

constructing another matrix M0 = [m0
ij] of the same size as M in accordance with:

m0
ij =

 1 if deg(vm
i ) ≤ deg(vs

j )

0 otherwise
(2.4)

All possible matrices M are generated by setting all but one of the 1’s of each row of M0

to 0, subject to the constraint 2.1. For each version of M, C is computed using eq. 2.2. If

the condition 2.3 holds, a subgraph isomorphism has successfully been detected.

The search space for those matrices M that make C holding the constraint 2.3 is real-

ized in a tree. Indeed, this tree has a height of Nm (i.e., Nm = |Vm|). Each nonterminal

node at depth d ≤ Nm corresponds to a distinct matrix M(d) that is created by chang-

ing to 0 all but one of the 1′s in a row of M(d−1), which was not already considered in

constructing M{1,2,...,d−1}. Consequently, the leaf nodes of this tree are at depth d = Nm,

and they correspond to different matrices of MNm
, which are used as M to compute C.

The algorithm presented so far is also known as the enumeration algorithm (i.e.,

enhanced bruce-force one), which has a high complexity. Ullmann [Ull76] proposed to

reduce the computations required in the above algorithm for finding subgraph isomor-

phisms by introducing a constraint on the elements m(d)
ij of M(d):

∀x ∈ {1, 2, ..., Nm}, am
ix = 1⇒ (∃y ∈ {1, 2, ..., Ns}, (md

xy × as
yj = 1)) (2.5)

where am
ix ∈ Am, i indicates the i − th point in Vm, and as

yj ∈ As, j indicates the i − th

point in Vs. The 1′s in Md (md
ij = 1) define correspondences between vertices of vm and

vs. According to the definition of subgraph isomorphism, if vm
i corresponds to vs

j in

the isomorphism, then there must exist a vertex vs
y that is adjacent to vs

j , such that vs
y

corresponds to vm
x in the isomorphism, where vm

x is an adjacent vertex of vm
i . Condition

2.5 is used to check this point. The expression 2.5 is a necessary and sufficient condition,

2The degree of a node is the number of its neighbors.
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which is used as a test for subgraph isomorphism instead of using condition 2.1. In the

tree search, 2.5 is tested for every element md
ij = 1. If the condition is not satisfied, then

all M based on Md cannot lead to a subgraph isomorphism, and therefore md
ij is set to 0.

This way eliminates some of the 1′s from the matrices of Md, thus reducing the number

of successor nodes to evaluate in the tree search.

Tree-based search is also used to find the maximum common subgraph isomorphis-

mis between two graphs. In general the maximum common subgraph problem is related

to the maximum clique (i.e. a fully connected subgraph) one. A typical example is the

work of Bron and Kerbosh [BK73], who use tree search approach to find the maximum

clique in an association graph, which represents node-to-node correspondences between

the two given graphs. More recent algorithms, which are still based on tree search, are

the VF and VF2 algorithm presented by Cordella et al. [CFSV00, CFSV01, PCFSV04].

They define a heuristic that is based on a depth-first strategy with a set of rules, which

sigficantly prunes the search space. They have shown that this heuristic is fast to com-

pute, and leads to improvement over Ullmann’s algorithm. Their later VF2 algorithm

[PCFSV04] reduces the memory requirement from O(N2) to O(N) with respect to the

number of nodes in the graphs. Another interesting tree-based algorithm is the one

published by Larrosa and Valiente [LV02]. The authors reformulate the graph isomor-

phism as a contraint satisfaction problem (CSP), which is widely studied in discrete

optimization and operational problem. Therefore they employ heuristics derived from

state-of-the-art research in CSP.

2.3.2 Other techniques

Besides tree search-based algorithms, many other exact matching algorithms have been

proposed in litterature, e.g. [McK81, BM97, MB99]. Probably the Nauty algorithm in-

troduced by [McK81] is the most interesting method from the non tree-based search

approaches. The basis idea is to transform the graphs to be matched to a canonical

form, and the test for isomorphism of two graphs is performed by simply checking the

equality of their canonical forms. The Nauty algorithm is regarded as the fastest isomor-

phism algorithm available today [FSV01]. It deals only with isomorphism problems, but

the construction of the canonical form takes exponential time in the worst case.

Several algorithms are specifically designed to match an input graph against a li-

brary of preprocessed graphs. We can cite here a very impressive algorithm of this

family proposed by Messmer and Bunke [BM97, MB99], addressing both isomorphism

and subgraph isomorphism problems. The algorithm needs a preprocessing phrase, for
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which a decision tree is built from the graph libary. Based on this decision tree, the con-

suming time to match an input graph against the whole libary is of O(N2) with respect

to the graph size, which is independent of the number of graphs in the library.

2.4 Inexact graph matching

For having an isomorphism (subisomorphism) between two given graphs, exact graph

matching requires that the topology together with the corresponding vertices are similar.

These stringent constraints make exact graph matching applicable to only a few appli-

cations. In many applications, these constraints need to be relaxed to deal with intrinsic

variability of the object class, presence of noise, and occlusion problem. Moreover, the

major drawback of exact graph matching methods is their high computational complex-

ity, which limits the applicability of these approaches in complex applications. Besides,

geometric information of the features (e.g. node positions), which is very important

in computer vision applications, is not taken into account for exact graph matching.

For these reasons, a significant number of inexact graph-matching algorithms have been

proposed, dealing with a general graph structure. Usually, these inexact matching algo-

rithms do not impose the edge-preservation constraint used in exact methods. Instead,

they penalize edges that do not satisfy edge-preservation constraint with a respective

cost. In other words, the aim of inexact methods is to determine a mapping from one

graph to another such that the overall cost of the matching is minimized. In general,

in the field of machine vision, the cost function often takes into account the following

information:

• Topological differences between model graph and scene graph.

• Feature distances between the unary measurements (features) Fm and Fs assigned

to vertices in Gm and their corresponding vertices in Gs.

• Geometrical distances between the position of the nodes in Gm and the position of

their corresponding nodes in Gs.

Summation form

Hence, the graph matching problem is often formulated as the minimization of an

energy function (cost or objective function):

x̂ = arg min
x

E(x) = λ f ∑
i∈V

ψ1(i; xi) + λd ∑
ij∈E

ψ2(i, j; xi, xj) (2.6)
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Where each node i of the model graph is assigned a discrete variable xi, i = 1..Nm (the

size of the model graph) which can take values from a discrete set L = {1..Ns} (the size

of the scene graph); Please note that only the arguments x are variables over which we

need to optimize. ψ1 is therefore an unary potential function, which is also called the

linear assignment affinity measure, and ψ2 a pairwise potential function. More precisely,

these functions are defined as follows:

• ψ1 is a distance function between two feature vectors associated to the model node i

(i.e., f m
i described in figure 2.2) and its corresponding scene node (i.e., f s

xi
described

in figure 2.2).

Figure 2.4: Illustration of possible pairwise measurements, which are used to verify the
compatibility between a pair of neighboring nodes in the model and its corresponding
scene nodes: e.g. d1 and d2 illustrate the coherence between edges, i.e. these two
distances need to be checked for the existence of an isometry.

• ψ2 expresses the compatibility between a pair of neighboring nodes in the model

and its corresponding scene nodes, e.g. edge compatibilities such as angle, length.

In our experiments, the pairwise function is taken nonnegative to ensure the

tractability of E(x) as the function of x for some energy optimization algorithms

(see section 2.4.4).

Matrix form

As we will present below, this energy function can also be expressed in a matrix form.

First of all, let us recall the linear assignment problem applied in pattern recognition.

Given two graphs Gm = (Vm, Em) and Gs = (V s, E s), which represent two sets of points

or primitives, respectively, a matching between Gm and Gs is equivalent to looking for

an Nm × Ns assignment matrix X such that Xij is set to 1 when vm
i is matched to vs

j , and

to 0 otherwise. Thus, the search space is the set C of assignment matrices:

C = {Xij ∈ {0, 1}Nm×Ns} (2.7)
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A correspondence x = {0, 1}N1 N2 is the row-wise vectorized replica of the assignment

matrix X ∈ {0, 1}Nm×Ns
. The similarity measure of the node-to-node matching is repre-

sented by an affinity matrix A such that:

Aij = ψ1(i; j), ∀i, ∀j (2.8)

where ψ1(.; .) is the same unary measement as described in eq. 2.6. The best assignment

obtained by solving:

x̂ = arg maxx(xTa), x̂ ∈ {0, 1}N1 N2 (2.9)

where a ∈ RN1 N2 is a row-wise vectorized replica of A. Note that in concrete applica-

tions, several constraints can be put on eq. 2.9, e.g. to allow a one-to-one corresponding,

one can impose conditions on the X so that each row and each column contain only one

1. The optimal solution for eq. 2.9 can be obtained by Brute force search for each vertex,

or by the Hungarian algorithm [Mun57].

If we add pairwise constraints, the optimal assignment is achieved by solving the

following binary quadratic problem:

x̂ = arg maxx(xT Ax), x̂ ∈ {0, 1}N1 N2 (2.10)

Here the pairwise function ψ2 is reshaped into a N1N2 × N1N2 symmetric matrix A,

called pairwise affinity matrix, with elements in R.

Inexact graph matching problem is solved by optimizing an energy function, which

is described by either Eq 2.6 or 2.10. It should be noted that each of these forms of the

energy function has its own advantages and disadvantages. For instance, the matrix-

form representation is naturally suited for algorithms from linear algebrac, e.g. singular

value decomposition (SVD), statistical properties, e.g. PCA algorithm for computing

eigen-space, etc. In constrast, the discrete-form representation is naturally suited for

algorithms from discrete optimization (see section 2.4.1).

In litterature, efficient algorithms for such problem can be either optimal or approx-

imate methods. Optimal inexact matching algorithms always find an exact solution if

it exists. These algorithms have exponential time complexity in the worst case, which

makes them unattractive for many applications. In contrast, approximate or suboptimal

matching algorithms find local minima of the matching cost. Generally, there are no

guarantees to reach the global minimum, but often the approximation is not very far

from the global one [CFSV04]. On the other hand, these algorithms usually have poly-
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nomial time complexity with respect to the number of nodes. Various formalisms have

been proposed to perform inexact matching.

Alternatively, matching cost can also be based on some sort of edit operations (e.g.,

node insertion, node deletion, node substitution, ...), which are called graph edit cost

[SF83]. This is an extension of a well known method, called The Levenshtein or string-edit

distance [Lev66]. The idea is to define the cheapest operations needed to transform one

graph into the other. The A∗ technique is usually employed to compute graph edit cost

[Bun00]. Note that these alternative techniques do not use the energy function described

above.

A large number of approaches to inexact graph matching have recently been pro-

posed, which are based on continuous optimization, quadratic programming, and spec-

tral decomposition of graph matrices. In the following, some important categories are

briefly described.

2.4.1 Discrete optimization - MRF

The graph matching problem formulated in eq. 2.6 can also be interpreted as an energy

potential function of a corresponding Markov Random Field (MRF), i.e. as the logarithm

of the joint probability distribution of hidden variables X (the assignments of model

nodes to scene nodes) and observed variables Y (positions of nodes, features, etc):

E(X = x, Y = y) = log P(X = x, Y = y) (2.11)

where the X are the same values as in eq. (2.6), and the observed variables Y have been

omitted in (2.6). This means that methods developped for the optimization of MRFs are

directly applicable for the minimization of eq. (2.6), although they may not always be

the best choice. In the next two sections we review, respectively, general methods for

MRF energy minimization, as well as MRF methods specifically developped for graph

matching.

2.4.1.1 General opimization methods for MRFs

All general methods presented below, can also be used to optimize the energy function

(2.6).

Graph-cuts – Graph-cuts only give the exact solution for submodular energy

functions, but approximate versions exist for general classes. The graph cut was first

introduced by Greig et al. [GS] as a combinatorial optimization method in the context of

Markov random fields to recover binary images. Later, Boykov et al. [BVZ01] developed
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graph cuts based technique to find a local minimum of eq. 2.6 with various smoothness

constraints. In 2004, Kolmogorov and Zabih [KZ04] suggested a method to construct

the graph for more general energy functional. Komodakis et al. [KTP07] proposed

a fast optimization approach, called Fast-PD, based on the duality theory of Linear

Programming. Rother et al. [RKLS07] introduced an approximate algorithm for general

functions.

Message passing methods – Message passing algorithms such as Belief Propagation

(BP) have been shown to produce excellent results for many energy functions. Proba-

bly the the first message passing algorithm for inference on Bayesian networks is belief

propagation developed by Pearl [Pea88]. Based on this belief propagation, several im-

provements have been developed, including [WF01a, WF01b, Hes02, YFW05]. More

recently, Duchi et al. [DTEK06] exploit the tractable substructures in MRFs within the

context of max-product belief propagation. However, as pointed out in [KPT10], the

convergence properties of these algorithms were not well analysed, i.e., one does not

really know when and why these methods fail.

Other methods of this family are based on the tree-reweighted max-product (TRW-

MP) algorithm, which was first introduced by Wainwright et al. in [WJW05]. This

algorithm is directly related to the LP relaxation of the integer program. Kolmogorov

[Kol06] improved the TRW-MP algorithms by introducing TRW-S algorithm, in which

messages are updated in a sequential order. Recently, Ravikumar et al. [RAW08] solve

the LP relaxation based on proximal minimization schemes using Bregman divergences.

Very recently, Nikos et al. [KPT10] have proposed to decompose the LP problem into

a set of smaller solvable subproblems, and then combine the solutions from these sub-

problems. Their method works for both the original problem (primal decomposition) or

its Lagrangian dual (dual decomposition).

2.4.1.2 MRF graph matching

In this section, we will present several successful MRF methods for graph matching. In

most of the methods presented above, the problem of graph matching is solved approx-

imately. Still based on MRF optimization, but contrary to the state-of-the-art methods,

where the authors try to use a complete data model and an approximate inference al-

gorithm, Cateano et al. [CCB04, TCSB06] approximate the graphical structure (Junction

tree) with a k-tree so that an exact inference algorithm can be applied. First, the model

graph is approximately represented as k-tree structure (e.g., k = 3), motivated by the

assumption that there is an isometry tranformation between the model graph and the
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scene graph (e.g., see figure 2.5). The main idea of constructing the approximated struc-

ture model comes from the fact that under rigid tranformations, when we eliminate a

sufficient number of edges from the full connected graph (to obtain k-tree structure in

this work), the globally rigidness properly is still preserved. Figure 2.6 illustrates this

point. The authors construct the potential function by comparing the relative distance

Model graph Scene graph

Figure 2.5: Illustration of a graph matching problem under isometry transformation,
e.g from [TCSB06]. We can see in this figure, a global rigid transformation between the
model and the scene graph is preserved, i.e. distance between a pair of model nodes
and its corresponding scene nodes is equally.

between a pair of nodes in the model graph (i.e., k-tree structure) with its corresponding

scene nodes (i.e., the assigned labels, cf. figure 2.5). This method has polynomial time,

(O(Nm.Ns4))3, which is still not applicable for large point sets. McAuley et al. [MCB08]

further improved this work by trying to construct another graphical model, of which the

complexity is reduced to (Nm.Ns3).

Recently, Torresani et al in [TKR08b] have presented a new graph matching opti-

mization technique for the correspondence problem. They casted the correspondence

problem as an energy minimization and introduced a novel algorithm to minimize this

function based on the dual decomposition approach (DD) for graph matching. They use

maxflow (graph cuts) techniques to solve the subproblem of the energy function in the

case of submodular.

2.4.2 Tree search based methods

Tree search with backtracking can also be used for inexact matching. In this case the cost

of the current partial matching along with the estimated matching cost for the remaining

nodes direct the search process. This estimated total cost is used either to prune search

paths in a branch and bound traversal, or to determine the order of branches to be

3The running time of this method is quite slow compared to spectral methods.
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a) b)

c)

Figure 2.6: Illustration of the approximated structure model from a full model: a) A
k-tree model for k = 3; b) The globally rigidness is preserved from the k-tree structure,
i.e. every other point is contected to the basic clique (etablished from 3 non-collinear
points), making a global rigid structure; c) The Junction Tree obtained from the model
(a). These figures are reprinted from [TCSB06].

traversed. Examples of inexact matching based on tree search can be found in [TF79,

TF83, WYC90, EF84].

2.4.3 Continuous optimization

Most of the methods mentioned so far rely on a formulation of a discrete optimiza-

tion problem. Such methods usually require generating all the permutations of possible

vertex matchings over the mapping matrix, or rely on special chosen of evergy poten-

tial functions. In order to overcome the limitations, different inexact matching methods

based on continuous optimization have been proposed. The objective is to transform

a discrete representation into a continuous one, and solve the continuous optimization

problem by applying continuous optimization algorithms. These techniques guarantee

finding local optimal results, which must finally be converted back from the continu-

ous domain to the initial discrete space. We review in the following paragraphs some

important inexact matching methods based on continuous optimization.

2.4.3.1 Probabilistic relaxation labeling

Probabilistic relaxation labeling is an iterative process, which tries to assign labels to set

of objects using contextual constraints. Relaxation labeling methods for graph matching
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have been investigated by [KH89, CKP95, HW02a, Li94, WH97, HH99]. These methods

are typically iterative, and globally convergent to local minima [CKP95]. In these ap-

proaches each vertex of the first graph is to be assigned to one label out of a discrete set

of possible labels that are described by a vector, which holds the estimated probabilities

of correspondence to each vertex of the other graph. In the initial labeling step, these

probabilities are computed based on vertex attributes, vertex connectivity, , or other

information available. During the matching process, these probabilities are refined in

an iterative procedure until either the labeling converges, or a maximum number of

iterations is reached. The pioneering method of relaxation labeling was developped

by Rosenfeld et al. [RHZ76], who applied relaxation techniques for the scene-labeling

problem (i.e. image segmentation problem). In fact, this work was motivated from

the relational graph matching between two sets of features introduced by Fischler and

Elschlager [FE73]. Based on this pioneering research, several contributions to relaxation

labeling have been proposed. Kittler and Hancock [KH89] present a probabilistic frame-

work for relaxation labeling, in which a theoretical foundation for the update rules was

proposed. The main drawback of this approach is that vertex and edge attributes are

only used during initialization. Christmas et al. [CKP95] overcome this by introduc-

ing a probabilistic framework, which considers both vertex and edge attributes in the

iterative process. The relaxation labeling has been also successfully applied to compute

edit distances between trees [TH03]. Despite their success, relaxation methods suffer

from increasing point set sizes, as well as from the choice of the starting solution (i.e.,

initialization) [CKP95].

2.4.3.2 The weighted graph matching problem (WGM)

A weighted graph is a graph, where each edge has been assigned a real nonnegative

number, called the weight of the edge. The adjacency matrix of a weighted graph is

defined by the weights of their edges, in which the entries in the main diagonal are as-

signed to zero. Obviously, if all edges are weighted by a binary value, a weighted graph

becomes an ordinary graph. In pattern recognition applications, edges are usually la-

beled by using information on vertex coordinates, e.g. vertex distances. In a weighted

graph matching problem, a mapping matrix M that has real valued elements, is usu-

ally used to express the mapping of nodes between two graphs. The matching then

must optimize a suitably defined goal function, which depends on the weighted edges

preserved by the match. By allowing continuous values for M, the problem is usually

transformed into a continuous one, which is known as a quadratic optimization prob-
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lem, i.e. finding solution for eq. 2.10. One main limitation of weighted graph matching

is that vertices cannot contain attributes and edges cannot have other attributes than

their weight. Almohamad and Duffuaa [AD93] were among the first, who solved the

quadratic problem by using the simplex algorithm. Rangarajan and Mjolsness [RM96]

propose a method based on Lagrangian relaxation network for Graph Matching. Also

in the same year 1996, Gold and Rangarajan [GR96] proposed a graduated assignment

graph-matching algorithm, which allows only one-to-one matching. In this algorithm,

a technique called graduated nonconvexity4 is employed to avoid poor local optima. This

method is considered as the basic method of solving the graph matching problem by

minimizing an heuristic energy function.

2.4.3.3 Other techniques

Several other methods for inexact graph matching based on continuous optimization

have been proposed. Examples include the fuzzy graph matching [MK99, MKC01],

Kernel Methods for graph matching such as Hilbert kernel in [WW02, WWH02].

2.4.4 Spectral methods

Spectral graph theory is the theory in which graphs are studied by means of eigen-

values of their adjacency matrix. The main idea of spectral graph matching methods

is based on the following observation. The eigenvalues and eigenvectors of the ad-

jacency matrix representing a graph are invariant to vertex permutations. Thus, if

two graphs are isomorphic, their adjacency matrices have the same eigenvalues and

eigenvectors (i.e. the same eigendecomposition), but the inverse is not necessarily true

[CK04]. Spectral methods for Graph matching have received considerable attention

[Ume88, SB92, CH03, CSS07a, LH05a, SB92, WH04] due to the fact that the computa-

tion of eigenvalues/eigenvectors is a well studied problem, which has polynomial time

complexity. As shown in [CH03, WH04], spectral methods are not robust for matching

patterns of very different sizes. Besides, and as pointed out in [NB07], the main prob-

lem of spectral methods is that they are sensitive to structural errors, such as missing or

spurious vertices.

The first work on spectral matching is due to Umeyama in 1988 [Ume88], which

addresses the ismorphism and subgraph ismorphism problem, but with the assumption

that the graphs to be matched must have the same number of vertices and the matching

matrix must be a permutation matrix. Shapiro and Brady [SB92] proposed a method for
4Graduated nonconvexity is a deterministic annealing to find an approximate global solution for non-

convex optimization.
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point set matching by comparing the eigenvectors of the point proximity matrix, where

the proximity function is build using the Gaussian function. A more recent paper by

Xu and King [XK01], proposed a solution to the weighted isomorphism problem that

combines the use of Principal Component Analysis with gradient descent to find the

optimum of the cost function. Spectral graph matching can be done in an hierarchi-

cal manner: first, finding a correspondence between cluster and then between vertices

within the clusters [CH01, KC02]. Differently from Umeyama’s method, this method

does not suffer from the limitation that the graph must have the same number of nodes.

We detail here some spectral based methods, which have widely been applied in pattern

recognition. As already mentioned, the quadratic optimization problem in eq. (2.10) is

NP-complete. However, we can obtain an approximate solution by way of spectral re-

laxation. Probably, one of the most recent successful spectral methods, which have been

applied to solve eq. (2.10), is the one proposed by Leordeanu and Herbert [LH05a]. The

authors used the principal eigenvector along with its largest eigenvalue of the pairwise

affinity matrix A as the confidence to decide if the matching candidates belong to the

optimal set:

ŵ = arg max
w

wT Aw
wTw

, w ∈ RNm Ns
(2.12)

Note that the original quadratic problem described in eq. (2.10) is now relaxed into a

continuous domain (i.e. x ∈ {0, 1}Nm Ns
, while w ∈ RNm Ns

), which is solved by comput-

ing the principal eigenvector w of A. According to the Rayleigh theorem, the solution ŵ

of eq. (2.12) is given as Ns1/2 times the eigenvector associated with the largest eigenvalue

of the affinity matrix A [GVL96]. An important constraint imposed on A is that it is non-

negative, which is easy to guarantee given the usually employed affinity functions. Thus,

by the Perron-Frobenius theorem, ŵ has only non-negative coefficients, which helps to

interpret the results, i.e. to find an assignment matrix from the final result. Leordeanu

and Herbert [LH05a] discretize ŵ using a greedy algorithm (i.e., thresholding the lead-

ing eigenvectors). Note that the mapping constraints (i.e. one-to-one or one-to-many)

are not considered in the spectral relaxation step (eq. 2.12), but during the discretization

step. In related work, Cour et al. [CSS07a] improved this work by introducing affine

constraints (eq. 2.10) into the spectral decomposition.

In most existing methods mentioned above, only unary and binary relations between

vertices are taken into account. This is due to the fact that the complexity of the graph

matching approaches are significantly high, making very difficult to take into account all

types of dependencies between the vertices and edges. In many real application, how-

ever, unary or pairwise interactions are not sufficient — we will come back to this point
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later —, and that is why many authors have recently trended to tackle with higher or-

der matching [ZS08, DBKP09, CK10]. Duchenne et al. [DBKP09] generalize the spectral

matching method from [LH05b] by replacing the affinity matrix with an affinity tensor

and using a tensor-based algorithm for high order graph matching. Before going into

detail of this work, we would like to say a little about what tensors and tensor-based al-

gorithms are. In physics and mathematics, tensors are generalizations of scalars, vectors

and matrices to higher orders. In general, tensors can be represented as a multidi-

mensional array of numerical values, based on which algebraic operations generalizing

matrix operations can be performed. A scalar is a tensor of rank zero (order zero), a

vector is a tensor of rank one (first-order tensor), and a matrix is a second-order tensor,

etc, i.e. k-th order tensor is understood as a k-tuple of subscripts. In pattern match-

ing, a tensor might capture an n-way interaction, e.g., H(i, j, i′, j′) is a tensor element,

representing the interaction between a pair of points (i, j) and its corresponding (i′, j′).

Tensor-based algorithms are the algorithms that use tensor products as the multiplication

operation, which can be applied in different contexts to vectors, matrices, etc. Note that

tensor product is also referred to as outer product, which differs from the matrix product

in that it multiplies elements to elements.

Figure 2.7: The second triangle is obtained from the first one by a scale change. In this
case, pairwise affinity matching will fail, while triplet matching (based on the angles for
example) will be scale invariant.

The power iteration methodis a very simple way to find the maximum eigenvalue/eigenvector

of a symmetric matrix, which is useful for solving equation 2.12. Indeed, to compute

the main eigenvector and its largest eigenvalue of the affinity matrix A for the pairwise

assignment, we can describe a power iteration algorithm as follows:

Les us now return to the advantages of high-order matching, introduced in [DBKP09],

as opposed to unary and pairwise matching from [LH05b]:

• The performance of spectral matching from [LH05b] hinges on the affinity matrix,

which may be tainted with poor pairwise affinity values. In constrast, affinity
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Require: affinity matrix A
Ensure: Principal eigenvector of A

1: initialize w randomly;
2: repeat
3: w← Aw
4: w← w/||w||2
5: until convergence;

Algorithm 2.1: Tensor power iteration for computing the principal eigenvector w
of the pairwise affinity A. This algorithm was introduced in [DBKP09].

tensor can represent higher order geometric affinities. This is illustrated in figure

2.7, where triplet matching is able to handle scale changes of triangles.

• High order matching algorithm from [DBKP09] converges to a local optimum the

relaxed problem, from which we can easily extract the final result (i.e., a binary as-

signment), while Leordeanu and Herbert [LH05a] must discretize the eigenvectors

to obtain the final result.

High order assignment is an extension of a pairwise one by considering m pairs of

vertices to define the m-order affinity measure (m-order potential function):

ψm = ψm(i1, i2, ..., im; i′1, i′2, ..., i′m) (2.13)

Note that throughout this thesis, we denote i′ as the matched vertex (node or point) of

i, and for readability we also denote i = (i, i′) as a pair of potentially matched vertices.

In [DBKP09, CK10] as well as in most tensor-based methods, the m-order affinity ψm

is represented as a m-order tensor Tm, i.e., ψm = Tm. Thus, the optimal assignment is

obtained by maximizing the following assignment affinity:

x̂ = arg max
x ∑

i1 ,...,im

Tm(i1, ..., im)xi1 xi2 ...xim , x̂ ∈ {0, 1}Nm Ns
(2.14)

For instance, in the triplet matching we obtain:

x̂ = arg max
x ∑

i,j,k
T3(i, j, k)xixjxk , x̂ ∈ {0, 1}Nm Ns

(2.15)

Note that similar to the matrix affinity A, the tensor Tm is nonnegative. Furthermore it

is symmetric, i.e., invariant by permutation of indices in {i1, ..., im}.
Finding the optimal solution for eq. 2.14 and 2.15 is known to be NP-complete, as for

the binary case described before. Approximation results can be obtained by computing

the rank-one approximation [ZS08, CK10] or the leading eigenvector and the largest
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eigenvalue of Tm [DBKP09]. Analogue to algorithm 2.1, Duchenne et al. [DBKP09]

propose a power iteration algorithm for computing the eigenvector. An example of such

a power iteration algorithm for third-order tensor is given in algoritm 2.2.

Require: Tensor symmetric Tm
Ensure: Principal eigenvector of Tm

1: initialize w;
2: repeat
3: w← ∏m

i=1 Tm ⊗ w
4: ∀i w(:, i)← w(:, i)/||w(:, i)||2
5: until convergence;

Algorithm 2.2: Finding the principal eigenvector w of the tensor affinity T−m with
unit norm constraints. This algorithm is reprinted from [DBKP09].

Line 4 of the algorithm 2.2 normalizes w to obtain columns with unit `2, which

is different from the Frobenius norm used in [LH05b]. Note that, as pointed out by

Duchenne et al. [DBKP09], this normalization is necessary to guarantee the existence of

a non-negative principal eigenvector and its largest eigenvalues. In their experiments,

Duchenne et al. [DBKP09] shown that using `1 keeps the same complexity as the classical

`2, but more easily to interpret the final results.

Zass and Shashua [ZS08] model the tensor Tm as the joint probability of the assign-

ments, and they decompose it by the Kronecker product of these probabilities under

the assumption that different assignments are statistically independent. Recently, Cher-

tok and Keller[CK10] have improved this work by marginalizing Tm as a matrix and

computing its rank-one approximation by eigendecomposition. These high order graph

matching methods differ from the one presented by Duchenne et al. [DBKP09] in that

Duchenne et al. ’s algorithm always keeps the full degree of the hypergraph, i.e. does

not marginalize it in a lower order.

2.4.5 Other techniques

Besides the three main classes of solution for graph matching mentioned above, we

can find various important works in literature: Maciel and Costeira [MC03] construct

a concave objective function and relax the search domain into its convex-hull. By con-

structing a metric tree representation of the graphs, Demirci et al. [DSD∗04] translate the

many-to-many graph matching problem into a many-to-many geometric point match-

ing one, which is solved by the Earth Mover’s Distance algorithm. Schellewald and

Schnorr [SS05] uses semi-definite programming (SDP) relaxation for graph matching.

As pointed out in [CSS07a], the SDP relaxation approach in [SS05] squares the problem

size and does not scale to large problems.
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There also exist several other techniques for inexact graph matching which will not

be discussed here, such as decomposition methods [MB98, FLM00], neural networks

[SA96, SY98], genetic algorithms [WcFtH97, PBB∗99], methods based on bipartite match-

ing [WZC94, ESI98, BYV00] and methods based on local properties [DTS96, OAW99,

HW02b]. In the next section, we will present our contributions to graph matching pro-

lems.

2.5 Graph matching algorithms studied in this thesis

As mentioned in chapter 1 (section introduction), in this thesis we address the inexact

graph matching problem. The choice of graph matching and inexact graph matching

has been motivated by the following reasons: i) both supported applications (i.e. object

recognition and activity recognition) require non-rigid tranformations; ii) both applica-

tions need to deal with occlusion problem, therefore local features are used instead of

global ones.

Given a model (object or action of interest), our aim is to find all its instances in a

scene image (or video). To this end, the recognition problem is formulated as a graph

matching problem. As mentioned before, we solve the graph matching problem by

minimizing the energy function formulated in eq. 2.6 .

Our approach is somehow similar to the MRF approaches (see section 2.4.1), and

most closely related to the work of Torresani et al. [TKR08b], who formulate feature

correspondence as a graph matching problem by defining an objective function taking

into account the similarity as well as the geometric constraints between features. Our

method differs from the work of Torresani et al [TKR08b] as well as the earlier works

on graph matching in 2 key points. First, most of these methods try to preserve a trans-

formation (affine [BBM05, FJS07], rigid [TCSB06], geometric transformation [LHS07], ...)

between the model and the scene. Instead, we check only the neighboring interactions

for each model feature, which enables us to use a large number of features and to deal

with both rigid and non-rigid transformation. Second, we exploit the angle interactions

of all neighboring assignments for each model feature, as opposed to the pairwise an-

gles between all features. We summarize our contributions for graph matching in the

following paragraphs.

2.5.1 Decoupled method

Despite many existing methods and improvements for approximately solving energy

minimization (e.g., graph cuts), these methods are only applicable for graphs with small
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size. Moreover, the existing methods for such energy minimization have to face the

problem of time complexity, making it intractable for real applications. Recall that our

goal is to find an assignment x minimizing the sum of all costs of eq. 2.6, which is

known to be NP-hard. We propose a fast approximative solution, namely a decoupled

approach, for solving eq. 2.6. The main idea is to divide the problem into subproblems,

and combine the obtained results from these subproblems. The proposed approach

consists of two steps: the first step solves only the first order terms in eq. 2.6, i.e.

matching unary features. The second one evaluates the matching results through a

verification of the compatibility of the pairwise terms. The details of this method can be

found in chapter 4.

2.5.2 High order graph matching

As already mentioned in above sections, the inexact graph matching problem can be cast

in general as a quadratic assignment one, where a linear term in the objective function

represents the unary potential functions (vertex compatibility) and a quadratic term

encodes edge compatibility functions. The literature research mainly focuses on solving

approximately the quadratic assignment problem. In constrast, we turn our attention

to another viewpoint, which is to answer the question of how to estimate compatibility

functions such that the matching process is speeded up and the result is not far from

that based on global optimization.

Graph matching techniques have been studied intensively in the field of pattern

recognition [CFSV04, DBKP09, LH05b, TKR08a, ZS08], but no method has yet been given

for recognizing human activities — a straightforward application of these techniques to

video recognition is difficult. In this thesis, we present a first attempt in applying graph

matching techniques for activity recognition. In particular, we consider a third-order

graph matching. The details of this method can be found in chapter 7.



Part II

Object recognition

43





45

This part introduces a new shape matching method for object recognition. This part

consists of two chapters:

In chapter 3, we present an overview of existing methods for object recognition. As

mentioned in chapter 1, in this part of our thesis, we are interested in recogninizing ob-

jects from hand-drawn models, only shape descriptors can be suitable for this context of

sketch recognition. Thus, in this chapter we discuss only the shape-based representation

and recognition methods, which might be used for sketch recognition.

In chapter 4, we present a new method for recognizing hand-drawn models in both

natural and storyboard scenes. In our approach, each model, as well as each scene

image, is represented by a set of patches. Then, graphs are constructed from these sets

of patches, and a decoupled matching method is proposed to solve the graph matching

problem. Experiments on a standard dataset and an industrial dataset, demonstrate that

our method gives good results.
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Chapter 3
Background on object recognition
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As stated in chapter 1, we study the object recognition problem from hand-drawn

models, from which only shape descriptors can be informative and useful for recognition

compared with other descriptors such as SIFT descriptor. For that reason, in this chapter,

we discuss the existing shape-based methods in object recognition. Given the diversity

of available researches in the field of object recognition and detection, it is impossible to

make an exhaustive bibliographical study. Therefore, we only provide the approaches

that are essential for the understanding of the following chapters. We refer the readers

to the surveys in [VH99, ZL04] for further details.
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3.1 Introduction

Object recognition is a fundamental problem in computer vision. Recognizing real three-

dimensional objects in a scene is a well known problem. We can find, in state of the art,

a great variety of 2D-3D object recognition methods, some successful methods are those

based on local features, e.g. from Schmid and Mohr [SM97], Jurie and Schmid [JS04],

Lowe’s SIFT [Low04], and Mikolajczyk05 and Schmid [MS05]. However, it is almost

impossible to apply these methods for sketch retrieval or 2D-3D drawings recognition

because drawings are very poor on texture information, and thus it is difficult to extract

local features of the target object from the scene. Moreover, storyboard (see figure 3.1

for several examples of storyboard scenes) scene understanding still remains an open

problem, few results are available in the literature about stroke images.

Figure 3.1: Some examples of storyboards.

Because sketches constitute a special type of image with little, if any, semantic con-

tribution from colour and texture, only shape descriptors can be used in our context.

We present hereafter a review of existing techniques for shape-based object recognition

and detection.

When talking about the object detection problem, there is an ambiguity that needs

to be clarified. In general, object detection implicitly includes object localization, i.e.

the object’s position and size also need to be found. However, object detection may

sometimes also refer to answer the binary question of whether or not an object instance

is present in the scene. In this thesis, we consider the object detection problem as the

first situation and we refer it using the terms object recognition, i.e. the terms object-

recognition and object-detection are used with the same meaning in this thesis.

The issue of shape-based object recognition has been one of the central interests in

the area of computer vision for a long time. In the literature, we can find a great variety

of shape representation approaches. Some excellent surveys are available: Veltkamp and

Hagedoorn [VH99], Zhang and Lu [ZL04]. Zhang and Lu [ZL04] present a classification
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of the existing shape representation and description techniques. They classify them in

a hierarchical framework that consists of two main groups: contour-based methods and

region-based methods. Then, each group is subdivided into several sub-groups such as

the global approaches and the structural approaches.

There exist other shape representation methods that don’t belong to contours and

nor to regions, such as point-set matching. In this work, we choose to present a slightly

different hierarchical structure of existing shape representation and description tech-

niques. The whole hierarchy of this classification is shown in figure 3.2. The contour-

Figure 3.2: Classification of existing techniques for shape representation and description
into contour-based, region-based, and point-based approaches.

based methods and the region-based methods differ on whether the shape features are

extracted from the contours, or from the shape regions, while point-bases methods rely

on interest points.

Of course, the classification shown here is only relative, because the hierarchical

structure is only built using the characteristics of the features (contours or regions).In

fact, shape representation methods can be classified based on the use of matching

methods, i.e. global approaches vs. feature-based correspondence methods (local ap-

proaches). This second hierarchical structure is shown in figure 3.3.

Note that, in shape-based methods, there are several widely-used approaches such as

Fourier descriptors [ZR72, Rei93] and CSS (Curvature Scale Space) descriptors [Mok95,

MS98], which are not present in both above hierarchical classification. The reason is

that, although these methods have low computation cost, they cannot deal with disjoint

shapes, e.g. storyboards, sketches, where objects are not represented by a single closed

contour. Also, for the same reason, we do not focus on active contours, the interested
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Figure 3.3: Classification of existing techniques for shape representation and description
into global-based and local-based approaches.

readers are referred to the recent work on region-based active contours from [LFJB∗10].

The keypoints-based methods usually rely on an interest point detector. Schmid and

Mohr [SM97] propose to use local greyvalues extracted from the interest points detected

by the Harris detector. These local greyvalues are invariant to scale. Lowe [Low99]

introduces a scale-invariant feature transform (SIFT), which is defined as a histogram

of local gradient information around extrema in a pyramid of Difference of Gaussian

(DoG) images (i.e. in scale space). The SIFT descriptor is invariant to location, scale

and rotation, and robust to affine transformations. Wu and Bhanu [WB95] used Gabor

filter descriptors for 3D object recognition. Althrough the above methods have been

successfully used in object recognition, they work on textured objects only, and therefore

are not suitable for our context of sketch recognition. The RANSAC (RANdom SAmple

Consensus) method is an iterative method to estimate parameters of a mathematical

model (i.e. a tranformation) from the observed data. This method works well in the

case of the existence of a global rigid tranformation between the model object and its

instances in the scene. In our context of storyboard recognition, this method is not suited

because there is no rigid transformation between the model and the scene. The graph

matching techniques, which are selected for our approach, are described in chapter 2.

In the next sections, we discuss only the methods, which might be suitable for sketch

retrieval. First, we present the appoaches based on regions. Then, we introduce the

appoaches based on contours. And lastly, we talk about the object detection from hand-
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drawn models, for which our approach gives promising results.

3.2 Region-based approaches

Region-based approaches use the entire shape regions to represent objects, i.e. exploit

the information encoded inside the object regions. In general, these techniques rely

on image segmentation, and do not use low level features such as textures and colors.

Region-based approaches are generally less sensitive to noise compared to the contour-

bases ones, but they usually need reliable segmentation algorithms to obtain image

regions. We review hereafter several region-based approaches, which can be applied to

sketch recognition.

3.2.1 Hu moments (geometric moments)

Moment-based invariants are the most common region-based image invariants, which

have been used in many computer vision applications [MP85, RPAK88]. Classical geo-

metric moment invariants were first introduced by Hu [Hu62]. They were derived from

the theory of algebraic invariant, and consist of groups of nonlinear centralised moment

expressions. The result is a set of absolute orthogonal moment invariants, which can be

used for scale, position, and rotation invariant pattern identification. They were used

in a simple pattern recognition experiment to successfully identify various typed char-

acters. For a gray image of size N ×M, which is represented as a function f (x, y), the

moment of order (p + q) is defined as:

mpq =
M−1

∑
x=0

N−1

∑
y=0

xpyq f (x, y) (3.1)

where p,q = 0,1,2,3, ...

The central moment µpq, which represents a normalized version of the previous one, is

given as:

µpq =
M−1

∑
x=0

N−1

∑
y=0

(x− x̄)p(y− ȳ)q f (x, y) (3.2)

Where x̄ = m10
m00

and x̄ = m01
m00

. In order to obtain scale invariant moments, the central

moments is once again normalized as:

ηpq =
µpq

µ00γ
, γ = 1 + (p + q)/2 (3.3)



52 Chapter 3. Background on object recognition

Using these moments, the seven Hu’s moments are given below:



M1 = η20 + η02

M2 = (η20 − η02)2 + 4η11
2

M3 = (η30 − 3η12)2 + (3η21 − η03)
2

M4 = (η30 + η12)2 + (η21 + η03)
2

M5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]

+(3η21 − η03)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)
2]

M6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2] + 4η11(η30 + µ12)(µ21 + µ03)

M7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]

+(η30 − 3η12)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)
2]

Hu demonstrated the discriminative power of these seven moments in the case of

recognition of printed capital characters. Since then, there have been various improve-

ments and generalizations of Hu’s moments. The interested readers can find more de-

tails in [Flu00]. Even recently, Rizon et Al. in [RYS∗06] obtained good recognition results

using Hu’s moments.

3.2.2 Zernike Moments

Althrough Hu’s moments are invariant to scale, translation and rotation, the main prob-

lem with them is that there are only a few invariants derived from low order moments,

which is not sufficient to accurately describe shapes. Higher order invariants are diffi-

cult to derive. Besides, it is very difficult to reconstruct the image from Hu’s invariants.

To overcome this, Teague [Tea80] introduced Zernike moments based on the basis set of

orthogonal Zernike polynomials.

Zernike polynomials were first introduced by F. Zernike in 1934 [Zer34]. The moment

formulation of the Zernike polynomials [KH90] appears to be one of the most popular

feature, outperforming the alternatives [TC88] in terms of noise resilience, information

redundancy and reconstruction capability. Complex Zernike moments are constructed

using a set of complex polynomials which form a complete orthogonal basis set defined

on the unit disc in polar coordinates [Tea80]. Zernike moments are given below:

Anm =
n + 1

π ∑
x=0

∑
y=0

V∗nm(x, y)P(x, y), x2 + y2 ≤ 1 (3.4)

where m = 0, 1, ..., ∞ is the order of the moment and n represents the repetition, which



3.2. Region-based approaches 53

is subject to the below conditions:

m− |n| = even, |n| ≤ m (3.5)

and ∗ denotes the complex conjugate (i.e. V∗n,m = V−n,m). The Zernike polynomials are

defined in polar coordinates as follows:

Vnm(x, y) = Vnm(ρ cos θ, ρ sin θ) = Rnm(ρ) exp(jmθ) (3.6)

Where Rnm(ρ) is radial polynomial given as:

Rnm(ρ) =
(n−|m|)/2

∑
s=0

(−1)s (n− s)!
s!((n + |m|)/2− s)!((n− |m|)/2− s)!

ρn−2s (3.7)

Here ρ and θ are, respectively, the radius and the angle of the pixel (x, y) with respect

to the center of gravity of the shape.

Zernike Moments are widely used for object recognition. Teh and Chin [TC88] have

presented a detailed study of orthogonal moments: Legendre moments, Zernike mo-

ments, pseudo-Zernike moments, and non-orthogonal moments: geometric moments,

complex moments, rotation moments. Their results showed that Zernike Moments have

the best reconstruction rate. In additional, Choksuriwong et Al. in [CLE05] made a

comparison evaluation of three object invariant descriptors: Hu moments, Zernike mo-

ments and Fourier-Mellin descriptors. Their experimental results showed that Zernike

moments and Fourier-Mellin are much more efficient than the Hu moments.

One of the advantages of Zernike moments is that it is easy to reconstruct the original

image from them. Indeed, if we know all Zernike moments Anm of f (x, y) up to a certain

order, we can reconstruct the image by using the following equation:

f ′(x, y) = ∑
n

∑
m

AnmV(x, y) (3.8)

Despite their good results, Zernike moment descriptors still have several shortcom-

ings as pointed out in Zhang and Lu [ZL04]. First, the kernel of Zernike moments is

complex to compute, and the shape has to be normalized into a unit disk before com-

puting the moment features. Second, they are not scale and translation invariant. In

practice, to archive translation invariance, we need to move the original image’s center

to the centroid before the Zernike moment’s calculation.

Another drawback of Zernike moments is that they can easily fail when objects ap-

pear partially hidden (partial object occlusion) in the image or when a complex back-
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ground is present. To improve these drawbacks, a combination of Zernike descriptors

with a local approach based on the detection of image points of interest is proposed by

Choksuriwong et Al. in [CLRM05]. In this approach, the Zernike moments are calcu-

lated in a neighborhood of each detected keypoint. As compared to the global approach,

the authors showed that the use of local points of interest allows to obtain better results

in the case of occlusion (the authors perform their experiments on the COIL database1).

Recently, Revaud et al. [RLB09], members of our team at the LIRIS laboratory, have pre-

sented a modification of Zernike moment comparison for optimal similarity and rotation

angle retrieval. Their experiment results outperform the state-of-the-art methods.

3.2.3 Generalized Hough Transform (GHT)

The Hough Transform (HT) [Hou62] is a technique that locates shapes in images, i.e.

which matches a model against an image containing model instances. In particular, it

has been used to extract lines, circles and ellipses, etc. However, in realistic applications,

shapes are much more complex than lines, circles or ellipses, and thus HT cannot be

used for such realistic shapes. It may be possible to decompose a complex shape into

topologically simple geometric primitives, which can be described by a mathematical

equation like lines, circles, etc, but this can lead to highly complex data structures.

Ideally, a good solution is to develop techniques that can find arbitrary shapes using the

idea of the HT. As a response, Ballard [Bal81] introduced a technique, called generalized

hough transform (GHT), which can be used to recognize arbitrary shapes with unknown

position, size and orientation. GHT consists of two main stages:

Initial parameterization – An R-table is generated for the shape model (see table 3.1).

The R-table is a lookup table used to determine the relationship between contour

coordinates and orientations, and Hough parameters (i.e. length, angles, see figure

3.4) of the object to be detected.

φ1 = 0 (r1
1, β1

1) ... (rn
1 , βn

1)
... ... ... ...
φk = π (r1

k , β1
k) ... (rn

k , βn
k )

Table 3.1: The R-table

Figure 3.4 illustrates how to construct R-table. First, a reference point is chosen

somewhere inside the object (e.g., the gravitational center). For each point (x, y) on

the boundary of the shape, two parameters φ and r, which represent the gradient

1http://www1.cs.columbia.edu/cave/research/softlib/coil-100.html
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Figure 3.4: Geometric information used to form R-table.

angle and the distance from this point to the reference point, respectively (cf. figure

3.4), are computed. An additional angle β is used to describe the direction between

the contour-point and the reference point. Then, R-table is indexed by φ for every

pair (r, β) - see table 3.1.

The location of the reference point can be recomputed using the R-table: xc = x + r cos(β)

yc = y + r sin(β)
(3.9)

Detection – In this stage, each contour-point in the scene image will cast votes for object

candidates (i.e., locations of object’s reference point) using the R-table constructed

above. More precisely, for every point the gradient angle φ is first computed and

all pairs (r, β) indexed by φ are retrieved from R-table. Then, a reference point

is generated for each pair (r, β) by using eq. 3.9. Once the votes are computed,

the local maxima from the resulting accumulator array, which satisfy a specific

threshold, represent the locations of the objects found in the image.

In conclusion, the generalized Hough transform is a powerful method for object

recognition. There are some advantages in using GHT, it is robust to partial or slightly

deformed shapes, tolerant to noise, and it can find multiple occurrences of a shape

during the same processing pass. Nevertheless, it requires a lot of storage space and

expensive computation.

It should be noted that in object recognition, GTH is not limited to the edge-points, it

can be applied to patches, segments or to any kind of local features (e.g. Boundary Frag-

ment models, and codebook-based methods, as we will present later). There are now a

lot of methods and techniques proposed in literature for object detection improving the
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generalized hough transform. Most of them concentrate on improving the voting stage.

Interested readers can find more approaches in [ACS07, Cho06, USB03].

3.2.4 Skeleton-based techniques

The skeleton of an object is conceptually defined as the locus of the centers of maxi-

mal 2d disks inside the object. The skeleton of a shape aims at capturing the shape’s

part structure. The skeleton can be created by an algorithm called the “Medial Axis”

[Blu73], which calculates the locus of the center points of all the maximal circles con-

tained within the shape boundary. Shape similarity based on skeleton matching usually

performs better than contour or other shape descriptors in the presence of partial occlu-

sion and articulation of parts [SK05]. However, the medial axes tend to be very sensitive

to boundary noise and variations. In addition, for complex shapes, the problem of com-

putation of skeletons becomes a difficult task. Probably the most important challenge

for skeleton similarity is the fact that the topological structure of skeletons of similar

objects may be completely different (cf. figure 3.5). Recently, Bai et al. [BYL08] have

proposed a novel graph matching algorithm to match skeleton graphs through compar-

ing the geodesic paths between skeleton endpoints. Their experimental results showed

that the proposed method is able to produce correct results in the presence of articula-

tions, stretching, and contour deformations. Shock Graphs are a special skeleton-based

technique. Siddiqi and Kimia [SSDZ98] were the first to define the shock graph concept,

which is an abstraction of the skeleton onto a directed acyclic graph (DAG). The skele-

ton points are first labelled according to the local variation of the radius function at each

point along the medial axis. Type 1 shocks form a segment of skeleton points, in which

the radius function varies monotonically, as is the case for a protrusion. A type 2 arises

at a neck, and is immediately followed by two type-1 branches flowing away from it in

opposite directions. Type 3 shocks belong to an interval of skeleton points, in which the

radius function is constant. Finally, a type 4 arises when the radius function achieves

a strict local maximum. which means the boundary collapses to a single point. Figure

3.6 is an example of these shock-types. Since the shock graph forms a hierarchical rep-

resentation of the shape and naturally captures its part structure, the shape matching

problem can be then reduced to a tree matching problem. The shock graph benefits from

the skeleton-based shape descriptor’s features, including particularly the robustness to

articulation and occlusion. However, like shape skeletons, the shock graph encounters

difficulties in dealing with boundary noise. Most recent research work on shock graph

has concentrated on graph matching techniques. For instance, Sebastian et al. [SKK04]
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Figure 3.5: Visually similar shapes in (a) and (b) have very different skeleton graphs in
(c) and (d).(reprinted from [BYL08])

Figure 3.6: Example of four shock-types.
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proposed an edit-distance between shock graphs to effectively match shapes.

3.3 Contour-based approaches

Contour-based approaches are different from the ones based on region in that only the

contour information of the shape is taken into account. Contours are more efficient than

appearance features, e.g. texture, for poorly textured objects. We will present several

important contour-based methods in the following.

3.3.1 Shape context

Shape contexts are reminiscent of orientation histogram descriptors, which are computed

from the gradient image, e.g. from Freeman et Al. in [FR95], Lowe’s SIFT [Low04]. The

SIFT descriptor does not work on poorly textured objects such as sketchs, drawings,

storyboards. This is confirmed by our experimental trials, in which we have attempted

to use SIFT descriptor for sketch recognition with very poor results.

Shape context [BMP01, BMP02] is similar to the SIFT descriptor (i.e. also create his-

tograms of local points), but it is based on edges (contour). Shape matching using shape

contexts is an improvement to traditional Hausdorff distance based methods. Figure 3.7

shows the main steps of shape context representation for a given shape.

Figure 3.7: Shape context. (a) a character shape; (b) edge image of (a); (c) a point p on
shape (a) and all the vectors started from p; (d) the log-polar histogram of the vectors in
(c), the histogram is the context of point p. (reprinted from [BMP02])

The set of vectors going from a point (see figure 3.7.c) to all other points in the

shape describe the appearance of the shape relative to this point. However, considering

all these vectors as a shape descriptor for each point is not appropriate due to noise.

Therefore the authors define shape context as the coarse distribution (histogram) of the

rest of the shape with respect to a given point on the shape. More precisely, as shown
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Figure 3.8: (a) Illustration of shape context computed for the point p from figure 3.7.a
on a log-polar space; (b) Shape contexts of three different points.

in figure 3.8, the shape context of a point is a log-polar histogram of the coordinates of

the other points measured using the current point as origin (i.e. the origin of the polar

space). Belongie et al. [BMP02] suggested to use 5 bins for log r (log distance) and 12

bins for θ (polar angle), and therefore each shape context histogram is of 60 bins. In

practice, this histogram is computed by counting the number of points for each bin (see

figure 3.8). In term of shape context, the distance between two points from two different

shapes is measured by the difference between the two corresponding histograms using

χ2 statistic. Finding the correspondence between two shapes is now equivalent to finding

for each point on the first shape, exactly one point on the other shape that has the most

similar shape context, i.e. the minimum χ2 distance between the two shape contexts.

Once the correspondence between two point sets is done, Belongie et al. [BMP02]

use a technique, called thin-plate-splines [Boo89] (SC+TPS), to estimate the transforma-

tion between them. TPS is a technique that allows to find coordinate (homogeneous

coordinates) transformations, which maps points in one shape to another shape. Figure

?? illustrates this idea through warped gridlines. In fact, TPS models the deformations

by interpolating displacements between two shapes under the assumption that all the

data points are distributed on a thin, elastic plate, or spline. The results are achieved

by minimizing the so-called “bending energy function” of the spline, i.e., the energy

required to achieve the bend in all directions over the entire plate.

Due to its simplicity and discriminability, shape context has become quite popu-

lar recently. Grigorescu and Petkov [GP03] proprosed a new distance method called

“Distance Multiset” for shape context matching. Thayananthan et al. [TSTC03] sug-

gested including a figural continuity constraint for shape context matching via an ef-
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ficient dynamic programming scheme. The interested readers can find more details in

[TY04, ZM03, MDS05, LS03].

3.3.2 Boundary Fragment Model

Figure 3.9: General diagram illustrating object detection using codebook.

As shown in figure 3.10, fragments are represented by disjointed boundary contours

of an object. The fragment matching can handle both complete and partial shapes, i.e.

occlusion. The key idea of the approaches based on contour fragments is to learn a

codebook of geometrical fragments from images, and use it for detection. Figure 3.9

demonstrates the basic principle of approaches based on a codebook. Generally, these

approaches consist of two main stages:

Learning a codebook – In this stage, fragments are extracted from training images.

Then, clustering techniques like K-mean, k-medoids2, Normalized Cut are em-

ployed to train a codebook. This codebook can include spatial relationships among

fragments.

Detection stage – This stage is also known as a voting stage, in which fragments ex-

tracted from test images are first matched to the codebook. Next, the matched

codewords vote for every possible object candidates. The non-maxima suppres-

sion and thresholding techniques are employed to find all object instances.
2k-medoids algorithm is very similar to k-means, but differs on the choice of datapoints as centers (i.e.

medoids).
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Examples include the methods of Leibe et al. [LLS04], Fergus et al. [Fer03], Vidal-

Naquet and Ullman [VNU03]. These methods differ on the details of the codebook,

but more fundamentally they differ in how strictly the geometry configuration of object

parts is exploited. For example, Agarwal et al. [AAR04], and Vidal-Naquet and Ullman

[VNU03] use loose relationships between parts (i.e. pairwise relationships), while Fer-

gus et al. [Fer03] utilize a strongly parametrized geometric model consisting of a joint

Gaussian over all the parts. There are other methods using a simple bag of words model

[CDF∗04, BHHW05, ZMLS07], where geometric relationships between object parts are

discarded. In general, the approaches using geometric relations usualy use a voting

mechanism such as the Generalized Hough transform for the detection stage. For in-

stance, by casting votes for object centroid as in the Generalized Hough transform, Leibe

et al. [LLS04] have obtained good detection performance on various object classes of the

Caltech database. We will review in the following two typical methods, which are based

on Boundary Fragment Model (BFM).

Figure 3.10: An overview of applying the BF model detector. (reprinted from [OPZ06b])

Independently, Opelt et al. [OPZ06b] and Shotton et al. [SBC05] have also explored

the idea of vote for the object centroid, which has previously been used in state of the

art, (e.g. from [LLS04]), but they use only the boundaries of the object (silhouette) and

discard interior edges. They aim at detecting and localizing object classes (e.g. cows,

horses), see figure 3.10 for an overview of the idea used in [OPZ06b]. In this method,

the codebook consists of not only the boundary fragment, but also the objects’ centroid.

The boundary represents the “shape” of the object class without requiring learning the

appearance (e.g. texture). This method consists of three stages:

Learning a codebook and an object detector – First, candidate boundary fragments are

extracted from a training image set. Then, these candidates are optimized over the

validation set. In particular, the Chamfer distance calculates a score, which is used
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to find candidate boundary fragments by growing the fragment size and calcu-

lating the cost (on the validation set) at every step. Then, the best fragment, for

which the cost is minimized, is chosen. After the validation process, a set of frag-

ments which is taken as the codebook is found. The clustering algorihtm used is

k-medoids. In order to reduce redundancy in the codebook, the fragments can be

merged using agglomerative clustering techniques.

Once the codebook of fragments is constructed, an object detector is also learned.

First, to form weak detectors (weak learners), two or three fragments are combined

(into a single one) by learning combinations which fit well on all the positive vali-

dation images. Note that some fragments, which are not suitable, are filtered out.

Then, a strong learner is constructed from those weak detectors using a boosting

algorithm.

Object detection – This stage uses the output of the strong detector to decide whether

or not an instance of object is present in the image based on thresholding tech-

nique. More precisely, this stage is composed of three steps: first, edges are ex-

tracted from test images; Secondly, the fragments of the weak detectors, which

form the strong detector, are matched to this edge image. Finally, each weak de-

tector votes with a weight in a Hough voting space. The accumulated votes in

Mean-Shift-Modes that are above a specific threshold are taken as object instances.

Both works from Opelt et al. [OPZ06b] and Shotton et al. [SBC05] use boosting to

select fragments from a list of candidates, but they differ on how to etablish these candi-

dates (rectangles sampled from training segmentation masks in [SBC05], whereas Opelt

et al. [OPZ06b]] construct them by varying the length of fragments so as to maximize

Chamfer matching score and have a good accuracy of object centroid prediction in vali-

dation images). Another difference is the localization techniques used for finding object

centroid: grid in [SBC05] and mean shift in [OPZ06b].

According to the experimental reports in [SBC05] and [OPZ06b], the BFM methods

give good results. However, an important drawback of these approaches is that the

relative spatial distribution of contour fragments is captured through the mediation of

an object centroid, making it sensitive to partial occlusion. The lack of the relative spatial

relationship among contour fragments restricts the power of the method. In addition,

as pointed out in [FFJS08a], although this method can have good performance in the

learned class, these kinds of fragments are harder to re-use within other applications,

compared to generic features which depend only on local properties of images. Besides,

the fragments used in this method are not scale-invariant and those of [SBC05] need
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segmented training images to be learned, which has limited applications.

3.3.3 k-Adjacent Segment (kAS)

As mentioned above, one of the important drawbacks of the Boundary Fragment ap-

proach is its lack of genericity, making it hard to reuse within other recognition appli-

cations. To overcome this limitation, Ferrari et al. [FFJS08a] have proposed a generic

method that considers the relation of local groups of contour segments. k-Adjacent Seg-

ments (kAS) have been proposed as an extension of contour segment networks [FTG06],

which constitute a graph-based method for matching hand-drawings against natural

images. We summarize below the techniques to build the contour segment network of

the image on which kAS features are dectected.

Figure 3.11: (a) An example image with three 3AS and the underlying connections
(arrows).(b) Three edgel chains with five segments and their interconnections (arrows)
in the network. (c) Two detected 2AS (B,C) and (D,E). (d) 3AS (C,A,E). (d) 4AS (E,B,C,D).
(f) ri vectors involved in the description of the 4AS in (d). (reprinted from [FFJS08a])

Building the contour segment network – Given a set of images, edgels are detected

by the Berkeley natural boundary detector [MFM04]. Next, they are chained and the

edgels’ tangent orientations are computed. The resulting edgel chains are linked at their

discontinuities, see figure 3.11 for an illustration. These connections take into account

the fact that a contour can continue beyond the gap between two edgel chains and make

it possible to capture junctions (in T, in L. . ). The edgel chains are partitioned into

roughly straight segments, which are then organized in the form of a network. In this
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network, two segments are connected if they are adjacent. Each fragment is typically

linked to several other ones, thus the final network is relatively complex. Two segments

being connected if, intuitively, they can be adjacent within the contour of an object.

Detecting kAS – kAS is defined as a group of k Adjacent Segments [FFJS08a] that

are connected within the segment network. By growing k, kAS can form complex local

shape structures: individual segments for k = 1; L shapes and 2-segment T shapes for k

= 2; C, Y , F, Z shapes, 3-segment T shapes, and triangles for k = 3. To detect kAS, the

authors suggested to use a depth-first search starting from every segment, taking into

account the elimination of equivalent paths. In general, kAS representation has some

advantages. The first one is the capability of accessing directly a part of the contour of

an object; the second one is that they can be described in order to achieve robustness to

translation and scaling-invariance.

Describing kAS – In order to compare different kAS, each kAS is described by a

numerical vector. A kAS is considered as a list P = (s1, s2, ..., sk) of segments. For

each kAS, one segment is picked as reference, and the layout of the others described

relatively to that reference segment. Let segment s1 be the reference segment (cf. figure

3.11), ri = (rx
i , ry

i ) the vector going from the midpoint of s1 to the midpoint of si, θi and

li = ||si|| respectively the orientation and length of si, then the descriptor of P is given as

follows:

(
rx

2
Nd

,
ry

2
Nd

, ...,
rx

k
Nd

,
ry

k
Nd

, ..., θ1, θk,
l1
Nd

, , ...,
lk

Nd
,

)
(3.10)

where Nd is the distance between the two farthest midpoints, which is used as a nor-

malization factor, making the descriptor scale invariant. The dimensionality of k-AS

features is n = 4 ∗ k − 2. After describing kAS, the codebooks of kAS are learnt from

different image sets. The interest of such codebooks is evident in order to characterize

a kAS thereafter we have to only find in which cluster it belongs to. This is much faster

than to compare it with all the kAS. The dissimilarity measurement between two kAS

Pa and Pb is defined by the following formula:

D(a, b) = wr

k

∑
i=2
||ra

i − rb
i ||+ wθ

k

∑
i=1

Dθ(θ
a
i , θb

i ) +
k

∑
i=1
| log(

la
i

lb
i
)| (3.11)

where Dθ ∈ [0, π/2] measures the difference between segment orientations, the weights

wr and wθ were set to 4 and 2 in [FFJS08a], respectively.

Object class detection by using kAS – We present now how to detect the objects us-

ing kAS. The main idea is to take into account the frequency and the spatial distribution
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Figure 3.12: A positive training example, with bounding box, tiling, and a few kAS (k =
2). (reprinted from [FFJS08a])

of the kAS in local windows. This approach needs a training stage in which positive

images are annotated by a bounding box (window) around the instances of the class.

Each window is subdivided into a set of tiles (cf. figure 3.12) and then kAS histogram

is computed by counting how many kAS of each type there are inside the tiles. In

this method, the SVM is used for classifier training. Having trained a linear SVM win-

dow classifier, the detection stage is processed by using a sliding-window mechanism

at multiple scales for computing the histogram of kAS types within a large number of

image tiles. The resulting local windows, which give highest histogram scores (i.e. local

maxima), represent object candidates.

Recently, Yu et al. [XYCD07] have proposed a probabilistic voting method for kAS

codebook descriptors. This method can be considered as an extension of the approaches

proposed by Shotton et al. [SBC05] and Opelt et al. [OPZ06a]. In this approach, the

authors have used a two-layer structure of the shape codebook for object detection. The

main idea is similar to other codebook-based methods, which are illustrated in figure 3.9,

but they separately learn the kAS descriptors (i.e., shape codewords as they called ) and

geometric information (i.e., shape grammar as they called). First, TAS (Triple-Adjacent-

Segments) descriptors are used as shape codewords and geometrical constraints are

used as the shape grammar. The TAS codewords are learned from TASs in a training
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image set. The clustering algorithm used is the Normalized Cut algorithm [XYCD07].

After obtaining the TAS codewords, the TAS grammar is learned from training images

with the object delineated by bounding boxes. In this step, each TAS is associated with

its position relative to the object centroids. During detection, each TAS from the test

image casts votes for all possible object centroids based on the geometrical information

learned and stored in the codebook. Then, object category detection is accomplished

by searching for local maxima in the probabilistic voting space after applying Parzen

window probability density estimation.

According to the experiment results in [XYCD07], their method gives better results

compared to the fragments-based methods described above. However, the relationship

between the codewords are not taken into account in this method.

3.4 Object detection from hand-drawn models

Object recognition from hand-drawn models gains widespread interest recently. Exam-

ples include the methods of Ferrari et al. [FTG06, FJS07], Zhu et al. [ZWWS08] and

Ravishankar et al. [RJM08]. Ferrari et al. [FTG06] build a contour segment network and

find paths most resembling to the model chains. In their further work [FJS07], Ferrari

et al. learn automatically shape models from training images, and combine Hough-

style voting with a non-rigid point matching algorithm. Although this approach shows

a significant robustness to clutter, it is not rotation invariant. Ravishankar et al. pro-

pose [RJM08] a multi-stage approach for detecting deformable objects. The model is

first decomposed into segments at high curvature points. In the first stage, these seg-

ments are passed through a series of deformations such as rotation, scale and bend and

are searched independently in the gradient image. In the next stage, they try to group

k-adjacent segments, and in the final stage, they localize the objets up to boundary con-

tours by searching for contours in the gradient image that connect the points of the

matched k-segment groups. Recently, Zhu et al. [ZWWS08] have presented a method

which breaks the model into informative semantic parts and extracts salient contours

from the scene by using a bottom-up contour grouping algorithm. The key idea is to

find simultaneously the maximal contour subsets of the scene and the model so that the

objects composing these contour subsets match. These contour subsets are determined

during matching by minimizing a cost function that measures the shape dissimilarity

between contour subsets. This method gives a good way for dealing with accidental

alignments and supporting object detection and segmentation simultaneously. How-

ever, it manually determines the distinctive parts and the control points of the model.
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3.5 Conclusion

We have reviewed the existing shape-based recognition and detection techniques. Gener-

ally, there are three groups of approaches: contour-based, region-based and point-based.

In fact, each method has its advantages and disadvantages. Moment shape descriptors

are usually robust, easy to compute and match, but it is difficult to effectively exploit

high order moments. Another drawback of moment approaches is that they are sensitive

to spatial occlusion. One possible solution is to apply the moment approaches in a local

manner.

In this work, the objects to detect are hand-drawn sketches that can only be repre-

sented by contour descriptors, we should investigate a generic method based on con-

tours. Therefore, skeleton approaches are not recommended because of their strong

application dependence (e.g. they are mostly suitable for articulated objects) and ex-

pensive computation. However, they can be combined with other shape descriptors to

create flexible descriptors.

Shape contexts are a way of representing the shapes of objects in the plane. They

model the relative positions of points on an object. Shape contexts can be applied to

recognize an object model in an image scene (which typically contains multiple object

instances) by using sliding windows, but this costs a lot of computation time because

shape contexts work on the pixel level. Thus, they are not suitable for our context.

The Generalized Hough Transform (GHT) is a well known method to detect ar-

bitrary objects. Fundamentally, however, this method relies on a voting mechanism,

which needs a sufficient amount of features to accurately make decisions, while our

hand-drawn models are usually constituted by only several contour fragments. Another

drawback is that this method is very time-consuming.

Besides, as analyzed above, the point-based methods are also not suitable for our

context.

As mentioned above, each method has its advantages and disadvantages. To better

compare the performance of the different approaches described in this chapter, we sum-

marize the advantages and disadvantages of each approach in the following table (cf.

table 3.2).

Methods

Advantages Disadvantages
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Moments-based

approaches

• Robust to deformable ob-

jects

• Easy to compute and

match.

• Difficult to effectively ex-

ploit high order moments.

• Sensitive to spatial occlu-

sion.

GHT • Robust to partial or

slightly deformed shapes,

tolerant to noise

• Able to find multiple oc-

currences of a shape dur-

ing the same processing

pass.

• Requires a lot of storage

space and expensive com-

putation.

Boundary

Fragments

Models (BFM)

• Outperforms appearance

features when the texture

is very variable.

• The relative spatial dis-

tribution of contour frag-

ments is captured through

the mediation of an object

centroid, making it sensi-

tive to partial occlusion

• Lack of the relative spatial

relationships among con-

tour fragments

• Limited rotation invari-

ance.
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Shape contexts • Informative: each point is

described in the context of

overall shape

• Not require much repro-

cessing.

• Limited rotation invari-

ance

• Expensive computation

• Only limited to bound-

ary based shape represen-

tations.

Approaches

using kAS

descriptors

• Generic and suitable for

many recognition applica-

tions based on shape

• Robustness to translation

and scaling-invariance

• Not rotation invariant

• Partitioning edgels into

roughly straight contour

segments destroys valu-

able contour information

• Requires bounding boxes,

which delineate objects for

training.

Skeleton-based

techniques

• Robust to articulation and

occlusion.

• Encounters difficulties in

dealing with boundary

noise

• Problem of tree match-

ing for complex articu-

lated shapes.

Table 3.2: Summarizing the advantages and disadvantages

of shape based object recognition methods

Among the different approaches presented above, Zernike moments are the most

promising for sketch recognition due to the following reasons: a) they are robust to
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noise and deformed shapes (e.g. drawing), b) they are invariant to rotation and easy to

compute. Hence, we select these features for our recognition method. Nevertheless, as

pointed out in the above table, Zernike moments are quite sensitive to occlusion, which

is inevitable in storyboard scenes. To cope with this problem, we introduce a local-

Zernike representation based on a decomposition of the model object and the scene into

patches.
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In this chapter, we present an approach for recognizing objects in cluttered scenes,

which is robust to occlusion, scale and rotation. Our system takes only a single hand-

drawn sketch as input model. The existing approaches using local descriptors like inter-

est points fail in such images mainly due to the lack of texture and color. We introduce a

new local patch-based representation using Zernike moments for shape matching. The

object recognition task is formulated as a global energy minimization problem by defin-

ing a flexible objective function as described in eq. (2.6), which takes into account not

only the features themselves, but also their local relationships. Our objective function

71
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depends on three constraints: (a) Zernike descriptors, (b) consistency of the neighbor-

hood relationships between patches and (c) consistency of the rotation angle among the

neighboring patches. We propose a fast approximative solution, namely, approximation

by decoupled matching for energy minimization. We demonstrate the effectiveness of

our approach through experiments on two databases: an industrial database (i.e. project

Pinka, cf. chapter 1) and a standard challenging database.

A part of this chapter was published in the IEEE 7th International workshop on

Content-Based Multimedia Indexing (CBMI), Crete 2009 [TWLB09].
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4.1 Introduction

As humans we are capable of recognizing a variety of object classes based on 2D sketches

only. It is with this intuition that we chose to explore a sketch recognition system. Our

work focuses on detecting and localizing objects in both storyboard and natural scenes,

given only hand-drawings as input of the object shape. The model is represented by

a set of patches extracted on different spatial locations. Our goal is to recognize this

model in the scene, on which we calculate a set of overlapping patches in a scale-space.

One of the main difficulties is the frequent occlusion problem, which in image index-

ing and in object detection is commonly tackled using local features [CLRM05][KKK02].

In these local approaches, local descriptors are calculated on keypoints [SM97][Low99][WJKB00]

or on edges [FFJS08a]. However, interest points being very unstable on hand-drawn

sketches1, these methods are not applicable in our case. In such an object-from-sketch

recognition scenario, global Zernike moments are particularly robust; they have been

successfully used for 2D/3D object recognition in [ADV07][HR07][RLB09]. Especially,

Revaud et al. [RLB09] have successfully used Zernike moments for recognizing 3D mod-

els in sketch scenes (storyboards). Inspired from these works, we chose patch-based

Zernike moments as basic descriptors. However, we employ them in a local manner,

which allows us to overcome the occlusion problems.

In our approach, each shape (model and scene) is described by a set of locally ex-

tracted patches. Thus, object recognition can be solved with a general correspondence

problem between two sets of local features. In general, feature correspondence is a diffi-

cult problem, which is known to be NP hard in object recognition [TKR08b] (cf. chapter

3). We cast the shape matching and object recognition problem as a global energy mini-

mization task, which takes into account the following constraints:

a) The Zernike moment distance between the model and the scene patches.

b) The consistency of the neighborhood relationships between model and scene patches.

If i and j are two neighboring model patches and i′, j′ are their corresponding scene

patches, respectively, then i′, j′ should be neighbours, i.e the distances between neigh-

boring points should be preserved under isometry (relaxed isometry).

c) The consistency of the rotation angle among the neighboring patch assignments. As-

suming local rigidity, this constraint allows us to verify the consistency of the trans-

formation across the object, i.e. if the object has been subject to a rotation between

1This is confirmed by our experiments, in which we have attempted to use SIFT keypoints and descrip-
tors for sketch recognition with very poor results.
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teh model and the scene, then the rotation is supposed to be roughly uniform across

the object. To our knowledge, this is a novel contribution.

Based on this energy function, a fast approximative solution is proposed for the

corresponding energy minimization, namely a decoupled approach which consists of

two steps: the first step matches features and the second one evaluates the matching

results through a verification of constraints (b) and (c).

Our method is related to the inexact graph matching methods and the existing meth-

ods based on local contour features, which are described in chapter 2 and 3, respectively.

We briefly summarize hereafter some of them, those are most related to ours.

Our method is similar to the ones that take into account geometric information be-

tween local features, e.g Leordeanu et al. [LHS07] who exploit pairwise geometric in-

teractions (i.e distance, angles) between all pairs of object parts; Similarly, Elidan et

al. [EHK06] encode pairwise spatial relations between landmark points from the train-

ing shapes and solve the problem of outlining the objects by applying standard MRF

(Markov random field) inference algorithms over these landmarks. Our approach gives

an alternative among these approaches: we also use pairwise interactions between fea-

tures but we check only pairwise neighbour interactions for each model patch as op-

posed to the fully-interconnection between all features [EHK06, LHS07]. Our method is

non-parametric, non-iterative, and does not involve any learning or semi-learning such

as in [EHK06, LHS07].

There are other methods, which are based on local features and also taken into ac-

count spatial relationships between them like Boundary Fragment Model from [OPZ06a,

SBC05], kAS method from [FFJS08a], which are described in chapter 3. In general, these

methods need a training stage before detection, therefore the results depend on the

number of training examples. Moreover, the codebook training methods are sensitive to

the distance metric and depend on the clustering algorithm used. In contrast, no prior

information about the object to detect (object centroid, ...) and no training is required

for our method.

In recent years, recognition from hand-drawn models has received attention from

the computer vision community. The existing methods that take hand-drawn models

as input, for which our method offers an alternative, have been presented in chap-

ter 3. As opposed to these methods, which manully decompose the model into parts,

we introduce a new local patch-based representation to extract model features without

manual intervention, where patches are small rectangular subimages distributed across

an image. This representation boosts the probability of finding the objects even in the
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Figure 4.1: The problem translates into a graph matching task. The values pi and fi for
each node correspond, respectively, to the position and the feature vector of the patch.
xi is a variable indicating the assignment to the scene node.

case of partial occlusion. Moreover, our descriptor provides a natural rotation-invariant

quantity based on Zernike moments. In constrast, Ravishankar et al. [RJM08] deal

with rotation by rotating the model segments in the range of [−δ, δ] degrees; Zhu et al.

[ZWWS08] allow rotation but rely on the rotation invariance property of Shape context

descriptors.

4.2 The energy minimization formulation

We start from a list of M model patches as well as a list of S scene patches. In this section

we consider patches of a single scale, a multi-scale representation will be introduced in

section 4.3. As stated in chapter 2, the problem is formulated as a graph matching task,

therefore the patches of a given image, or model, are organized as a graph G = {G, E},
where G is the set of nodes of the graph (the patches) and E is the set of edges between

nodes. We will abrevate this be denoting i ∼ j if nodes i and j are neighbors in the

graph, i.e. (i, j) ∈ E (see figure 4.1). We describe the creation of the graph in section

4.4.1.

Each node i of the two graphs (model and scene) is also assigned a position pi as well

as a feature vector fi describing the image content of the corresponding patch. When

necessary, we will distinguish between model and scene values by the superscripts m

and s: pm
i , f m

i , ps
i , f s

i .
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As mentioned above, the correspondence problem translates to an assignment task

between the two graphs, a model graph having M nodes as well as a scene graph having

S nodes. To this end, each node i of the model graph will be assigned a discrete variable

xi, i = 1..M which can take values from a discrete set Λ = {1 . . . S}. The whole set

of variables xi is also abbrevated as x. A value of xi = j is interpreted as model node

(patch) i being assigned to scene node (patch) j (see figure 4.1).

We suppose the existence of a function between two feature vectors fi and f j of two

nodes i and j, which returns both the distance (in the sens of feature similarity) and the

rotation angle between the two patterns (supposing that the two patches are similar).

In the following we will denote the feature distance between two patches as dzd(·, ·)
and the retrieved rotation angle as dza(·, ·). A method providing this function has been

given, in [RLB09] (see chapter 3) for Zernike descriptors.

The correspondence between the two graphs, i.e. the assignment of model nodes

to scene nodes, will be determined by minimizing a global energy function based on

several criteria:

a) The distances dzd(·, ·) between the corresponding feature vectors

b) The spatial coherence of the correspondence, i.e. the distances between neighboring

patches should be similar to the distances between corresponding patches in the

scene (Relaxed Isometry) 2.

c) The coherence of the rotation angles in neighboring patch assignments.

These constraints are illustrated in figure 4.2. They are integrated into the inexact valued

graph matching framework described in chapter 2. In particular, the matching algorithm

minimizes equation (2.6), which we repeat for convenience as equation 4.1 below:

x̂ = arg min
x

E(x) = λ f ∑
i∈V

ψ1(i; xi) + λd ∑
ij∈E

ψ2(i, j; xi, xj) (4.1)

The constraints are integrated into the unary and pairwise functions ψ1 and ψ2. More

precisely, the unary terms correspond to the distances between the features f m and f s

of matching patches:

ψi(i; xi) = dzd( f m
i , f s

xi
), (4.2)

and the pairwise terms consist of the two distance and angle measures, i.e. the coher-

ence between two model nodes and their corresponding scene nodes, and the coherence

2The distances should eventually be normalized with a global constant in the case of a scaling transfor-
mation between the model and the scene
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between two neighbourhood assignments. We therefore combine these two measements

into ψ2 as follows:

ψ2(i, j; xi, xj) = λd ∑
i∼j

ψd
2(de(pm

i , pm
j ), de(ps

xi
, ps

xj
))

+ λa ∑
i∼j

ψa
2(dza( f m

i , f s
xi
), dza( f m

j , f s
xj
))

(4.3)

ψd
2 is a function that measures the consistency between the associations variables xi and

xj, i.e the difference in spatial distance between two model patches and their correspond-

ing scene patches (cf. figure 4.2). This distance should be close to zero if the object is

subject to an isometry. In the case of exact matching under isometric transformations,

this measure can be computed as follows:

ψd
2(de(pm

i , pm
j ), de(ps

xi
, ps

xj
)) =

 1 if de(pm
i , pm

j ) = de(ps
xi

, ps
xj
)

0 if de(pm
i , pm

j ) 6= de(ps
xi

, ps
xj
)

(4.4)

where de is the euclidean distance. Since this measure works only for exact matching,

we use a gaussian kernel to adopt the distance to realistic conditions:

ψd
2(de(pm

i , pm
j ), de(ps

xi
, ps

xj
)) =

(
de(pm

i ,pm
j )

PatchSizem −
de(ps

xi
,ps

xj
)

PatchSizes )2

2σ2
de

(4.5)

where PatchSizem is the size of model patch and PatchSizes is the size of scene patch,

which are used for normalization in the case of a scaling transformation between the

model and the scene. σ2
de is the variance of the distances.

The second function ψa
2 measures the consistency of rotation angles between neigh-

boring nodes, i.e the consistency in the in-plane rotation angles between neighboring

patches (cf. figure 4.2), given as follows:

ψa
2(dza( f m

i , f s
xi
), dza( f m

j , f s
xj
)) =

(dza( f m
i , f s

xi
) ◦dza( f m

j , f s
xj
))2

2σ2
da

(4.6)

where dza is a function which gives the retrieved rotation angle of an assignment. The

operator ◦ computes the difference between two angles taking into account their circular

domain (i.e. ψa
2(0, ε) = ψa

2(2π, ε)). Similarly to σ2
de described above, σ2

da is the variance

of the angle distances. Note that the score αi is independent of the number of neighbors

since the score in eq. (4.8) has been normalized by the number of neighbors for each

model patch.
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A
B

SCENEMODEL φ
ψ

(i) (ii)

Figure 4.2: (i) Illustration of the overlapping patches extracted on a model: sizes range
from 65% to 75% of the model size. (ii) The different constraints listed in section 4.2:
a) the Zernike distance assigns model patches to scene patches (dotted arrows); b) the
euclidean distance A between neighboring patches is checked to be consistent with the
euclidean distance B of neighboring scene patches; c) the rotation angle φ of one assign-
ment is checked to be consistent with the rotation angle ψ of a neighboring assignment.

4.3 Approximation by decoupled matching

In this section we present a fast approximative solution for minmizing the energy func-

tion (4.1)

Starting from a list of M model patches as well as a list of S scene patches, our

goal is to find the assignment x̂, which minimizes eq. (2.6). For the full correspondence

problem, generally there are MS possible combinations of assignments. For each of these

assignments, ≈ M · D̄ consistency criteria need to be checked, where D̄ is the average

number of neighbors of a patch (i.e. the average vertex degree). By considering the

list of patches as a point set (as described in section 4.2, each patch is associated to a

position), solutions for this problem can be found in the literature: e.g by adopting the

neighborhood structure (k-tree) in order to find the maximum a posteriori solution with

the junction tree algorithm [TCSB06], which is of complexity O(M · S4) and applicable

to few primitives only; or by formulating the problem as a sampling procedure and

checking for the consistency of each sample (RANSAC) [ZK06, BSW05]. Finding an

assignment to minimize the energy in (2.6) can be also solved as an Integer Quadratic

Programming problem [GS08], which is known to be NP-hard in general. However,

dividing the problem into subproblems can be easier to solve. We follow a two step

process:

1. First the assignment problem is solved using the first order terms ψ1 only, which

corresponds to the constraint (a). This is trivial, since the solution can be calcu-
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lated separately for each node by taking the assignement having minimum feature

distance. Further speed-up can be achieved with a kd-tree.

2. In a second step, the detection itself is performed by evaluating the consistency

of the other terms ψ2 locally only for each node i and its neighbors, given the

assignments calculated in the first step.

In the following we describe the algorithm in details. As described above, in the first step

we assign model patches to scene patches according to the minimal Zernike distance:

∀i : xi = arg min
j∈[1..S]

ψ1(i; j)

= arg min
j∈[1..S]

dzd( f m
i , f s

j )
(4.7)

we recall that xi denotes the scene patch assigned to model patch i. Since the spatial

relationships and the rotation angle coherence are not used, this sub problem is of low

complexity compared to the full problem.

In a second step, we calculate the local evidence, i.e the coherence of the local trans-

formation:
αi = 1

|{j:i∼j}| ∑
j:i∼j

ψ2(i, j; xi, xj) (4.8)

The final match score α(s) is calculated for each scale s of a scale space representation

as the evidence of the patch which best satisfies these geometrical constraints (note that

the smaller this value is, the more constraints are satisfied):

α(s) = min
i

αi

ᾱ(s) = arg min
i

αi
(4.9)

We obtain the best consistency value α(s) for scale s. Finally, the patch β̄ giving the

smallest score β over scale-space is selected as the best patch for the input model across

all scales:
β = min

s
α(s)

β̄ = arg min
s

α(s)
(4.10)

This score β is used for deciding whether or not the object is present in the scene, i.e

the existence of an assignment satisfying a threshold. Note that once we have found a

significant score, we also obtain the node (model patch) β̄ that gives minimum score β,

i.e the partial energy. Since the position of the model patch in the model is known, this

model node alone allows us to localize the object instance in the scene.

In order to detect multiple objects (object instances), after a successful detection step
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we use a standard non-maxima suppression technique in the scale-space to remove the

detected patches from the list of scene patches and restart a new detection process.

4.3.1 Occlusion and outliers

In our framework, in the first step, each model patch i (i = 1..M), is assigned to a scene

node (scene patch) j (j = 1..S). The outliers do not influence this assignment as we

always take the scene patch j which gives the minimum Zernike distance even if the

model patch i is not present in the scene. Some constraints discussed so far can become

meaningless if one of the involved variables is an outlier. For instance, the distance

function Da(., .) becomes meaningless if one of the variables is set to “outlier”, since

there is no real associated scene patch to which the rotation angle between model patch

and scene patch can be determined. In a graph matching problem, outlier detection can

(and must) be tackled by adding an additional binary node that is set to true whenever

the value of an involved variable (model node) is “outlier”. Our method is a natural

and straightforward solution to this problem, since only the best terms influence the

detection decision, the other terms are ignored.

4.3.2 Non rigid transformations

Although we check spatial and angular consistencies based on the principle of preserv-

ing rigid transformations, a very large class of non-rigid transformations is handled by

the gaussian kernels in equation (4.5) and equation (4.6), as well as the fact that the

consistencies are verified locally between neigboring patches only.

4.4 Experiments and Results

As described in chapter 3, for sketch recognition we use Zernike moments as basis

features in all experiments. Usually, the classical euclidean distance is used to compare

two Zernike descriptors [KKSO00, GSTL02, ZL02]. Since the rotation angle (between

two shapes) is exploited in our energy function, we use the comparator proposed by

Revaud et al. [RLB09], which returns both the distance (in the sense of similarity) and

the rotation angle between the two patterns. Our approach differs from the work of

Revaud et al. [RLB09] in that we employ Zernike moments in a local maner, i.e. calculate

Zernike moments from patches.
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4.4.1 Creation of the graph structure

As shown in figure 4.2, the model is indexed by calculating Zernike moments on over-

lapping patches: the model patches are extracted on different spatial locations, and are

of sizes varying from 65% to 75% of the model size. The model graph is based on

these extracted patches. The neighborhood relationship between nodes is established

by thresholding the Euclidean distance with a threshold Te, i.e i ∼ j ⇔ de(pi, pj) < Te.

Note that the model graph is fixed, and we construct several scene graphs for dealing

with multiple scales. First, overlapping patches 3 are extracted at multi-scales from the

scene. Then, Zernike moments are calculated from these scene patches. We construct a

scene graph separately for each scale. With the given model graph and scene graph, we

can now solve the energy function (cf. eq 4.1) by applying our algorithm presented in

section 4.3.

To test our method, we conducted two experiments in the context of object recogni-

tion. The first one was performed on a standard dataset (i.e., natural scenes), while the

second one was applied to a real industrial application, i.e. project Pinka (cf. chapter 1).

4.4.2 Recognizing hand-drawn models in natural scenes

In a first experiment, we tested our method on the ETHZ database [FTG06], which con-

tains five diverse object categories with 255 images in total: apple logos (40), bottles

(48), giraffes (87), mugs (48) and swans (32). Each image contains one or more object

instances. The dataset features significant scale changes, illumination changes, deforma-

tions and intra-class variations, which make it highly challenging for object detection.

We use the same experimental setup as [FJS07, ZWWS08], using only a single hand-

drawn model for each class and the whole dataset as test set. Figure 4.3 illustrates an

example of models as well as the scenes in this dataset. First, edgels are detected by

the Berkeley natural boundary detector 4. Then, all images are thresholded to obtain

binary images. In all experiments, we calculate Zernike moments up to order 12, which

is usually used in the literature. We start by constructing the model graph and the scene

graph as mentioned in section 4.4.1. The Zernike filters are precomputed and used for

extracting all scene patches at the same scale for accelerating the computation. In prac-

tice, we first preselect n (set to 25 in our experiments) best patches for each model patch

by using only the Euclidean Zernike distance (classical comparator). Then, we apply

3In all our experiments the sliding step is about 15% of the window size in each direction, while the
scale step is 2

1
4

4V. Ferrari provides all segmented images on
http://www.vision.ee.ethz.ch/˜ vferrari/datasets.html
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Figure 4.3: ETHZ dataset for testing object class detection and shape matching algo-
rithms: the hand-drawn models are shown in top, and natural scenes in bottom.

Revaud et al.’s Zernike comparator to find the best scene patch from this preselected n

best patches.

Note that by doing a two-step process, λ f (see eq. 4.1) is not required anymore. After

some simple experiments, we found that λd = 51 and λa = 6.25 give the best results for

all objects and we fixed these values for all our experiments. The variance of gaussian

kernels has been fixed to a constant (0.4) since the feature variability is handled by the

coefficients λd and λa.

Figure 4.4 illustrates how our method can localize the objects. Once we have detected

the best scene patch, we also know its corresponding model patch. The pose of the

corresponding model patch, along with the retrieved rotation angle, allow us to localize

the object in the scene (white rectangle on figure 4.4.iii) to axis-alignment.

As an evaluation criterion, Ferrari et al. [FTG06][FJS07] considered detection rate

(DR) vs. false positive per image (FPPI). Because the DR/FPPI measure depends on

the ratio of the number of positive and negative test images, we chose Precision/recall

curves (P/R)5 for the quantitative analysis. Note that recall is defined as the amount

of correctly detected objects with respect to the total amount of objects in the ground

truth, whereas precision is the amount of correctly detected objects with respect to the

total amount of detected objects. Since the two measures are dependent, i.e. varying the

threshold Td in order to increase recall will generally decrease precision. Another reason

5These curves are also called ROC curves (receiver operating characteristic)
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Figure 4.4: (i) the input model, in which the model patch corresponding to the best
detected patch is marked. (ii) the best scene patch detected (delineated with a white
bounding box) with an angle of 18◦. The oriented rectangle (in black) is the bounding
box calculated from the best patch, the position of its corresponding model patch and
the retrieved rotation angle. (iii) the same bounding box (in black) together with the
returned axis-aligned bouding box (while).

for choosing P/R criterion is that the latest results presented by Zhu et al. [ZWWS08],

against which we compare our method, have been evaluated by P/R curves and they

outperformed the method of Ferrari et al. [FJS07].

Figure 4.5 illustrates our results on this dataset. For evaluation analysis, we used

the DetEval tool developed by Wolf and Jolion [WJ06] 6. Table 4.1 shows detection rates

at equal-error-rates for our method against the method from Zhu et al. [ZWWS08] (i.e

operating points where Precision equals Recall). Compared to this latest state-of-the-art

result [ZWWS08], our performance is better on three classes among five. We obtain

lower values for the Mug and the Bottle models. This is mainly caused by the fact that

these sketched models are quite simple (i.e they comprise only straight segments), and

thus local shape features like patch descriptors are not suitable enough.

Beyond this evaluation, our method offers an important advantage over the method

of Zhu et al. [ZWWS08] and the state-of-the-art methods [FTG06][FJS07][RJM08]: our

method recognizes and detects the object along with its rotation angle in the plane

of the scene. This can further help in 3D scene understanding, for instance 3D scene

reconstruction from 2D views (considering the model as a 3D viewpoint). Note that

the method of Zhu et al. [ZWWS08] manually determines the distinctive parts and the

control points of the model.

Figure 4.6 shows some visual results for this database. The detected objects are de-

lineated with white bounding boxes. Images a-1,a-2, a-3 demonstrate that our approach

6DetEval is available on http://liris.cnrs.fr/christian.wolf/software/deteval/index.html.
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Figure 4.5: Precision vs. recall curves on four classes of ETHZ database. Our precisions
on “Apple logos”, “Giraffes” and “Swans” are better than the latest state-of-the-art re-
sults [ZWWS08].
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Zhu et al. [ZWWS08] Our approach
Giraffes 68.00 % 73.00 %
Mugs 58.00 % 36.50 %

Apples 65.50 % 72.00 %
Bottles 78.00 % 46.50 %
Swan 64.00 % 66.00 %

Table 4.1: Comparison of detection rates at equal error rates (ERR) between the method
of Zhu et al. [ZWWS08] and the proposed approach.

is capable of detecting multiple instances of objects in scenes. Images b-1, b-2, b-3 show

detection results, on severely deformed objects. The results for giraffes (c-1, c-2) illus-

trate the robustness of our approach to occlusion. Images c-3, d-1, d-2, d-3 show some

detection results in very cluttered scenes. Finally, the detection results for swans (e-1,

e-2, e-3) show that our method handles intra-class variability very well. Note that the

bounding-boxes for Giraffes are sometimes smaller than the ground truth ones. The

reason is due to the fact that the giraffe’s legs have not been well-drawn in the model

from Ferrari et al. [FTG06], and as noticed in [FJS07], the legs of the animal are hard to

detect.

Figure 4.7 shows some false positives. The first column presents the input models

and some typical false-alarms are shown in the second and the third column.

Note that the models used here have been well sketched by Ferrari et al. [FTG06].

One of the main issues of such object-from-sketch application is to answer the ques-

tion about how the performance is stable when changing the input model, e.g different

people making different sketches. By using Zernike moments for extracting contour

information, our method is robust to sketch variation [ADV07][HR07][RLB09]. This is

also confirmed by our experiments, in which we have tried to retrieve the horses from

the Weizmann-Shotton horse database [SBC05], composed of 327 positive images, and

327 negative images. Figure 4.8 shows a quantitative analysis of P/R curves, in which

we have used two different hand-drawing horses as the input models and the results are

quite similar. Figure 4.9 shows some visual results when using “horse drawing 1” (see

figure 4.8) for this dataset. We can see that our method can capture large deformations

such as the articulation of the horse’s neck.

Accuracy of detections – We use the same criterion which has been used in [FJS07]:

a detection is counted as correct if its bounding-box overlaps more than 20% with the

ground-truth bounding-box, and vice-versa. Any other detection is counted as a false-

positive.

The dependence of object recall and precision on this evaluation criteria is important
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Figure 4.6: Results on some example images of the ETHZ shape classes.
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Figure 4.7: Some typical false positives.
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Figure 4.8: An example to demonstrates how the perfomance is stable when changing
the input model. The left image shows the P/R curves for two corresponding sketch
models in the right image. These tests are performed on the Weizmann-Shotton horses
[SBC05].
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Figure 4.9: Some visual results of the Weizmann-Shotton horse database [SBC05]. The
input model used here is the horse drawing 1 in figure 4.8.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

x=tr

"Recall"
"Precision"

"Harmonic mean"

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

x=tp

"Recall"
"Precision"

"Harmonic mean"

Figure 4.10: Detection results on the Apple logos of the ETHZ shape classes with
varying evaluation criteria. Left: varying constraint area recall (tr) while area precision
(tp) is constant and equal to 0.2. Right: varying constraint tp while tr is constant and
equal to 0.2.
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and should be subject to evaluation itself [WJ06]. More precisely, an object should be

detected if a sufficiently large part of the ground truth is detected (i.e area recall is

sufficiently high) and the detection bounding box is high enough (i.e area precision

is high enough) [WJ06]. As proposed in [WJ06], figure 4.10 shows the dependence of

detection performance on the evaluation criteria as graphs. We can see in the left column

that object recall and precision decrease slowly when the area recall (tr) approaches 1,

which indicates that most of the object rectangles are detected with their entire area.

4.4.3 Recognizing 3D models from 2D storyboard scenes

In a second experiment, we tested our method on a real industrial dataset provided by

the Pinka company (cf. chapter 1). Note that our objectives in this project are two-fold:

• Detecting and recognizing the 3D models as well as their location and size

• Recognizing the 3D pose: detecting the viewpoint for each model

The latter viewpoint will be obtained by selecting the correct 2D view stored in the

database as well as retrieving the in-plane rotation angle of this view.

Althrough recognizing three-dimensional objects in a 2D scene is a well known prob-

lem, very few work exists, e.g [HRW07], on direct 3D object recognition. We chose to

tackle the problem by recognizing a 3D object through a set of 2D images each corre-

sponding to a single viewpoint. Figure 4.11 presents our general scheme for recogniz-

ing 3D objects in storyboards. Our method is based on the following principle: each 3D

model is represented by a set of 2D views (model images); then, edges are detected in the

model images with a canny detector − the storyboard images are already stroke images

which do not necessite edge detection. All images are thresholded before subsequent

preprocessing, e.g. construction of the graphs (see section 4.4.1).

As mentioned above, we aim at detecting the viewpoint in the plane of storyboard,

i.e. the input of our algorithm (presented in section 4.3) is now a set of model views, and

each view contains a list of model patches. For this end, first we apply our algorithm to

find the best patch for each view. Then, the view that gives highest score is selected as

the best view for the 3D model.

Experiment-setup – We applied our method to a real industrial application com-

prising five different 3D models: tents (2 different models), trailers, bushes, and trees

provided by the Pinka company. As shown in figure 4.11, the proposed method consists

of two processing stages:
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Figure 4.11: The proposed 3D patch-based object detection in sketch images.
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• For the offline process, about 120 views from each 3D model (i.e. 5× 120 = 600

views on total) are extracted and then the views are indexed by calculating Zernike

moments on 16 overlapping patches: the model patches are extracted on different

spatial locations and are of sizes varying from 65% to 75% of the model size.

• In the online process, similar overlapping patches are extracted from the story-

board and Zernike moments are calculated at multiple-scales. We used 4 story-

boards of size 3350 × 2260 for testing. We chose the same variance parameter

which has been used in [TCSB06] for Gaussian kernels measuring differences in

euclidean distances: σde=σza=0.4.

Figure 4.12 illustrates some results of our algorithm. Each object detected is marked

with a bounding box and its corresponding 3D model view is displayed. Note the ex-

cellent results on the very difficult storyboard images. Most of the objects are occluded,

some of them significantly, which does not prevent our method from correctly detecting

and recognizing them. Furthermore, even very similar 3D models, as for instance the

two different tents, are distinguished correctly. Several typical false positive detections

are reported in figure 4.12d. These false positive results occur in the case of intra-class

variation, i.e. a bush model is very similar to a part of a tree model. Note that we chose

to report the recall obtained for 100% precision, i.e. no false alarms.

Table 4.2 shows the comparison between Revaud et al’s global approach [RLB09] and

our approach. The comparison results show that the proposed method attains higher

recall than that of the global one. Both methods obtain low recall for the tree models.

This is mainly caused by the fact that sometimes their sketch deviates too much from

their 3D model. In addition, the sketched trees belong to highly cluttered scenes (forest

− see the tree models in figure 4.12). We do not consider the errors of the detected

viewpoint in calculating recall and precision. A comparison of these errors for both

methods is given in table 4.3.

Table 4.3 presents the mean error in viewpoint detection compared with the global

method. We here show only the mean errors for 100% precision, which are calculated

according to the results in table 4.2. Note that each view is characterized by two angles

((α ∈ [0, 2π], β ∈ [0, π]). To compute the error of the viewpoint detection, we translate

the angle pair into a corresponding 3D point on the unit sphere. The error between

the detected viewpoint and the sketched viewpoint is then calculated as the euclidean

distance between the corresponding 3D points on the sphere. The comparison results in

table 4.3 demonstrate that our method performs better than the global one in viewpoint

detection.
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(a) (b)

(c) (d)

Figure 4.12: Examples of detection results on several storyboards. Note the successful
detection in spite of many occlusions. Images (a)-(c) show detection results for 100%
precision, i.e. no false alarms. Figure (d) illustrates the difficulty of the tree and bush
models on an image created as a mixture of images (a)-(c). Searching for four tree and
bush models, the best response for each detection are wrong models or parts of wrong
models (tents etc.).

In figure 4.13 some visual results are presented for both approaches: in the first

row are some sketched objects extracted from the storyboards, the second and third row

show the detected views of the global approach and the proposed approach, respectively.

We can see that the global approach is very sensitive to occlusions: for objects 1 and 4,

which are slightly occluded, the global approach returned the correct object model but

views which are not very similar to the views of the sketched objects, while our method

can find the best views (the view which is closest to the sketched object in the database).

For objects 2 and 3, which are more severely occluded, the global method failed, whereas
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Sketch

No result No result

Object 1 Object 2 Object 3 Object 4

Global
approach

Proposed
approach

Figure 4.13: Examples of detection results, where the detected views are given for both
compared methods.

Global approach [RLB09] Proposed approach
total % total %

tents 4/8 50.00 7/8 88.00
trailers 2/3 67.00 2/3 67.00
bushes 3/10 30.00 6/10 60.00
trees 1/31 3.00 4/31 13.00

Table 4.2: Comparison of recall for 100% precision for the global approach and the
proposed approach.

our method can still recognize the 3D models although the detected views are sometimes

slightly different from the original ones.

4.5 Conclusion and Discussion

In this chapter, we have presented an efficient approach for object recognition in clut-

tered images that is robust to occlusion, scale and rotation. Our contributions are two-

fold. First, we present a new shape matching method, which incorporates two main

relationships between patches: spatial interactions and rotation angle consistency. This

makes the proposed method flexible and easy to use with other descriptors. Experi-

ments on both industrial and challenging databases confirm that our framework can
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Global approach [RLB09] Proposed approach
tents 0.81 0.31

trailers 0.29 0.06
bushes 1.16 1.41

trees 2.70 1.36

Table 4.3: Comparison of the mean error in viewpoint detection between the global
approach and the proposed approach.

deal with any transformation, e.g rigid, non-rigid, affine, etc. Secondly, we propose

a new local patch-based representation using Zernike moments, which is suitable for

object recognition from hand-drawn models, and which is more robust to occlusion.

Our work can be extended in several directions. First, we plan to combine our

Zernike moments descriptors with contour descriptors like kAS in [FFJS08a]. Secondly,

in our current experiments, the contribution of the topological coherence of the corre-

spondence has not been taken into account. We believe that considerable gains in object

detection performance can be achieved by taking into account this information.

We currently work on a method which approximates the model graph as a linearly

ordered chain, which allows to quickly calculate the global minimum of eq. 2.6 without

decoupling the terms.
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This third part describes our contributions in the field of activity recognition. This

part is composed of 3 following chapters:

In chapter 5, we present an overview of existing methods for human activity recogn-

tion. There are several available surveys on action recognition, which introduce differ-

ent taxonomies of action recognition approaches. They are based on either the methods

used or features used for action classification. In this chapter, we first introduce fea-

tures, which are widely exploited in action recognition, and then classify recognition

approaches into several categories.

In chapter 6, we introduce new features for action classification. Our goal is to

improve the conventional bag of words models. To this end, we propose new features,

which take into account spatio-temporal information. Experiments on two standard

datasets show that our approach is comparable to state of the methods.

Chapter 7 presents a new activity recognition method by using graph matching tech-

niques. We do not focus directly on classification techniques, which have been widely

used in action recognition. Instead, we formulate the problem as a graph matching one,

in which a model graph represents a template video, and a scene graph represents a test

video. As opposed to most other previous works on graph matching, which focused

on directly solving the correspondence problem, we approach the problem in another

angle: how to efficiently estimate the compatibility matrix, from which the solution can

be computed efficiently. We evaluate our method on both two standard datasets and

our own dataset. The experimental results show that the proposed method gives good

results.
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5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

In this chapter, we discuss the existing approaches for action recognition. Due to the

large number of existing methods, and variations in evaluation practices, we review only

main ideas of each approach, without discussing detailed results. There are different

taxonomies proposed for action recognition. Our taxonomy is in some respects based

on the ones used by Moeslund et al. [MHK06], as well as by Poppe et al. [Pop10]: feature

representation and action representation. In this thesis, we focus on using local features

and perform action recognition from local features. Thus, we do not consider the work

on gesture recognition, interactions between persons, human poses, and tracking of

human motion. We refer the readers to surveys [MHK06, AC99, Gav99, MG01, AP04,

FAI∗05, Pop10].
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5.1 Introduction

Human action recognition has been an active research area in recent years due to its

wide number of applications which include video-surveillance but also annotation and

retrieval, human computer interaction etc. A considerable amount of literature ex-

ists on different applications of action recognition. Based on the features used for

recognition, existing action recognition methods can be broadly divided into two cate-

gories: local approaches [DRCB05, NWFF08, SDPNL08, SLC04] and holistic approaches

[LAS08, WBR07, WGLR08] and some methods which do not neatly fall into these cate-

gories, e.g. Sun et al. [SCH09] combine local and holistic features. However, there exist

different taxonomies in literature: Bobick [Bob97] classifies action recognition methods

into movement recognition, activity recognition and action recognition; Aggarwal and

Cai [AC99], and Wang et al. [WHT03] use a taxonomy of body structure, tracking and

recognition; Gavrila et al. [Gav99] propose another taxonomy based on 2D approaches,

3D approaches and recognition; Moeslund et al. [MG01] discuss the main steps that an

action recognition sytem needs to consider: initialization, tracking, pose estimation and

recognition; Recently, Turaga et al. [TCSU08] discuss two levels of action recognition:

“action”, and “activities”; Very recently, Poppe [Pop10] introduces a taxonomy of image

representation and action classification. It should be noted that several researchers (e.g.

from [TCSU08]) consider “actions” as the simple motion patterns performed by one per-

son, and “activities” as more complex motion patterns performed by several humans.

In this thesis, we consider the term action with the same meaning as activity.

Each taxonomy has its advantages and disadvantages, and has been developed for

different specific purposes. Among the above taxonomies, we found that the ones intro-

duced by Moeslund et al. [MG01], and later by Poppe [Pop10], are most informative to

review current state of the art approaches. In this thesis, we present two contributions to

action recognition, which are related to both the Bag of words models, spatio-temporal

relations based methods, and video matching methods. We therefore decide to discuss

the literature in two main steps: first, we focus on the features used in most action recog-

nition systems, as well as in our method; Second, we review the recognition methods,

which can be classified into: statistical, probabilistic graphical models, spatio-temporal

relations based methods, and video matching.

The remaining part of this chapter is organized as follows. First of all, we summarize

two common datasets, which are widely used in action recognition. Next, we first

discuss features, which are mainly employed for action recognition. Then, we review

the recognition methods.
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Figure 5.1: Illustration of several publicly available datasets for action recognition:
(a) KTH dataset, (b) Weizmann dataset, (c) Inria XMAS dataset, (d) UCF sports action
dataset and (e) Hollywood2 human action dataset. This figure is reprinted from [Pop10].

5.2 Common datasets

In this section, we present the publicly available datasets, which are widely used for

activity recognition evaluation. Figure 5.1 illustrates frames of these datasets, including

the KTH dataset, Weizmann dataset, Inria XMAS dataset, UCF sports action dataset,

and Hollywood2 dataset. In this thesis, we chose the most two widely used KTH and

Weizmann datasets to evaluate our methods.

5.2.1 KTH dataset

The KTH dataset (cf. figure 5.1a) was provided by Schuldt et al. [SLC04] in 2004 and

is the largest public human activity video dataset. It contains a total of 2391 sequences,

comprising 6 types of actions (boxing, hand clapping, hand waving, jogging, running

and walking) performed by 25 subjects in 4 different scenarios including indoor, out-

door, changes in clothing and variations in scale. Each video clip contains one subject

performing a single action. The image resolution is of 160× 120, and temporal resolu-

tion is of 25 frames per second. There are considerable variations in duration, and in

viewpoint. Several actions (e.g. walking, jogging and running) are performed either

from left to right, or in the opposite direction. The background is homogeneous and

static, but hard shadows are present.
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5.2.2 Weizmann dataset

The Weizmann dataset (cf. figure 5.1b) was first used from Blank et al. [BGS∗05a] in

2005, which consists of 90 video clips of 10 actions (walking, running, jumping, gal-

lop sideways, bending, one-hand-waving, two-handswaving, jumping in place, jumping

jack, and skipping) performed by 9 different subjects. Each video clip contains one

subject performing a single action. The image resolution is of 180× 144 pixels and the

temporal resolution is of 25 frames per second. The duration of each sequence is about

3 seconds on average and the backgrounds are static.

5.3 Video representation

In this section, we present features and extraction methods for activity recognition.

Generally, video representation methods can be classified as holistic (global) or local

(patch-based). Holistic representations encode the image frames as a whole. Although

they can capture the shape of the moving objects and require much less computation

than the local representations, holistic representations are quite sensitive to occlusions

or noise. Another drawback of holistic representations is that they usually need more

preprocessing such as background substraction or tracking. On the other hand, local

representations can deal with change in background, and occlusion. In general, local

representations are described as a set of local patches, where a patch is a small neigh-

borhood of pixels around a spatio-temporal interest point.

We discuss holistic features in section 5.3.1 and local features in section 5.3.2.

5.3.1 Holistic features

MEI and MHI – Bobick and Davis [BD96, BD01] exploit silhouettes of a person, and in-

troduce Motion Energy Image (MEI) and Motion-History Image (MHI). MEI is a binary

image which represents where motion has occurred in an image sequence. In practice,

MEI is archieved by the cumulative absolute difference in pixel intensity, i.e. returned

by background subtraction - see figure 5.2a. MHI is a grey-level image which repre-

sents how a person has moved during the action - see figure 5.2b. MHI is computed

by the difference between the gray-scale images of t successive frames. Moments (see

chapter 3) are usually computed from MEI and MHI, and used as global features for

action recognition. A part from Hu moments, Zernike moments or other moments, or

shape context descriptors [LN07] can also be computed from MEI and MHI silhouettes.

Recently, Sharif and Djeraba [SD09] use MHI to estimate spatiotemporal region of interest
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a)

b)

Figure 5.2: Examples of Motion Energy Images (a): bottom row shows a cumulative
binary MEI corresponding to the frames above, and Motion-History Images (b) for three
actions (sit-down, arms-raise, crouch-down). This figure is reprinted from [BD01].

(ST-RoI). Then, based on ST-RoI features, they propose a new method to detect excep-

tional motion frames in real video sequences for both static and dynamic backgrounds.

MEI and MHI representations are insensitive to color, texture, and illumination

changes. However, they usually fail in the case of occlusions, and depend on the back-

ground segmentation performance.

Optic flow – Optic flow, which is defined as the set of apparent velocities of the bright-

ness, is widely used in many vision systems. It is a vector velocity field defined on

sequences of images (see figure 5.3 for an illustration). There are several algorithms to

calculate the optical flow, e.g. from Lucas and Kanade [LK81] (based on local smooth-

ness constraints), the regularization based algorithms [HS80, BA93], blurred optic flow

[EBMM03] (cf. figure 5.3). We refer the readers to [BFB94] for a comparison of various

optical flow techniques. Optical flow provides important information about the regions

undergoing motion and the velocity of motion, but it is quite sensitive to noise and

illumination changes.
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Figure 5.3: Optical flow split into directional components, then blurred (reprinted from
[EBMM03]).

5.3.2 Local features

Generally, local features are features extracted from 3D regions around some spatio-

temporal interest points or other local primitives. Different methods differ on the nature

of features which are extracted from interest points. Usually, the extracted descriptors

are then flattened or concatenated into a single vector.

It should be noted that the most successful methods for action recognition are local-

based methods, often a combination of local features, bag of words models, and a clas-

sification algorithm. We detail the bag of words model, and briefly review classification

techniques used in literature in the following.

5.3.2.1 Bag of words models

The bag of words models (BoW)1 was first used in natural language processing and

information retrieval. In this model, a document [SM83] is represented as an unordered

1Not that, in computer vision, bag of words is sometimes referred as Bag-Of-Visual-Words (BOVW)
[SZ03].
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collection of frequencies of words. BoW models have been very successful for several

computer vision tasks, such as image classification or topic discovery, where an image

is considered as a document and keypoints extracted from this image are the words.

Inspired by this, a number of works have shown very good results for human action

recognition [DRCB05, NWFF08, SDPNL08, SLC04] using BoW models, i.e. considering a

video sequence as a bag of keypoints. In general, a BoW model consists of the following

steps (cf. figure 5.4):

a) Feature extraction. Local features are extracted from training images/video sequences.

There are different ways to feature extraction, e.g. using a regular grid or applying

an interest point detector (see the next section).

b) Learning a “visual vocabulary”. In this step, a clustering technique like K-mean is

applied to the set of local features extracted from the previous step for learning a

visual vocabulary (i.e. a codebook). Then, for each cluster (after learning), a center

word, which is representative for this cluster, is selected as codeword.

c) Video representation. First, a set of local features, which represents a video, is

mapped to the codebook, and the indices of the nearest codewords are selected.

Then, a frequency histogram is constructed from these indices. This histogram is

used as input for a classifier such as Support Vector Machines.

In computer vision, the BoW model is very popular due to the following reasons:

• Generally, hundreds of local features are extracted for each video sequence or

image, while a lot of them are very similar in nature.

• The sizes of different images/videos are not the same, yielding different dimen-

sional feature spaces that cannot used to perform classification, which requires

feature vectors of fixed dimension as input.

Bow models are very flexible and effective for many applications. However, a ques-

tion arises as how to choose a vocabulary size k? If k is too small, then codewords are

not representative of all local features. Otherwise, if k is too large, then quantization

artifacts, or overfitting can appear. In practice, the codebook size is usually empirically

chosen through experiments.

In the next sections, we present how to extract local features from video sequences:

first, several interest point detectors are described. Then, major local descriptors used in

activity recognition are presented.
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Figure 5.4: Illustration of two steps of the Bag of words model used for action recogni-
tion (see the text for more details).

5.3.2.2 Interest point detectors

Spatio-temporal interest points (STIP) are locations in a video sequence, where intensity

values present significant variations in both space and time directions. There are several

methods to detect STIPs in video. Typically, a response function is computed at every

point and salient points, which correspond to local maxima of the response function, are

selected as STIPs. Among the different approaches to detect STIPs, the ones introduced

by Laptev and Lindeberg [LL03], and by Dollar et al. [DRCB05] are most widely used
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Figure 5.5: Illustration of several spatio-temporal interest points of a walking action,
detected by Harris3D [LL03]. We can see that the sptio-temporal interest points are
mostly located at corners in spatio-temporal directions.

in action recognition. We present below the details of these two methods, and briefly

introduce other methods.

Harris3D – Laptev and Lindeberg [LL03] extended the 2D Harris detector from

[HS88] to a 3D space-time detector, called Harris3D. A spatio-temporal second-moment

matrix is computed for each video point:

µ(x, y, t, σ2, τ2) = g(x, y, t, σ2, τ2) ∗


L2

x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t

 (5.1)

where Lx = ∂xL and Lt = ∂tL denote the partial derivatives (space-time gradients) of L

in the spatial and temporal dimensions; and σ, τ are spatial and temporal scale values,

respectively; g is a Gaussian smoothing function:

g(x, y, t, σ2, τ2) =
1√

(2π)2σ4τ2
e−(x2+y2)/2σ2−t2/τ2

(5.2)

The locations (x, y, t) of positive local maxima of the following corner function H are

selected as spatio-temporal interest points:

H = det(µ)− k ∗ trace3(µ) (5.3)

where k is a parameter, which was set to 0.0005 as suggested in [LL03].

One drawback of Harris3D detector is that it provides quite sparse interest points

(see figure 5.5). This detector favors corners in 3 space-time directions. Inspired by

Gabor filters used in image processing, Dollar et al. propose a dense spatio-temporal

interest point detector.

Dollar detector – Dollar et al. [DRCB05] used two linear separable gaussian filters

in space and a gabor filter in time to detect spatio-temporal interest points. The form of
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Figure 5.6: Illustration of several spatio-temporal interest points of a walking action,
detected by Dollar detector [DRCB05]. We can see that this detector provides very dense
interest points. This figure is taken from [NWFF08].

the response function is given as:

R = (I ∗ g ∗ hev)
2 + (I ∗ g ∗ hod)

2 (5.4)

where g is the 2D spatial Gaussian smoothing kernel, hev, hod are a pair of 1D Gabor

filters which are applied temporally.

hev(t, τ, w) = −cos(2πτw)e−t2/τ2
(5.5)

hod(t, τ, w) = −sin(2πτw)e−t2/τ2
(5.6)

where w = 4/t. The local maxima of the response function are selected as spatio-

temporal interest points. Figure 5.6 shows an example of interest points of a walking

person, detected by the Dollar detector.

A part from the Laptev detector (Harris3D) and the Dollar detector, there also exist

several other methods to detect spatio-temporal interest points.

Other detectors – Oikonomopoulos et al. [OPP06] extended the work on 2D salient

point detection by Kadir and Brady [Kad03] to 3D. Positions with local maximum en-

ergy, estimated by changes in local information content over different scales, are selected

as salient points. Willems et al. [WTG08] introduces the Hessian detector, where the

saliency of the determinant of a 3D Hessian matrix are selected as interest points. Bre-

gonzio et al. [BGX09] estimate the focus of attention by subtracting subsequent frames,

then apply Gabor filters to detect salient points.

5.3.2.3 Descriptors

It should be noted that the approaches to extract global descriptors, can be applied

locally around the interest points to create local features. In this section, we preview
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Figure 5.7: Illustration of cuboids from Dollar detector [DRCB05].

several popular local descriptors used in action recognition.

Cuboid descriptor – Along with their detector, Dollar et al. [DRCB05] also proposed

the cuboid descriptor. A cuboid is a 3D patch extracted from an interest point (see

figure 5.7 for an illustration), and its descriptor is a vector of gradients. First, brightness

gradients of pixels in the cuboid region are computed and concatenated into a single

vector. The obtained vector is then projected to a lower dimensional space using the

Principal Component Analysis (PCA) technique.

HOG/HOF descriptors – The HOG/HOF descriptors were proposed by Laptev et al.

[LMSR08] (see figure 5.8). First, each cuboid window (volume) around interest points

is subdivided into a 3D grid of cells, then 4-bin histograms of gradient orientations

(HOG) and 5-bin histograms of optic flow (HOF) are computed. These histograms are

normalized, and concatenated into HOG, HOF, HOG/HOF descriptor vectors.

3D SIFT descriptors – Scovanner et al. [SAS07] extended the idea of 2D SIFT descriptor

to 3D (cf. figure 5.9). Similar to 2D SIFT, the 3D SIFT feature descriptor is based on

Gaussian space. Each 3D cuboid is subdived into 3D sub-volumes, and the spatio-

temporal gradient, the gradient magnitude and orientations in 3D are computed for each

sub-volume. The results for each sub-volume are accumulated into its sub-histogram.

These histograms are concatenated into a vector histogram (see figure 5.9).
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Figure 5.8: Illustration of histograms of spatial gradient and optic flow computed from
interest points. First, a cuboid window is subdivided into a 3D grid of celles, 4-bin
histograms of gradient orientations (HOG) and 5-bin histograms of optic flow (HOF)
are computed for each cell. (reprinted from [LMSR08]).

Figure 5.9: The left image illustrates the 2D SIFT descriptor (e.g. [Low04]). The center
image shows multiple 2D SIFT (frames level). The last shows how to compute 3D SIFT
descriptors from [SAS07].
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5.3.3 Hybrid features

We can combine several different features to form hybrid features. Examples from the

work of Sun et al. [SCH09], who show that a combination of holistic descriptors (Zernike

moments) and local SIFT descriptors give good results.

We would like to note that the evaluation of the performance of different interest

point detectors and descriptors is beyond this thesis. We refer the readers to [WUK∗09]

for an extensive evaluation.

5.4 Statistical classification methods

Statistical approaches have been widely used in object categorization, due to the ef-

fectiveness of machine learning techniques. Statistical methods to action recognition

usually consist of three main steps (see figure 5.10):

Feature extractions – Usually, local features are extracted from video sequences (see the

previous section).

Bag of words representation – Each video sequence is represented by a Bag of words

model, i.e. a fixed dimension vector. See section 5.3.2 for more details about BoW

model.

Classification – In this step, machine learning techniques are applied to classify the

actions. There are two different types of classifiers: discriminative vs generative.

Note that, in training stage, the bag of words representations (i.e. histograms),

along with labels of the sequences, are provided. However, generative approaches

can be used as unsupervised learning.

It should be noted that, in general setting, local features are used in statistical methods,

but if global features are used instead of local ones, we can omit the first two steps, i.e.

apply classification techniques for vectors representing global features.

5.4.1 Discriminative approaches

Discriminative classifiers are a popular approach to solve classification problems. The

main idea is to find optimal frontiers between classes during the training stage. Probably

the most popular classifiers of this family are support vector machines (SVM). SVM learn

a hyperplane in the feature space, which best separates the two classes (multiple classes

are learned in the same principle) - See figure 5.10.e for an illustration.
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Figure 5.10: Illustration of statistical approaches: a) input video sequences; b) Extraction
of local features; c) Bag of words representation; d) Generative classifiers; e) Discrimina-
tive classifiers.

Schuldt et al. [SLC04] use the SVM classification combined with motion descriptors

(spatio-temporal jets) for action classification. Laptev et al. [LMSR08] apply SVM with

DOG/HOG features to recognize actions in realistic videos. Scovanner et al. [SAS07]

combine SVM with 3D SIFT descriptors for action classification. SVM has also been used

with velocity motion features in [JSWP07] [LCSL07].

Another popular discriminative method is boosting. The principle of boosting is that

a strong classifier is formed from a set of weak classifiers, where each weak classifier

takes only a single dimension of the features. A most widely used boosting technique is

Adaboot, which is used in [KSH05, OCKI06].
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Figure 5.11: pLSA graphical model. Nodes are random variables. Shaded ones are
observed and unshaded ones are hiddens. The plates indicate repetitions. This figure is
reprinted from [NWFF08]. Here N is the number of video sequences, d represents video
sequences, z are action topics (walking, running, etc), and w are spatio-temporal words.
We need to find the probability of topic zk occurring in video dj, and the probability of
a word wi occurring in the topic zk.

5.4.2 Generative approaches

While discriminative classifiers find optimal frontiers between classes without explicitly

modeling them, generative methods model the generation of the observed data, i.e. the

features, from the hidden class information and often from additional latent variables,

such as topics. The idea is to learn a model of the joint probability of the inputs and the

labels. This learned model is used to predict the activity classes by using Bayes rules to

calculate the posterior probability.

One of the most successful used generative methods belonging to the statistical fam-

ily is the probabilistic Latent Semantic Analysis (pLSA) introduced by Hofmann [Hof99].

pLSA aims at analyzing the co-occurrences of terms in a corpus of documents in order

to find hidden/latent topics. Niebles et al. [NWFF08] apply pLSA for unsupervised

action classfication. Figure 5.11 illustrates the main components of their method, where

d represents video sequences, z are latent topics (i.e. the action categories), and w are

spatial-temporal words. Given M videos containing words from a codebook of size V,

and the co-occurrence matrix C of size V × M, where c(wi, dj) ∈ C is the number of

occurences of a word wi in video dj, this method is composed of two stages:

Learning stage – We compute the probability of topic zk occurring in video dj, and the

probability of a word wi occurring in the topic zk. These probabilities are easy to

compute because we know the co-occurrence matrix between words and videos C.

Testing stage – Assuming that dtest is a new test video. First, for every topic zk, we
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compute the probability of zk occurring the video dtest. Then, the topic that gives

highest probability is selected as the action label for the video dtest.

There are several improvements on pLSA. Wong et al. [WKC07] integrate the location

of object centroid into pLSA model. Wang et al. [WSM07] use a Semi-latent Dirichlet

allocation (sLDA), which is similar to pLSA. However, in SLDA, each frame is considered

as a codeword, instead of the entire video sequence as used in [NWFF08].

5.5 Other probabilistic graphical models for action classification

Approaches based on probabilistic graphical models are beyond this thesis. We therefore

present only major methods used in literature of this family, and do not explicitly discuss

it. They differ from the purely statistical ones in that they relate hidden and observed

data in more complex (structural) way. In some cases, the probabilistic graphical model

is directly related to graph matching, the suject of this thesis. We refer the readers to

chapter 2 for more details. Note also, that topic models like pLSA and LDA fall into this

category. In the following, we just mention some methods which are not related to these

types of approach.

5.5.1 Discriminative approaches

Conditional Random Fields (CRF) are probabilistic discriminative models, that can model

multiple overlapping features. We refer the reader to recent work [NXGH08] [SCSW]

that have successful applied CRF for action recognition.

5.5.2 Generative approaches

Hidden Markov Models (HMM) are popular generative models, which are used in ac-

tion recognition. HMM models both hidden states (i.e. transition probabilities between

the current state to other state), and observation probabilities. HMM works under the

assumptions that there is a linear order of the variables and that observations in time

are independent. Several examples of HMM in action recognition, include: Yamato et

al. [YOI92] used HMM to recognize the tennis shots such as backhand volley, smash,

etc; Weinland et al. [WBR07] use HMM to condition the observation on the viewpoint.
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5.6 Other classification methods

Of course, there are other methods that do not neatly fall into the above categories, e.g.

Nearest neighbor classification (KNN). KNN is probably the simplest method for action

classification. It simply selects k training sequences closest to the test video, and the

class label with the highest number of “votes” is chosen for the test sequence. KNN has

several advantages: it can be either used with global features (both on frame level or

sequence level), and local features. In addition, due to its non-parametric nature, KNN

is easy to use. However, also due to its simplicity, with high dimensional data, KNN

gives not good results.

Some sucessful methods used KNN: Blank et al. [BGS∗05b] use 1-NN for global

features; 1-NN has also been used for histograms of codewords in [BCS08]; Dollar et al.

[DRCB05] apply 3-NN for cuboid descriptors; Bobick and Davis use [BD01] KNN for

Hu moments extracted from silhouettes.

5.7 Spatio-temporal relations based methods

Despite their success, the methods based on bag of words models discard the spatio-

temporal relations between local features. As a response, efforts to explore the spatio-

temporal information have been undertaken. These improvements concentrate on either

constructing new features, taking into account such information, or exploiting such in-

formation through co-occurrences between codewords. Our contributions in this thesis

fall into the first situation.

Scovanner et al. [SAS07] extended the popular 2D SIFT descriptor for three dimen-

sions (3D SIFT). In order to take into account the spatio-temporal information, they

construct a co-occurrence matrix of codewords, and iteratively merge codewords having

similar co-occurrences until the difference between them exceeds a given threshold. In

a related work, Liu and Shah [LS08] explore the correlation of video-word clusters (i.e.

codeword) using a modified correlogram. They optimize the codebook size by using

maximization of Mutual Information (MI). MI is defined between codewords and action

videos. In this method, two codebook entries are merged if they have similar distribu-

tions given MI measures. In addition, the authors integrate spatio-temporal informa-

tion into the bag of words model by exploiting spatial correlogram and spatio-temporal

pyramid matching. Wong et al. [WKC07] introduce both semantic (i.e. appearance)

and structural information (i.e. location) of local features into the pLSA model (see

section 5.4.2). Gilbert et al. [GIB08] extract all corners in 3 planes (x,y,t), then spa-
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tially concatenate these corner descriptors. As there are a large number of features

obtained, data mining techniques are applied to select informative features. Niebles and

Fei-Fei [NFF07] propose a constellation of bags of words, which combines both spatial

and spatial-temporal features, i.e. a video sequence is a hierarchical constellation of

frames. They use both dynamic and static features. Zhang et al. [ZHCC08] introduce

the concept of motion context to capture both spatial and temporal distribution of mo-

tion words. Oikonomopoulos et al. [OPP09] encode the spatial co-occurrences of pairs

of codewords and propose a probabilistic spatiotemporal voting framework for localiz-

ing and recognizing human activities in unsegmented image sequences. Very recently,

Ryoo and Aggarwal [RA09] present a spatio-temporal relationship matching method for

action recognition. They first define a set of spatial and temporal predicates such as

vertical near, horizontal near, vertical/horizontal far, before, etc. Next, a codebook is

used for video representation. Finally, to perfom action recognition, they introduce a

method to count the number of pairs of codewords satisfying one of the above logical

predicates that two given videos share in common. This results in a “score”, which is

used as a detection threshold.

Among the methods presented above, conceptually, one of our contributions de-

velopped in chapter 6 is similar to the work of Gilbert et al. [GIB08], who propose

compround features, which take into account spatio-temporal information.

5.8 Video matching

There exists another direction in action recognition, namely video matching or video

correlation. These approaches differ from the traditional classification-based ones in that

they do not explicitly model the actions to be recognized, nor do they learn these actions.

One of our contributions in this thesis falls into this category. We review hereafter related

works in literature.

Zelnik-Manor and Irani [ZMI06] compute the distance between two sequences by

the distance between two corresponding distributions of histograms of appearance-

normalized gradient patches in a temporal pyramid. In this approach, only patches

undergoing moving areas are taken. As a result, this method does not work on non-

moving backgrounds. Shechtman and Irani [SI07b] define a motion consistency measure

to match space-time volumes directly. However, the distance between pair of videos is

computed by exhaustively comparing patches extracted from every space-time point. Ke

et al. [KSH07] combine a part-based shape and flow matching framework from [SI07b]

for event detection in crowded videos. In their later work, Shechtman and Irani [SI07a]
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introduce a self-similarity descriptor. A distance between two video sequences are mea-

sured by the distance between two sets of corresponding local self-similarity descrip-

tors. They also propose several heuristics to ignore homogeneous regions. However,

this method is still time consuming, due to the exhaustive search for computing fea-

tures. Recently, Seo et al. [SM09] introduce space-time local steering kernels, which are

the generalization of the self-similarity descriptors described in [SI07a]. They organize

these local kernels into a matrix, so-called steering matrix. Then, PCA is applied on this

matrix to select salient features. A matrix cosine similarity is also introduced to compute

the distance between two given videos. This method requires sliding windows in both

space and time, making it computationally expensive. In the spirit of video matching,

Ryoo and Aggarwal [RA09] have presented a histogram-based match kernel for video

matching (see section 5.7, as we also classify this method as the Spatio-temporal relations

based methods).

Among the methods mentioned above, one of our approaches developped in chapter

7 is most closely related to the work of Ryoo and Aggarwal [RA09], who perform video

matching from two sets of spatio-temporal interest points. Our method differs from their

work in two main points. First, the authors in [RA09] define a set of logical predicates

for taking into account the pairwise relationships among points. Instead, we naturally

take into account higher-order relationships between points through a graph-matching

technique. It should be noted that such logical predicates are difficult to extend to higher

relationships. Second, their method needs to train a codebook from the training sets,

while our method does not require any learning.

5.9 Conclusion

In this chapter, we have reviewed the existing methods for action recognition. We have

discussed separately the features and methods used in action recognition. Generally,

there are two main types of features used for video representation: holistic vs local. We

have classified the existing methods into two main groups: Statistical vs Probabilistic

graphical models. In this section, we summarize the advantages, as well as limitations

of each method:

Holistic vs Local – Holistic features have several advantages such as they capture

global information of activities, and are easily extracted with low cost. However, they

usually require preprocessing steps, e.g. background subtraction. In addition, holistic

features cannot deal with oclusion. Local features have been proposed to deal with this

problem. Local features are usually combined with Bag of words models to video repre-
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sentation. Althrough they can deal with changes in background, scale and illumination,

and occlusion, local features based approaches are computational expensive. Moveover,

the bag of words models much valuable information such as the spatio-temporal infor-

mation. Many efforts have been proposed to overcome this restriction. These approaches

concentrate on exploiting the spatio-temporal relationships between local features or

among the codewords.

Statistical vs Probabilistic graphical models – Statistical methods can benefit from

learning techniques, which have been well studied in machine vision domain. Statistical-

based methods usually ignore the spatial relations between features. In constrast, prob-

abilistic graphical models methods can model the temporal and spatial relationships

between features. Hoverver, the choice of an inference algorithm is not trivial.

Generative vs Discriminative – Generative approaches can naturally model the prior

class distributions, and can handle missing (unsupervised learning) or partially labelled

data. However, they seem less suitable for distinguishing between two actions that are

very similar, e.g. running vs jogging. Discriminative methods can improve this limita-

tion by directly modelling the mapping from inputs to outputs. However, when data

be learned become complex, and training samples are not large enough, Discriminative

approaches may give unreliable results.

Currently, the state-of-the-art approaches in action recognition implicitly assume that

videos are already segmented into a single sequence, i.e. each sequence contains exactly

one action instance. This limits the applicability to realistic environments, where one

video often contains multiple different activities. Besides, the localization task is often

ignored in an action recognition system (except the work from Ryoo and Aggarwal

[RA09], and from Oikonomopoulos et al. [OPP09]). These problems are addressed by

our work described in chapter 7.
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Existing action recognition approaches mainly rely on the discriminative power of

individual local descriptors extracted from spatio-temporal interest points (STIP), while

the geometric relationships among the local features1 are ignored. In many applica-

tions, e.g. actions of interest in complex scenes (i.e. cluttered backgrounds or partially

1We consider the features extracted from interest points as local features
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occluded crowds), simple collections of local features are not sufficient to describe ac-

tivities. In this chapter, we overcome this restriction by introducing new features, called

pairwise features (PWF), which encode both the appearance and the spatio-temporal

relations of the local features for action recognition. For a given video sequence, STIPs

are first extracted, then PWFs are constructed by grouping pairs of STIPs which are both

close in space and close in time. We also propose a combination of two codebooks for

video representation. Experiments on two standard human action datasets: the KTH

dataset and the Weizmann dataset show that the proposed approach gives good results.

The work described in this chapter was published in the 20th international confer-

ence on Pattern Recognition 2010 [APTJ10].
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6.1 Introduction

Human activity recognition is an active field of research in computer vision, which has

applications ranging from video surveillance and monitoring, human-computer interac-

tions to content-based video annotation and retrieval. Due to the non-rigidness of the

human body, activity recognition is a very challenging task. One way to tackle the prob-

lem is to recognize behaviors of people in entire video sequences, or in spatio-temporal

sublocks handled with a temporally sliding windows. Thus, the activity recognition

problem can be treated as a classification problem, where each activity is considered as

a class label. As mentioned in chapter 5, existing action recognition methods can be

broadly divided into two categories: local approaches [DRCB05, NWFF08, SDPNL08,

SLC04] and holistic approaches [MU, LAS08, WBR07, WGLR08]. Our work falls into

the first category. Local approaches to activity recognition, which are usually based on

bag-of-words models (BoW) (cf. chapter 5), are very popular because they can deal with

changes in background, scale, illumination and occlusion. However the BoW models

discard the spatio-temporal layout of the local features, which may be almost as impor-

tant as the features themselves. Our goal is to improve BoW models by constructing

new features from local features, which are extracted from a video sequence. To this

end, we take into account the following information:

Temporal aspects – The temporal direction, which has been ignored in the BoW mod-

els, is very important in an activity recognition system. Each action usually takes

a certain amount of time, therefore capturing temporal relations (e.g. temporal

order) between STIPs describes the motion information, which characterize activi-

ties.

Spatial aspects – Spatial relationships between local features, which are represented in

different forms (e.g. star topologies, fans models), have been widely used in object

recognition. However, they have usually been ignored in activity recognition. This

is due to the fact that a straightforward application of the techniques used in object

recognition to action recognition is very difficult. In this chapter, we propose to

exploit spatial relations between local features.

Combining spatial and temporal information – Intuitively, if two local features are ad-

jacent in both space and time dimensions, they should belong to the same action.

From this intuition, we construct our new feature from pairs of adjacent local fea-

tures. Previous works (e.g. from [OPP09]), which exploit spatio-temporal rela-

tionships, usually consider spatial distance in the same way as temporal distance.
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However, in video processing, one unit of time is much important than one unit of

space. Thus, we adjust the difference between these two domains by weighting.

Our algorithm is related to the works that exploit information on the spatial and tem-

poral distribution of interest points to improve the BoW models. Wong et al. [WKC07]

introduce both semantic (i.e. appearance) and structural information (i.e. location) of lo-

cal features into the pLSA model (see chapter 5). Scovanner et al. [SAS07] extended the

popular 2D SIFT descriptor for three dimensions (3D SIFT). In order to take into account

the spatio-temporal information, they construct a co-occurrence matrix of codewords2,

and iteratively merge codewords having similar co-occurrences until the difference be-

tween them exceeds a given threshold. In a related work, Liu and Shah [LS08] explore

the correlation of video-word clusters (i.e. codewords) using a modified correlogram.

Gilbert et al. [GIB08] spatially concatenate corner descriptors detected on different re-

gions and apply data mining techniques to construct compound features. Zhang et al.

[ZHCC08] introduce the concept of motion context to capture both spatial and tempo-

ral distribution of motion words. Oikonomopoulos et al. [OPP09] encode the spatial

co-occurrences of pairs of codewords and propose a probabilistic spatiotemporal voting

framework for localizing and recognizing human activities in unsegmented image se-

quences. Ryoo and Aggarwal [RA09] present a spatio-temporal relationship matching

method by defining the spatial and temporal predicates such as near, far, etc.

The methods mentioned above are mainly based on the discriminative power of

individual local features for codebook construction and thus the performance depends

on the local features used. In this chapter, we present new features, called pairwise

features (PWF), which capture both appearance and geometric relationships among local

spatio-temporal interest points (STIPs). The main point is that the performance of our

method is usually due to the geometric information, and thus does not really depend

on the local appearance descriptors (STIP descriptors) used. Our method differs from

most the state-of-the-art methods in two main points:

• Our feature is not limited to the appearance information but also includes geomet-

ric information.

• Our method incorporates both the spatial and temporal relationships among local

space-time points in a significant manner, i.e such relationships are constrained to

time and space.

Actually, spatio-temporal information can be either considered at the codebook con-

struction stage, or directly encoded into the features, i.e. to form new features. For a
2A codeword is considered as a representative of a group of similar words (patches, keypoints, etc).



6.1. Introduction 125

Table 6.1: Comparison of the performance dependence on local appearance descriptors
of different methods, taking into account spatio-temporal information. The term levels
indicates at which level spatio-temporal information is encoded, and the term dependen-
cies indicates the amount of dependencies on local appearance descriptors.

Approaches Levels dependencies
Wong et al. [WKC07] codeword level largely

Scovanner et al. [SAS07] codeword level totally
Liu and Shah [LS08] codeword level totally
Gilbert et al. [GIB08] feature level partially

Zhang et al. [ZHCC08] frame and codeword levels largely
Oikonomopoulos et al. [OPP09] co-occur and codeword level totally

Ryoo and Aggarwal [RA09] codeword level totally
Our approach feature level little

better comparison, we listed, in table 6.1, a comparison of the difference between other

methods taking into account spatio-temporal information and our method. The different

levels used in this table are explained in the following:

• The term codeword level means that appearance features are firstly used to construct

a codebook, then several codewords are combined (i.e. to take into account spatio-

temporal information) to represent a video sequence.

• The frame level based methods try to combine several adjacent frames before ex-

tracting local features. Some techniques like frame differencing is usually used.

• Finally, feature level based methods encode both appearance features and spatio-

temporal information to construct compound features. Note that the work from

Gilbert et al. [GIB08] differs from our method in that they encode the local ap-

pearance descriptors such as the gradient orientation, the channel and the scale

of interest points (returned by an interest point detector), into their comproud

features, thus their method still depends on the appearance descriptors used. In

contrast, we encode separately the spatio-temporal relations of local features into

our new features (see section 6.3).

As shown in table 6.1, while most other methods rely heavily on the local appearance de-

scriptors (e.g. SIFT, cuboid, etc) extracted from interest points, our method only slightly

depends on the choice of local appearance descriptors. We will confirm this fact through

experiments presented in section 6.7. In the next section, we present the overview of our

method.
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6.2 Overview of the proposed method

We follow the standard framework which is widely used in litterature, i.e. Bag-of-

Words model using local features (cf. chapter 5), to test our pairwise features. Figure 6.1

illustrates the main components of our approach. The spatio-temporal interest points

(STIPs) are first extracted from the video sequences, then PWFs (pairwise features) are

constructed from them. We apply the bag of words (BoW) model using PWFs for video

representation, which requires creating a visual vocabulary. To this end, we generate two

codebooks (vocabularies) according to the appearance descriptors and the geometric

similarity of the PWFs. A video sequence is then represented by two histograms of

visual words. These two histograms are combined into a single vector, and Support

Vector Machines (SVM) are used for action classification.

6.3 Pairwise descriptor

We propose new features, namely pairwise features (PWF), which encode both STIP

descriptors and the spatio-temporal relations among the STIPs. Essentially, two STIPs

are connected to form a PWF if they are adjacent in space and in time. Intuitively, two

STIPs that are close both in space and in time often belong to the same human activity.

A spatio-temporal detector usually detects interest points locating salient changes

in a video sequence, and descriptors are extracted around these interest points. Thus,

in general a local feature contains two types of information: appearance information,

and space-time coordinate information. We denote a spatio-temporal local feature as

f = ( fdes, floc) where fdes is an arbitrary appearance descriptor and floc is its space-time

coordinates. Let f1 = ( f1des, f1loc) and f2 = ( f2des, f2loc) be two local descriptors (i.e.,

local STIP descriptor), a PWF p = (Fdes, Fvec) is established if the conditions below are

satisfied:

a) ds( f1loc, f2loc) ≤ ts, AND

b) dt( f1loc, f2loc) ≤ tt

where Fdes is a concatenation of f1des and f2des; Fvec is a geometric vector from the

first location ( f1loc) to the second one ( f2loc) in temporal order. If f1 and f2 are in the

same frame, the STIPs in the PWF are ordered from left to right; ts is a spatial threshold,

tt is a temporal threshold; ds(., .) and dt(., .) are spatial distance and temporal distance

functions, respectively. We can imagine each PWF as a segment in the 3D space (see

figure 6.2 for an illustration).
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Figure 6.1: The diagram of the proposed action recognition framework. Here, STIP is
the abbreviation of “Spatio-Temporal Interest Point”, BoW for “Bag of Words model”,
PWF for “Pairwise features”.

6.4 Extracting local features

Recall that our pairwise features are established from pair of STIPs. Therefore, we need

to extract STIPs from video sequences. Our method does not require any specific STIP
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Figure 6.2: Illustration of several pairwise features as segments in space-time. Note that
apart from spatio-temporal relationships, we are also motivated to take into account
spatial relationships (i.e., PWFs in the same frame).

detector, and we chose the Dollar detector [DRCB05] to detect STIPs (cf. chapter 5). This

detector is based on temporal Gabor filters: first 2D Gaussian kernels are applied in

space domain, and 1D Gabor filters (in time dimension) are then applied to the obtained

result. Interest points are detected as local maxima of the response function.

We also chose the cuboid descriptor from [DRCB05] as the appearance descriptor

for our PWF. Cuboid descriptor is a vector of gradients: first spatio-temporal gradi-

ents of pixels in a cuboid region are computed and concatenated into a single vector.

The obtained vector is then projected to a lower dimensional space using the Principal

Component Analysis (PCA) technique.

6.5 Comparing pairwise features

Once the PWFs are constructed, the video sequence is considered as a collection of

PWFs. In order to compare different PWFs, we need a similarity measure. Note that

a PWF p contains not only the appearance descriptor Fdes but also the geometric infor-

mation Fvec, which is translation invariant. Since the physical meanings are different, it
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is not desirable to construct a single codebook based on PWFs. We propose to gener-

ate two codebooks: the first codebook is generated by clustering only the appearance

descriptors of the PWFs, and the second one is generated through the clustering of the

geometric descriptors. In order to use a clustering algorithm (e.g. k-means) for codebook

construction, we need to define two distance functions corresponding the two feature

parts of PWFs. These distance functions are given as follows:

Distance metric between two geometric descriptor parts of two PWFs — We

present hereafter a distance metric for the geometric descriptors of the PWFs. Let pi

and pj be two PWFs, a measure dg(pi, pj) of the geometric similarity between two PWFs

is given as follows:

dg(pi, pj) =
(Fi

vec − Fj
vec)

TΣ−1(Fi
vec − Fj

vec)

||Fi
vec||+ ||F

j
vec||

(6.1)

where Σ is a matrix capturing variations and correlations between the data dimensions

similar to a covariance matrix; In our case we propose to set it to a diagonal matrix:

Σ =

∣∣∣∣∣∣∣∣
λs 0 0

0 λs 0

0 0 λt

∣∣∣∣∣∣∣∣
where λs and λt are thus weights adjusting the differences between the spatial and the

temporal domains.

Note that our distance dg(., .) without denominator corresponds to the Mahalanobis

distance, where Σ is a covariance matrix. The normalization factor 1/(||Fi
vec||+ ||F

j
vec||)

is used to make the distance scale invariant.

Similarity between two appearance parts of two PWFs — Since the appearance part

of a PWF is a histogram vector (concatenation of two local appearance descriptors), we

can use the Euclidean distance to measure the distance between two appearance parts

of two PWFs. This appearance distance between two PWFs pi and pj is given as follows:

dd(pi, pj) = De(Fi
des, Fj

des) (6.2)

where De is the Euclidean distance.
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6.6 Video representation by using pairwise features

6.6.1 Codebook construction

We first extract local features from training videos, and then PWFs are constructed from

them in the following way: the descriptor part of the PWF is represented as a concatena-

tion of the two cuboid descriptors (cf. section 6.4), and the geometry part is a geometric

vector constructed from two space-time coordinate components (cf. section 6.3). Once

PWFs are constructed, K-means algorithm is used to construct the two codebooks:

Geometric codebook – Apply k-means algorithm to geometric parts of PWFs using the

measure described in eq. 6.1.

Appearance codebook – Apply k-means algorithm to appearance parts of PWFs using

the measure described in eq. 6.2.

6.6.2 Video representation

By mapping the PWFs extracted from a video to the vocabularies (i.e. the two codebooks

constructed above), a video sequence is represented by the two histograms of visual

words, which are denoted as Hd and Hg. We introduce a combination of these two

histograms to form a feature vector as input to a classifier such as SVM:

H = {α ∗ Hd, (1− α) ∗ Hg} (6.3)

where α is a weighting coefficient. The coefficient α here does not interfere with the clas-

sifier intself, but only compresses (or increases) the dynamic rang of the corresponding

dimensions in the feature vector. With a perfectly adoptive learning machine, changing

α would not lead to any changes in the results. Since the decision functions of realistic

learning machine (SVM, MLP, etc.) are necessarily regularized, changing α leads to the

desired result of controlling the influence of parts of the feature vector.

The advantage of this combination method is that the two histograms do not nec-

essarily have the same size. Another advantage of this combination is that we can use

each of PWF parts alone, i.e. setting α = 1 for using only appearance part of PWF, and

α = 0 for using only geometric part.
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6.7 Experiments

6.7.1 Datasets

Our experiments are carried out on the standard KTH and Weizmann human action

datasets (cf. chapter 5). The Weizmann dataset contains 10 different actions (bend, jack,

jump, jump in place, run, side, skip, walk, wave1, wave2) performed by 9 different

subjects. There are totally 93 sequences in this dataset. The KTH contains 599 sequences

of six types of human actions (walking, jogging, running, boxing, hand waving and

hand clapping) performed by 25 subjects in four different scenarios: outdoors, outdoors

with scale variation, outdoors with different clothes and indoors.

6.7.2 Activity recognition

Testing protocol — We perform leave-one-out cross-validation and report the average

accuracies. More precisely, for each run, we leave the videos of one subject as test data,

and use the rest of the videos for training. K-means clustering is applied to define the

visual vocabulary, with 512 visual words for KTH and 250 for Weizmann for both de-

scriptor and geometric codebooks, respectively (cf. section 6.6). For constructing PWFs,

ts was set to 20 and tt was 5. To reduce complexity, we select the 1500 most significant

PWFs for each video sequence, where significance is measured as the product of the re-

sponse functions of the two interest points corresponding to the PWF. Recognition was

performed using a non-linear SVM with a χ2 kernel. To adjust the differences between

the spatial and the temporal domains, λs and λt were set to 7 and 1, respectively for all

experiments.

Classification accuracy — Figure 6.3 shows the performance obtained on the KTH

dataset. Threshold α indicates the percent contribution from the appearance parts of

PWFs, which has been taken for classification, e.g. figure 6.3a (α = 0) shows visual

results achieved by using only geometric information of PWFs, while figure 6.3b) illus-

trates obtained results by using only descriptors parts. As shown in this figure, running

is frequently confused with jogging due to the similar characteristic of these two actions.

It can be observed (fig. 6.3a) that even with only geometric descriptors used for

recognition, the result is very good. This result is very promising and suggests that it

is possible to avoid the non-trivial problem of choosing an appearance descriptor for

action recognition, i.e. exploiting only geometric distribution among STIPs.

Through experiments we found that, the recognition results obtained using only

appearance parts of PWFs (i.e. figure 6.3b) are in general, better than the ones using
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Figure 6.3: Confusion matrices on the test KTH dataset: a) α = 0 and accuracy (ac)
= 88.2%; b) α = 1.0 and ac = 90.5%; c) α = 0.5 and ac = 92.8%; d) α = 0.6 and ac
= 93.0%;

only geometric parts (i.e. figure 6.3a). However, for some difficult actions, e.g. the

running and jogging actions, geometric features are more robust (i.e., 82% versus 79%

for running, and 88% versus 85% for jogging). It should be noted that even if the results

from appearance parts of PWFs (i.e. figure 6.3b) are better on average, these features

also contain spatial-temporal information, i.e. intrinsic to the construction of PWFs (see

section 6.3).

The best result obtained for the KTH dataset is reported in figure 6.3d, which indi-

cates that the appearance and the geometric descriptor of the PWF are complementary

to each other, e.g. adding geometric information of PWFs improved the performance of

jogging action by up to 4% (from 85% (6.3b) to 89% (6.3d)).

The motivation for showing figure (fig. 6.3c) here is that we would like to demon-
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Figure 6.4: Confusion matrices on the test Weizmann dataset by setting α = 0.6. The
average accuracy is of 94.5%.

strate the simplicity of our combination codebook method (cf. eq. 6.3) for choosing an

optimal weight, i.e. it is easy to find a near optimal weighted parameter α. Indeed, by

setting equally the contributions of the two feature parts of PWFs, the obtained result is

of 92.8%, which is not far from the optimal case with 93.0%.

Figure 6.4 illustrates the results obtained on the Weizmann dataset. We report here

only the performance for 60% contributions from geometric information and 40% contri-

butions from appearance descriptors of PWFs. For this dataset, the recognition accuracy

is 100% for several actions. The worst recognition occurs for the “skip” action, which

was often confused with the “run” and the “jump” actions. It should be noted that the

KTH dataset is much more challenging than the Weizmann dataset. The currently best

reported recognition rate on the Weizmann dataset is of 100% (see table 7.1).

Finally, to evaluate the stability of our method, we also performed the tests with

λs = λt = 1, the accuracies moderately decrease by roughly 1% for both datasets.

6.7.3 Comparison to the state-of-the-art

Table 1 presents a comparison of our results with state-of-the-art results reported re-

cently. This table is divided into three groups: the first group consists of the methods

which can be directly compared with ours, i.e use the same features (cuboid descriptor)

and the same experimental set-up for action classification; the second one includes the
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Table 6.2: Comparison of our method with different methods, tested on KTH and Weiz-
mann datasets.

Method KTH Weizmann
Our method 93.0 94.5

Dollar et al. [DRCB05] 81.2 - - Same features
Niebles et al. [NWFF08] 83.3 90.0 as our work

Savarese et al. [SDPNL08] 86.8 -
Oikonomopoulos et al. [OPP09] 80.5 -

Scovanner et al. [SAS07] - 82.6
Gilbert et al. [GIB08] 89.9 - BoW + Spatio-temporal

Zhang et al. [ZHCC08] 91.3 - relationships
Wong et al. [WKC07] 91.6 -

Ryoo and Aggarwal [RA09] 93.8 -
Liu and Shah [LS08] 94.2 -

Wong and Cipolla [WC07] 86.6 -
Ballan et al. [BBDB∗09] 92.1 92.4

Sun et al. [SCH09] 94.0 97.8
Laptev et al. [LMSR08] 91.8 -
Fathi and Mori [FM08] 90.5 100.0
Gorelick et al. [GBS∗07] - 99.6 Other methods

Schindler and Gool [SvG08] 92.7 100.0
Liu et al. [LAS08] - 90.4

Klaser et al. [KMS08] 91.4 84.3
Willems et al. [WTG08] 84.3 -

methods that exploit spatio-temporal relations among STIPs or among visual words.

Among the methods in the first group, our method obtained the best accuracy for both

datasets. Our method outperforms most existing methods which take into account the

spatio-temporal relationships (second group). The advantages and gains of our method

are thus two-fold:

• Our method is able to boost the performance obtained from the cuboid descriptor

(first segment in table 7.1)

• Our method boosts the perfromance of the widely used BoW models (second seg-

ment in table 7.1).

Note that the results which are most close to ours, i.e the work from Ryoo and

Aggarwal [RA09], requires encoding more semantic information about the interactions

(17 in total) between STIPs.

On the KTH dataset, our recognition rate of 93.0% is very close to the current best

rate of 94.2% . It should be noted that the selection of different numbers of codewords

sometimes lead to different recognition rates. Note that we cannot directly compare

to results reported in the last group of table 1, because they exploit both holistic and

local representation [SCH09], included more data given by segmentation masks [GBS∗07,
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Table 6.3: Testing the performance of the feature parts (appearance, geometry) of the
PWF in a new experimental set-up: learning on one dataset and testing on another one.

Feature part Learning Testing ac.

Appearance descriptor
KTH WM 40.0
WM KTH 48.2

Geometric descriptor
KTH WM 70.0
WM KTH 83.3

FM08], or use another experimental set-up.

6.7.4 Robustness of geometric features across datasets

In the previous section, we demonstrated that each feature part of the PWFs gives good

results, even used alone. In this section, we will demonstrate that in some very difficult

cases, the geometric part is still robust enough to produce accurate results, while the

appearance descriptor part seems to be unstable.

To this end, we perform another experiment to verify the discriminative power of

our feature across different datasets. In fact, the geometric part of our PWF is a generic

feature, which is robust against database changes. To verify this fact, we performed

an experimental evaluation through training on one dataset and testing on another one.

More precisely, the experimental tests are carried out using three common actions which

exist in both datasets: handwaving, running, walking. Because there are only 29 videos

of these actions in the Weizmann dataset, we randomly select 30 videos containing these

three actions from the KTH dataset to perform our tests. We first extract PWFs from

training dataset, and construct codebooks, with size of 100 words, for each feature part

(geometric part and appearance part). Then, the other dataset is used as test set. Note

that, in this experiment, we also use SVM with χ2 kernel to train the model.

In table 6.3, we show the results obtained using each feature part of the PWFs alone.

From this table, it can be seen that the appearance descriptors of the PWFs failed, while

the geometric descriptors work very well. This is due to the fact that our geometric

part depends only on spatio-temporal relationships of the interest points. This is an

important advantage over all other methods, which take into account spatio-temporal

information based on the local appearance descriptors (cf. table 6.1). These results

are very interesting for future research in human action recognition, i.e. to avoid the

non-trival problem of choosing an appropriate appearance descriptor.

Note that the video sequences in the Weizmann dataset are of much shorter duration

compared to the ones in the KTH dataset. This explains why there are large differences
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in the performance in our second test (e.g. from %70 to 83%).

6.8 Conclusions

In this chapter, we have presented a new feature for action recognition. Our method

differs significantly from previous local-based approaches in that our feature is a semi-

local representation, which encodes both the appearance and geometric information

among local features, while most other methods exploit spatio-temporal information in

the video representation stage (i.e. codeword level - see table 6.1), and thus still depend

heavily on the local appearance descriptors extracted around interest points.

Through experiments, we have proved that exploiting the location information of

local features gives valuable improvements to the conventional BoW models.

Beyond this contribution, we have demonstrated that our feature (i.e. geometric

feature part) can keep its discriminative power well across different datasets, i.e. when

learning in one dataset and testing on another one.

The work in this chapter prepares us to take one more step in capturing more com-

plex geometric structures among the local features (e.g. triplet descriptors), which are

described in the next chapter.
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In the previous chapter, we have demonstrated that employing spatio-temporal rela-

tionships between local features significantly improves recognition performance. In this

chapter, we try to exploit relationships of higher order structure between local points. In

this chapter we tackle the problem of detecting individual and multiple human actions

in video sequences. A major improvement with regard to our previous work is that the

proposed method can localize multiple activities in continous video sequences. While

the most successful methods are based on local features, which proved that they can deal
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with changes in background, scale and illumination, most existing methods, as well as

our previous method, have a major shortcoming: these methods mainly focus on direct

classification techniques to classify the human activities, as opposed to detection and lo-

calization. We propose a new approach, which is based on a graph matching algorithm

for activity recognition. In contrast to most previous methods which classify entire video

sequences, we design a video matching method from two sets of spatio-temporal inter-

est points (STIPs) for human activity recognition. First, STIPs are extracted, and hyper

graphs are constructed from them, i.e. graphs with edges involving more than 2 nodes

(3 in our case). The activity recognition problem is then transformed into a problem of

finding instances of model graphs in the scene graph. By matching local features instead

of classifying entire sequences, our method is able to detect multiple different activities

which occur simultaneously in a video sequence. Experiments on two standard datasets

demonstrate that our method is comparable to the existing techniques on classification,

and that it can, additionally, detect and localize activities.

The work described in this chapter was published in the 7th International Confer-

ence on Advanced Video and Signal-Based Surveillance 2010 [APCGA10], and has been

selected as the best paper for the track “recognition”.
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7.1 Introduction

As mentioned in the previous chapters (cf. chapter 5, and chapter 6), bag of words

models discard the spatio-temporal layout of the local features which may be almost

as important as the features themselves. To overcome this, efforts have been made

to exploit information from the spatial and temporal distribution of interest points

[LS08, ZHCC08]. These extensions, however, still suffer from some of the inherent

problems involved in classification: they do not allow to localize activities, and they

require selecting the optimal number of codewords for codebook formation as well as

fine-tuning of parameters.

In this chapter, we overcome some of the above shortcomings of the earlier works by

introducing a new approach for both detection and localization of multiple activities in

video sequences. In particular, our work is motivated from two aspects:

Multiple activity recognition – The problem of multiple activity recognition has many

applications such as video retrieval, video indexing and video mining, but this

problem is still incompletely understood. We are therefore investigating this prob-

lem.

Continuous recognition – Most existing methods assume that video sequences are well

segmented in temporal direction, i.e. each video sequence contains only one ac-

tivity. This requires a video segmentation preprocessing. However, the problem of

temporal segmentation of activities still remains open or is only partially solved

yet. In real-time applications such as video surveillance, this problem should be

part of recognition systems, i.e. does not require a separate video segmentation

task.

To this end, we consider the following choices:

Local features – We use local features because they are robust to noise, changes in

background, and occlusion. Moreover, by using local features, we can avoid pre-

processing steps such as tracking.

Spatio-temporal information – In our previous work (cf. chapter 6), we have proved

that using spatio-temporal relationships significantly improves the BoW models.

In this chapter, we exploit higher order relationshisps between local features, i.e.

third order. A major improvement with regard to our previous work, as well as

most other works, is that we no longer require training a codebook, which usually

suffers from selecting the optimal number of codewords.
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To deal with these points, we formulate the activity recognition problem as a graph

matching one, i.e. the problem translates into a matching task: a model graph represents

a template video, and a scene graph represents a test video. Hence, our approach is

related to the work on matching videos (cf. chapter 5), as well as the work on graph

matching (cf. chapter 2). In the following, we briefly summarize these related works

subsequently. For each field, we highlight the differences between our approach and

those of related works.

Video matching — First of all, it should be noted that our work shares some similar-

ities with previous research on video correlation, e.g [KSH07, SI07b, RA09]. Shechtman

and Irani [SI07b] define a motion consistency measure to match space-time volumes

directly. However, the distance between pair of videos is computed by exhaustively

comparing patches extracted from every space-time point. Ke et al. [KSH07] combine

a part-based shape and flow matching framework from [SI07b] for event detection in

crowded videos. Recently, Ryoo and Aggarwal [RA09] have presented a histogram-

based match kernel for video matching. Among the methods mentioned above, our

approach is most closely related to the work of Ryoo and Aggarwal [RA09], who per-

form video matching from two sets of STIPs. Our method differs from their work in

two main points. First, the authors in [RA09] define a set of logical predicates for taking

into account the pairwise relationships among points. Instead, we naturally take into ac-

count higher-order relationships between points through a graph-matching technique.

It should be noted that such logical predicates are difficult to extend to higher relation-

ships. Second, their method needs to train a codebook from the training sets, while our

method does not require any learning.

Graph matching — In this chapter, we advocate for the advantages of graph match-

ing methods and their capability of exploiting relationships between local primitives.

The main contribution of our method is the introduction of a graph-based matching

method for detecting and localizing multiple actions in video sequences. Graph match-

ing techniques have been studied intensively in the field of pattern recognition [CFSV04,

DBKP09, LH05b, TKR08a, ZS08] - see chapter 2, but no method has yet been given for

recognizing human activities — a straightforward application of these techniques to

video recognition is difficult. As mentioned in chapter 2, it is widely known that com-

puting the exact solution to inexact graph matching problem is NP-complete [TKR08a],

as is sub graph isomorphism [ZDS09]. Approximate solutions have been proposed for

various applications. For instance, let N1, N2 be the number of vertices (nodes) in graphs

G1 and G2, respectively. Optimally assigning each node from G1 to one of the nodes in

G2 is of complexity O(N1 · N2) if only the unary measurements (e.g., SIFT descriptors)
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associated with each node are used, i.e. for each node in G1 we assign the node G2

having minimum feature distance. However, this is highly suboptimal. If neighborhood

relationships are taken into account, i.e., coherence of distances and/or angles associ-

ated to the edges in the graphs, the complex interactions between assignment variables

make the complexity exponential: there are NN2
1 possible assignments over the whole

set of nodes in G1, where each assignment takes O(N2
1 ) to check. Although fast approx-

imative algorithms do exist, e.g. with graph cuts [TKR08a], the problem remains very

difficult.

As pointed out in [ZS08], the vertex correspondance problem can be transformed

into an edge correspondence problem. In this approach, each edge in graph G1 is as-

signed an edge in graph G2 according to a minimal distance which involves, both, the

feature distances of the 4 involved nodes as well as edge compatibility, e.g. a compari-

son of the lengths of the model edge and the assigned edge. In [LH05b], the resulting

optimization problem is solved approximately with a spectral method, which relaxes

the discrete assignemnt variables into continuous ones and then solves it numerically

by removing some constraints during the optimization procedure itself. This principle

can be naturally extended to higher order interactions. Zass and Shashua [ZS08] present

a hyper-graph1 matching method, which is of complexity O(|N1|.|N2|.z(2d−1)), where

z is the closest hyper-edges per vertex and d is the order of hyper-edges considered

(d=2 for pairs). This method is still very time consuming, because in a real applica-

tion z could not be far from min(|N1|, |N2|). Very recently, Duchenne et al. [DBKP09]

generalized the spectral matching method from [LH05b] by using a tensor-based algo-

rithm for high order graph matching, which is of complexity O(n3 + nd log(n)) where

n = max(|N1|, |N2|). This is still too high to be applied for practical systems, in particu-

lar for the applications in videos such as video surveillance. A modified version of this

triangle based algorithm (i.e., d=3) is the basis of our work on activity recognition in

video sequences. More precisely, our work on graph matching differs from the work of

Duchenne et al. [DBKP09], as well as other graph matching methods in several aspects:

In terms of solving the problem – Recall that the graph matching problem is described

by either eq. 2.6 or eq. 2.10 (as introduced in chapter 2). In the case of the edge

correspondence problem (e.g. from [LH05b][ZS08][DBKP09], as well as our work

in this chapter), the graph matching problem is usually formulated in its matrix

1A hyper-graph is a generalization of a graph, where an edge can connect any number of vertices, and
hyper-edge is an arbitrary number of nodes [ZS08].
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form described in eq. 2.10. For convenience, let us repeat this objective function:

x̂ = arg maxx(xT Ax), x̂ ∈ {0, 1}N1 N2 (7.1)

where x is a row-wise representation vector of an assignment matrix X (cf. chapter

2).

While most of state-of-the-art graph matching methods concentrate on finding ef-

ficient algorithms for solving the correspondence problem (i.e., solving directly eq.

7.1 - which is known as NP-hard), we focus our attention to the complementary

problems: how to construct more expressive graphs and how to efficiently config-

ure the compatibility matrix A, i.e., the matrix describing edge compatibilities of

the assignments. Indeed, a reliable compatibility matrix significantly speeds up

the solving algorithm.

In terms of checking the edge compatibilities – To deal with complexity, one of the

possible solutions is to reduce the edges in the graphs. Zass and Shashua [ZS08]

connect each vertex to a number of its closest vertices for creating hyper-edges. In

practice, to achieve reliable results, this number of closest vertices should be not so

far from the graph size. Duchenne et al. [DBKP09] encode empirically an approx-

imate structure of the second graph but exploit the fully connected interactions in

the firs graph. In contrast, we create hyper-edges in a significant way, i.e. we keep

only hyper-edges which might characterize action behavior (see section 7.5).

In terms of evaluating the final result – Once the matching process is done, a question

arises: is it a good result? While most other methods rely on the matching score

to find the answer, i.e. the value of the objective funtion 7.1, we interpret the final

assignment to make decisions. This will be detailed later.

Before presenting our method, let us summarize the advantages, as well as the contri-

butions of the proposed approach in the following:

Advantages – Exploiting the full potential of a graph based representation, our method

offers several important advantages over other activity detection methods for videos:

• The proposed method can not only classify but also detect and localize activ-

ities, which occur simultaneously in the same video sequence2.

2Several methods can be adapted for detecting multiple actions by using sliding windows in both space
and time dimensions, e.g. from [NWFF08, SDPNL08]. However, measures and statistics designed for entire
video sequences do not always successfully scale down to smaller windows.
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• It does not require any parameter tuning, training, foreground/background

segmentation, or any motion estimation or tracking.

• By verifying the spatio-temporal constraints in a significant way, our method

needs only a small number of features points (i.e., the important ones) ex-

tracted from two given videos to perform matching. In constrast, the conven-

tional BoW methods need to collect dense points from the videos to perform

classification.

Contributions – Besides these advantages, our method features several contributions

compared to the original graph matching method introduced by Duchenne et al.

[DBKP09] for object detection:

• By significantly reducing the number of hyper-edges in the graph, our method

is of much lower complexity compared to the original one [DBKP09] (c.f sec-

tion 7.5).

• We incorporate both triangle geometries and their orientations to find poten-

tial corresponding triangles (c.f section 7.6), which speeds up the convergence

by eliminating incompatible triangles.

• We benefit from the features calculated at each STIP to initialize the algorithm

(c.f section 7.7), which reduces the number of false alarms and speeds up

convergence.

• Most of methods on graph matching consider the score returned by the ob-

jective function as a detection criteria. However, this is not optimal, as one

cannot distinguish the case in which several vertices in the scene graph are

matched to the same vertex in the model graph. We propose to interpret the

projection of the set of vertices of the first graph onto the second one to com-

pute a second score, called the detected score, which, along with the matching

score, is used for detection (c.f section 7.8).

The rest of this chapter is organized as follows. After briefly summing up the hyper-

graph matching algorithm in section 7.2, we introduce our adaptation and extension of

this algorithm to video matching in section 7.3. In section 7.9, we discuss the compu-

tational complexity of the proposed method. The experimental results are presented in

section 7.10. Finally we conclude and give some perspectives of this work.
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7.2 Hyper-graph matching formulation

In this section, we briefly summarize the hyper-graph matching method introduced in

[CSS07b] and [LH05b] and refined in [DBKP09], which has been presented in chapter 2.

Let Gm = (Vm, Em, Fm) and Gs = (Vs, Es, Fs) be two hyper-graphs (the model and the

scene graph, respectively) where hyper-edges correspond to a d-tuple of vertices. In our

case, where d=3, E represents a set of triangles (our d-tuples), V a set of vertices, and

F the set of their associated unary measurements (i.e an appearance descriptor). In the

following we denote the number of nodes in both graphs as Nm = |Vm| and Ns = |Vs|,
respectively. A matching between Gm and Gs is equivalent to looking for an Nm × Ns

assignment matrix X such that Xij is set to 1 when the model node vm
i is matched to

the scene node vs
j , and to 0 otherwise. Thus, the search space is the set X of assignment

matrices:

C = {Xij ∈ {0, 1} : ∑
i

Xij = 1} (7.2)

Note that we constrain each model node vm
i to be matched to exactly one scene node vs

j ,

but a scene node vs
j may be matched to several model nodes. For pairwise matching, the

graph matching problem is formulated as the maximization of the following objective

function [CSS07b][LH05b]:

score(X) = ∑
i,j;i′ ,j′

ψ2(i, j; i′, j′)Xi,i′Xj,j′ (7.3)

where, as described in chapter 2, ψ2 is a pairwise potential function that measures the

compatibility between a pair of model nodes (i, j) and its corresponding scene nodes

(i′, j′). This objective function can be rewritten as the one described in eq. 7.1, where ψ2

is now reshaped into matrix A:

A(i(Ns − 1) + i′, j(Ns − 1) + j′) = ψ2(i, j; i′, j′)

and x is the Nm × Ns row-wise vectorized replica of the X.

For triplet matching, as described in [DBKP09], the matching problem is similarly

formulated as:

score(X) = ∑
i,j,k,i′ ,j′ ,k′

ψ3(i, j, k; , i′, j′, k′)Xi,i′Xj,j′Xk,k′ (7.4)

where ψ3(·; ·) is an energy potential estimating the compatibility of pairs of triplets

(i, j, k) ∈ Vm and (i′, j′, k′) ∈ Vs. High values of ψ3 correspond to similar triplet pairs.
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Here, the product Xi,i′Xj,j′Xk,k′ will be equal to 1 if (i, j, k) are all matched to (i′, j′, k′)

(the original formulation of this problem in [CSS07b] and [LH05b] involved pairs).

As we stated in chapter 2, the inexact graph matching problem can be described

by either eq. 2.6 or eq. 2.10 ( i.e. eq. 7.1). Indeed, eq. 7.4, which describes the

scoring function for triplet matching, can also be rewritten as eq. 7.1, in which the

potential function ψ3 is reshaped into a NmNs × NmNs matrix A. In this chapter, for easy

readability, and for the sake of convenience with respect to existing works on hypergraph

matching (e.g. [CSS07b][DBKP09]), we prefer to use the form of eq. 7.4.

In [CSS07b, LH05b], the scoring function is maximized through a continuous opti-

mization procedure which requires relaxing the values of X such that each element takes

continuous values in the interval [0, 1] subject to the constraint that the norm of the col-

umn vectors of X is 1. Exploiting this constraint, and further requiring the elements

of ψ3 to be non-negative, the maximum value of (7.4) can be calculated as the largest

eigenvalue of A.

The basis of our method is the refined method proposed by Duchenne et al. [DBKP09],

which improves upon [CSS07b] and [LH05b] in two ways:

• Whereas the interactions in [CSS07b, LH05b] are pairs, [DBKP09] extends the order

to triplets (triangles), which may boost the discriminative power of the method.

• The new organization into triplets in [DBKP09] allows to change the L2 norm of

the relaxation to the L1 norm, which makes the de-relaxation of the continuous

values into discrete assignment decisions more robust. In addition, this new form

allows to compute the largest eigenvalue using the power-iteration algorithm (cf.

algorithm 2.2 in chapter 2.)

We will not detail this algorithm any further since, as already mentioned, solving di-

rectly the correspondence problem is beyond the objective of this work.

7.3 Overview of the proposed method

The main objective of our method is to measure the similarity of two videos through a

graph-based matching technique. The proposed method consists of the following steps:

Extraction of spatio-temporal interest points – Since our graphs are contructed from

spatio-temporal interest points (STIPs), we first need to extract STIPs. As presented

in chapter 5, there exist several interest point detectors. In this work, we are not

interested in comparing the performance of different interest point detectors, we

chose the IP-detector from Dollar et al. [DRCB05].
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Graph construction – After having extracted local points from the video sequences,

proximity graphs are constructed from them. We benefit from both location and

temporal information of STIPs to create the graphs. The activity recognition prob-

lem is now formulated as (sub) graph matching between a model graph and a

(potentially larger) scene graph (see section 7.5).

An objective function for video matching – We define a new objective function, which

takes into account both the similarity between triangles and their orientations. The

graph matching problem is now equivalent to maximizing this objective function

(see section 7.6).

Matching initiation – We initialize the iterative matching process using appearance

STIP descriptors associated with each node of the graphs (see section 7.7). The

local appearance descriptors are extracted around the STIPs.

Action detection – In this final step, we propose a new way to verify the matching

result in order to decide whether the scene graph contains an instance of the model

graph, i.e., the two videos contain the same human activity (see section 7.8).

We evaluate our method through experiments based on two standard datasets for

action classification and on our own dataset for multiple activity recognition.

7.4 Extraction of spatio-temporal interest points

We take advantage of the Dollar detector [DRCB05] to detect STIPs (cf. chapter 5). This

detector applies two separate linear filters to spatial and temporal dimensions. Interest

points are detected at local maxima of the response function. Compared to other detec-

tors (chapter 5), the Dollar detector produces dense features, yielding the complexity of

the graph matching problem. By exploiting the spatio-temporal relationships through

graph representation, it is not necessary to use all dense detected points, which usually

contain noise. In practice, we keep the important points, according to the response func-

tion. In order to achieve reliable results, we suggest to keep at least 60 ST-interest points

for one second video, for the model videos (note that each model video contains only

one activity).

We also extract the cuboid descriptor from [DRCB05] for each STIP. This local cuboid

descriptor, which calculates a histogram of gradients at the position of each STIP (see

chapter 5), will be employed to initialize the matching algorithm (see section 7.7).
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7.5 Constructing more expressive graphs

The complexity of the method from [DBKP09] highly depends on the number of the d-

tuples (triangles) in the two graphs constructed from the videos. The original algorithm

constructed fully connected graphs, i.e. graphs with close to Nm3 and Ns3 hyper-edges,

respectively. We present hereafter a graph construction method producing graphs with

far fewer but more expressive hyper-edges, which significantly reduces complexity and

also increases robustness to non-rigid transformations. Given two sets of STIPs, we

construct two corresponding graphs for the model video and the scene video, i.e. we

construct the two sets Em and Es of hyper-edges (triangles). Without loss of generality,

we present the construction of the model graph Gm, the scene graph Gs is constructed

in a similar way. We take into account the following information for graph construction

from ST-interest points:

Temporal aspects – One of the most important properties of a video is the nature (and

importance) of the temporal order, which is very often dominated by causal rela-

tionships. We exploit this in two ways:

• We put a constraint on the preservation of the correct temporal order in a

triangle (see section 7.6)

• We restrict the number of hyper-edges, i.e., we keep only one hyper-edge per

triplet. This first filter allows us to sample the number of triplets from n3 to

|C3
n|, where n is the graph size.

Spatio-temporal proximity – Fully connected graphs contain triangles linking all pos-

sible triplets of points, even between very distant STIPs (in time and/or space).

While, generally speaking, a higher number of triangles tends to increase the dis-

criminative power of the matching method, it also tends to decrease robustness.

This is especially true for triangles between very distant points, as the space-time

geometrical transformation between two instances of the same human activity is

not necessarily rigid. Moreover, intuitively, if three local STIPs are adjacent in

both space and time, they should belong to the same humain activity. From this

intuition, and the above reasoning, we propose to filter the set of triangles by a

simple thresholding rule keeping only triangles of which three STIPs are close in

space and time using two different thresholds, one for the spatial dimensions and

one for the temporal dimension (see figure 7.1 for an illustration). The points in a

triangle are then ordered according to the temporal order. If there are more than

one point in the same frame, they are ordered according to their spatial coordi-
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Figure 7.1: Illustration of a partial view of our graph: circles are spatio-temporal interest
points; three close points are grouped to form a triangle; arrows indicate the temporal
order of the points in a triangle.

nates. We would like to note that the reason for separately considering spatial

adjacency and temporal adjacency of spatio-temporal interest points is due to two

things: i) a 3D coordinate is significantly different from a spatio-temporal coordi-

nate (i.e 2D + t); ii) using a separate temporal threshold is more flexible, which

helps to work on unsegmented sequences. In practice, we fix the thresholds such

that |Em| ≤ 8× |Vm|.

The scene graph Gs is constructed in a similar way, but contains more triplets (i.e.,

using bigger thresholds) to deal with noise and scale changes. This gives the sub

graph matching algorithm a larger set of scene triangles to choose from for each

model triangle. In practice, we choose the thresholds such that |Es| ≤ 50× |Vs|.

7.6 An objective function for video matching

In order to boost the discriminative power of the matching algorithm, we propose the

following compatibility matrix ψ3 for the objective function in equation (7.4) designed

for activity recognition in videos:

ψ3(i, j, k; i′, j′, k′) = ψt
3(i, j, k; i′, j′, k′)× φ((i, j, k), (i′, j′, k′)) (7.5)
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where φ(., .) and ψt
3 govern temporal and space-time geometrical aspects of the trans-

formation:

Temporal aspects — As mentioned in section 7.5, we think that it is crucial to ex-

ploit the important nature of the temporal dimension in video sequences. We therefore

introduce the functional φ(., .) which verifies if two triangles are equally oriented taking

into account the (temporal) order of their points:

φ((i, j, k), (i′, j′, k′)) =

 1 if Dijk = Di′ j′k′

0 otherwise
(7.6)

where Dijk is the sign of the determinant of the triplet computed from their spatio-

temporal coordinates:

Dijk = sign


ix iy it

jx jy jt

kx ky kt

 (7.7)

Note that the row order in the determinant must be the same as the point order in

the triplet. We can also interpret this measure as follows: if two triangles have the

same direction when they are projected onto the temporal axis, it is not excluded that

characterize the same activity.

ST-geometrical distance — The factor ψt
3 in (7.5) describes the geometric similarity

between two triangles and is given as follows:

ψt
3(i, j, k; i′, j′, k′) = exp

{
−||α(i, j, k)− α(i′, j′, k′)||

σg

}
(7.8)

where ||·|| is the L2 norm and α(·, ·, ·) is a vector of the cosines of the first and second

angles in the triangle (recall that the points of a triangle are ordered), as the third one

is linearly dependent. The parameter σg governs the intra-class variations of the angles,

we set it to half the mean over the distances between all triangles.

To further decrease complexity, and to increase discriminative power, triangles in the

model graph are only allowed to match triangles in the scene graph if their geometrical

shapes (given above) are close enough. More precisely, only the first ranked distances

as given by (7.8) are kept non-zero in ψt
3, where the ranking can be computed efficiently

using a k-d tree. In practise we keep the first k (350 in our experiments) scene triangles

for each model triangle. Note that a small value of k may give bad results.
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7.7 Matching initialization

Iterative algorithms often suffer from bad initialization, therefore a reliadble initializa-

tion is necessary. In this section, we take the advantage of local descriptors to initialize

the matching, i.e. to initialize the set of potential assignment matrices X (see section 7.2).

Recall that the proposed matching compatibility function ψt − 3 does not use any

features associated with the STIPs — we argue that the matching algorithm itself is

more robustly controlled through spatio-temporal geometry. This is consistent with the

experimental results we obtained in chapter 6. However, we propose to benefit from the

power of local descriptors associed to STIPs to better initialize the matching algorithm.

Denoting by f m
i and f s

j the features calculated on point i of the model graph and point j

of the scene graph, respectively, we initialize the relaxed assignment matrix X as follows:

Xij = exp

{
−
|| f m

i − f s
j ||

σf

}
(7.9)

where the parameter σf captures the variation of distances in feature space. For each

model node, only the values for Nb of its nearest neighbors in feature space (efficiently

identified through a k-d tree) are kept non-zero in the matrix X. In practice, we set Nb

to 0.35|Ns|. Additionally, the required norm constraint described in section 7.2 is then

enforced through normalization.

In our experiments, we use the L1 norm, which enables us to easily project the

model nodes onto the final solution and evaluate the obtained results (see section 7.8). It

should be noted that in spetral methods, the normalization for the compatibility matrix

is needed to: i) ensure that the algorithm converges; ii) guarantee the existence of non-

negative eigenvalues; and iii) verify some constraints, e.g. one-to-one or one-to-many

matching.

7.8 Recognition score

In order to decide whether an instance of the graph (a video in our case) has been de-

tected or not, most energy based graph matching methods consider the final matching

score, which is denoted by score(X∗) and given as the maximum of equation (7.4), cal-

culated as a sum of all matching scores between triangles after matching. This, however,

is not an optimal choice. For instance due to noise, several triangles in Gs could be

matched to the same triangle in Gm, and we cannot remove such irrelevant matches by

filtering based on only the matching score. Moreover, these matching scores depend on
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the geometric features of triangles used to verify compatibility between triangles, and

therefore make the choice of a threshold difficult.

We propose a different score, called scored(X∗), which removes the uncertainties

from the matrix X. More precisely, we de-relax the values of the optimal matrix X∗

(obtained as the maximum of (7.4)) by taking the maximum for each node in the model

graph and setting the others to zero:

Zij =

 Xij if Xij = maxk Xik

0 otherwise
(7.10)

Then, scored is defined by the mean projection:

scored(X) =
1

Nm ∑
ij

Z(i, j) (7.11)

scored ∈ [0..1] and it is equal to 1 for the ideal case where every node in Gm is well

matched. While the matching score(X) indicates how similar two graphs are, scored(X)

measures the percentage of correctly matched points. We combine them through a global

score as follows:

scoreGlobal(X) =

 scored(X) if score(X) ≥ τ0

0 otherwise
(7.12)

where τ0 is a preliminary threshold obtained through experiments.

7.9 Computational complexity and running time

Our system has been implemented entirely in Matlab and for the moment processes

videos as entire sequences. However, the algorithm itself can be implemented to deal

with video streams by processing small overlapping consecutive blocks.

Our matlab implementation does not run in realtime, as 1 second of video for the mo-

ment requires 46.7 seconds of processing on a single core processor with 2GHz and 2GB

of RAM, including feature extraction, scene graph construction, and matching against

98 model graphs. However, a reimplementation in C++ should provide real-time or

near-realtime performance on a recent machine. We would also like to point out that

the algorithm is inherently parallel since matching with different model graphs can be

done in parallel. Furthermore, the matrix computations of the power-iteration method

should run very efficiently on a GPU.
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7.10 Experimental results

We evaluated the performance of our proposed algorithm with regards to two different

tasks:

• The classification of entire video sequences according to the activity of a single

activity performed by a single person in the video. Since standard databases are

available for this kind of task, we are able to give quantitative performance figures

(classification accuracy).

• Detection and localization of multiple activities performed by multiple people at

different locations in the same video. Up to our knowledge, no standard database

is available for this more difficult problem. We illustrate the performance of our

method qualitatively on our dataset.

7.10.1 Classification of entire sequences

Datasets — Our experiments are carried out on the standard KTH and Weizmann hu-

man action datasets (cf. chapter 5). The KTH dataset was provided by Schuldt et al.

[SLC04] in 2004 and is the largest public human activity video dataset. It contains a

total of 2391 sequences, comprising 6 types of actions (boxing, hand clapping, hand

waving, jogging, running and walking) performed by 25 subjects in 4 different scenarios

including indoor, outdoor, changes in clothing and variations in scale. Each video clip

contains one subject performing a single action. The Weizmann dataset was first used

in by Blank et al. [BGS∗05a] in 2005, which consists of 90 video clips of 10 actions (walk-

ing, running, jumping, gallop sideways, bending, one-hand-waving, two-handswaving,

jumping in place, jumping jack, and skipping) performed by 9 different subjects. Again,

each video clip contains one subject performing a single action.

Testing protocol — We extracted ST-interest points and their cuboid descriptors from

video sequences (see section 7.4). Using leave-one-out cross-validation, we apply our

method for the classification of activities and report the average accuracies, even though

the focus of our method is to detect/localize the activities. To this end, we employ a

group of videos from a single subject in the dataset as the testing videos (i.e., scene

graphs), and the remaining videos as the model videos (i.e., model graphs). This was

repeated so that each group of videos in the dataset is used once as the testing videos.

For each loop, we match each test video against all model videos, and take the label (i.e.,

the activity) of the model video which gives maximum score from equation (7.12).
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Table 7.1: Comparison of our method with different methods, tested on KTH and Weiz-
mann datasets.

Method KTH Weizmann
Our method 91.2 100.0

Dollar et al. [DRCB05] 81.2 - Same features
Niebles et al. [NWFF08] 83.3 90.0 as our work

Savarese et al. [SDPNL08] 86.8 -
Oikonomopoulos et al. [OPP09] 80.5 -

Scovanner et al. [SAS07] - 82.6
Gilbert et al. [GIB08] 89.9 - BoW + Spatio-temporal

Zhang et al. [ZHCC08] 91.3 - relationships
Wong et al. [WKC07] 91.6 -

Ryoo and Aggarwal [RA09] 93.8 -
Liu and Shah [LS08] 94.2 -

Schindler and Gool [SvG08] 92.7 100.0
Fathi and Mori [FM08] 90.5 100.0
Gorelick et al. [GBS∗07] - 99.6 Other methods

Sun et al. [SCH09] 94.0 97.8
Kim et al. [KC09] 95.3 -

Ballan et al. [BBDB∗09] 92.1 92.4
Laptev et al. [LMSR08] 91.8 -
Klaser et al. [KMS08] 91.4 84.3

Willems et al. [WTG08] 84.3 -

Classification accuracy — Table 7.1 presents a comparison of our results with state-

of-the-art results. Although we adopted graph matching techniques for action classi-

fication, we cannot directly compare our method with other graph matching methods

applied in object recognition because of the nature difference between these two do-

mains. Therefore, we compared the performance of the proposed method with other

methods tested on the two standard datasets KTH and Weizmann.

In order to better compare the performance between different approaches, we di-

vide this table into three groups: the first group includes the methods, which have not

taken into account spatio-temporal relations; the second one consists of approaches that

employ spatio-temporal relations in different ways; and the last groups presents some

latest results tested on these two datasets. Our method outperforms the existing meth-

ods based on a bag of words model (first group), i.e. using only local features. The

results shown in the second group demonstrate that our method is comparable to those

exploiting spatio-temporal information. Note that the results which are slightly higher

than ours, i.e. the work from Ryoo and Aggarwal [RA09], Liu and Shah [LS08], require

training a codebook and tuning parameters. Moreover, the work from Ryoo and Ag-

garwal [RA09] needs to encode much more logical relationships between local features.

We would also like to note that the comparision between our method with these two

methods is only relative, because they have not tested on the Weizmann dataset. It is
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the fact that some methods may work well for one dataset and not so well for another.

Finally, the comparison between our method and those in the last group is not direct,

since they either combine both global and local features [SCH09], taken more data from

segmentation mask [GBS∗07] [FM08], or use a different experimental set-up.

In conclusion, the results obtained for action classification indicate that our method

is comparable with previous methods. In addition, our method can detect activities in

continuous videos. In the next section, we will demonstrate the ability of our method to

recognize multiple activities in the same video sequence.

7.10.2 Detection and localization of multiple and individual actions

The main contribution of our method is the possibility of detecting and localizing mul-

tiple activities from unsegmented video sequences. Unfortunately, to the best of our

knowledge, there is no standard dataset for evaluating such applications. This is due

to the fact that this problem is still incompletely understood.3 To evaluate our system,

we have performed a third experiment on our own dataset, which contains 120 videos

in 4 classes (run, walk, vertical jump, sitdown) (cf. chapter 1). Our dataset is different

from those of KTH and Weizmann in two points: i) different activities are performed in

different directions with respect to the camera; and ii) we included videos as short as

between 3 and 10 frames.

For each pair of videos, we first perform matching as described in section 7.10.1

and we localize the action by projecting the points in the model graph onto the scene

graph based on the obtained solution. Finally, the detected action is localized around

the detected points.

Figure 7.2 shows some visual results for our dataset. The detected actions are de-

lineated with red bounding boxes at the frame level. Circles are the detected interest

points, from which we localize activities. Figure 7.2.a shows visual results for simulta-

neous walking and sitdown actions. From this figure, we can see that our method can

detect any kind of activities, i.e. not limited to the periodic activities (e.g. walking).

Note that in our dataset, several actions are of very short duration (e.g. sitdown), the

methods that are based on bag of word models often fail for such actions. In figure 7.2.b,

we demonstrate other visual results for multiple activity recognition, i.e. simultaneous

recognition of running and jumping actions. It can be seen that, even when the walking

person is partial occluded by the jumping person, our method can still distinguish the

two actions. It should be noted that, in order to obtain our results, most existing meth-

3Several teams have proposed algorithms and tested them on their own datasets which are either not
publicly available, or only used to qualitatively evaluate, e.g. [SI07b, RA09].
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a) recognition results for videos containing simultaneous walking and sitdown

b) recognition results for videos containing simultaneous running and jumping

Figure 7.2: Recognition results on several consecutive frames of two videos of our
dataset (top to bottom and left to right). This figure should be best viewed in color.
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ods need a tracking system that allows to determine where the actions are happening,

and the classification techniques are then applied to the tracked objects.

Figure 7.3: Recognition results for continuous videos: a person performing two consec-
utive actions: first running, then walking. Note that the temporal order is shown from
left to right, then top to bottom. This figure should be best viewed in color.

Besides the above evaluations, we have also tested our method on continuous videos.

Figure 7.3 demonstrates some visual results for recognizing two consecutive actions:

running, then walking. This test has to deal with at least two difficulties: i) inter-class

problem, i.e. slow running becomes walking; ii) actions performing by the same person,

i.e. appearance features exacted from these actions may be similar. From this figure, we

can see that our method gives promising results for the problem of activity recognition

in continuous videos. Again, in order to achieve our results, most classification-based

methods require a tracking or a temporal segmentation task.

We also tested our objective function (section 7.6) without taking into account the

temporal aspects (function φ(., .)), which significantly decreased the perfomance.
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7.11 Conclusion

In this chapter, we propose a first attempt to address the problem of action recogni-

tion and localization by using graph matching techniques. Our method features several

advantages for activity recognition such as: it can detect/localize multiple activities in

the same video sequence without any preprocessing; our method avoids the non-trivial

problem of selecting the optimal number of codewords for codebook construction; un-

like many other methods it does not need training, background/foreground segmen-

tation, tracking, and does not require any prior knowledge on the action. Through

experiments, we have shown that it is feasible to apply graph matching techniques to

action recognition.

We also tested our method for the problem of multiple activity recognition on our

own dataset. The visual results demonstrate that many complex activities are recog-

nized and detected simultaneously. It should be noted that, in our dataset, there are

several actions, which are of very short duration, e.g. sit-down action. The conventional

classification-based methods may fail to detect such actions. To our opinion, a poten-

tial application of our approach is related to video surveillance, where scene videos are

online represented by blocks of short duration, which will be matched against a set of

labeled video models (often of shorter duration).

Besides the advantages mentioned above, our method still has limitations, e.g. de-

tecting multiple instances of the same activity in a video. In this case, we need to detect

the first instance, eliminate it, and restart a new process for other instances. These lim-

itations will be considered in our ongoing work. Another drawback of our method is

the need to choose the two thresholds (one for space and another for time) for graph

construction. It should be noted that the final results may suffer from the thresholds

used. In practice, the temporal threshold should be less than one action cycle.

As a future work, we aim at extending this method to capture higher-order geometric

structures among the local features, e.g. relationships between triangles.
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Chapter 8
General conclusion and discussion

In this final chapter, we first conclude our work, and review our contributions. Then,

we discuss the limitations of our methods, and some perspectives for future work.

8.1 Summary of our contributions

In this thesis, we have presented our research study on object recognition and activity

recognition. Our objective was to adopt graph matching techniques for the recogni-

tion problem, but fundamentally, our aim was to take into account spatial and spatio-

temporal information to improve recognition performance. In activity recognition, we

focused on both individual activity classification and multiple action recognition (i.e.

including localization). In the context of object recognition, we were interested in rec-

ognizing objects in both natural and storyboad scenes from hand-drawn models. In the

following, we would like to recall the reason we chose graph matching techniques for

both object recognition and activity recognition problems.

Althrough these two problems are quite different in nature, they share several com-

mon points that need to be considered to find efficient solutions:

Local features – Global features usually cannot deal with occlusion, thus local features

must be used.

Spatial and/or temporal relations – Local features themselves are not discriminative enough

to recognize complex objects/actions. Hence, spatial and/or temporal relation-

ships between the local features are needed.

Structured data – In general, there are complex transformations (not simply rigid, or

affine)between the model and the scene for both drawing images and human ac-

159
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tivities. Thus, we need a powerful way to deal with such complex non rigid trans-

formation.

We decided to adopt graph matching techniques, which can handle all these problems

in a robust manner. First, local features are extracted from images or videos, then the

graphs (model and scene) are constructed from them, where nodes represent local fea-

tures, and edges represent the relationships between them. The recognition problem is

then translated into a graph matching problem. Several solutions have been proposed to

solve the graph matching problem. We have evaluated our methods on several standard

datasets. The experimental results have demonstrated the effectiveness of the proposed

methods. Let us briefly summarize the major contributions of this thesis:

Object recognition from hand-drawn models – We introduced a new local patch-based

representation using Zernike moments. By employing Zernike moments in a local

manner, the object recognition task was formulated as a graph matching problem,

for which the solution is found by minimizing an energy function. We have pro-

posed to integrate the following constraints into our objective function: (a) Zernike

descriptors, (b) consistency of the neighborhood relationships between patches

and (c) consistency of the rotation angle among the neighboring patches. We

have proposed a decoupled approximate method, which is composed of two steps

(Matching and Verification), for this energy minimization problem. Our method

can handle non-rigid transformations, since the consistencies are checked locally

between neighboring nodes only. We demonstrated the effectiveness of our ap-

proach through experiments on two databases: an industrial database (i.e. project

Pinka, cf. chapter 1) and a standard challenging database. The experimental re-

sults indicate that our method is robust and achieves high accurate performance.

Exploring the spatio-temporal relationships for improving the bag-of-words models –

The conventional bag of words models (BoW) have been successfully used in ac-

tivity recognition. Despite their success, BoW models discard spatio-temporal re-

lations between local features. We have proposed new features, called pairwise

features (PWF), which encode both the appearance and the spatio-temporal rela-

tions of the local features for action recognition. Our PWFs are constructed by

grouping pairs of local features which are both close in space and close in time.

Because our PWFs contain both geometric and appearance information, we have

constructed two separate codebooks for each feature parts of PWFs, and a combi-

nation of these two codebooks was also proposed for training/classification. Ex-

perimental results demonstrated that our PWF features significantly improve the
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bag-of-words performance.

Beyond this contribution, we have also demonstrated that our pairwise features

(i.e. geometric feature part) can keep their discriminative power even across dif-

ferent datasets, i.e. when learning in one dataset and testing on another one.

Human activity recognition through graph matching techniques – Our previous work

in chapter 6, indicated that taking into account location information and temporal

direction among local features give valuable improvements for action classification.

In our second work on graph matching, we exploited higher order relationships

between local features. In particular, we have adopted a hypergraph matching

technique to perform triplet matching. First, local features are extracted, and hy-

pergraphs are constructed from them, i.e. graphs with edges involving 3 nodes.

The action recognition problem was translated into a matching task between two

hypergraphs. We have adopted a spectral-based method to solve the correspon-

dence problem. Our contributions were mainly focused on the following stages:

• Graph construction – We have proposed a significant way to construct more

expressive graphs from local features extracted from video sequences.

• Compatibility matrix estimation – We have incorporated both triangle ge-

ometry and their orientations into our new objective function to accurately

compute the compatibilies between model triangles and scene triangles.

• Matching initialization – We took advantage of local descriptors associated

to each node, to initialize the matching process.

• Score calculation – We have proposed to interpret the final result to compute

a more informative score.

Experiments on two standard datasets demonstrated that our method is compa-

rable with state of the art methods on classification. Besides, our method offers

several advantages over most other methods:

• By matching local features instead of classifying entire sequences, our method

is able to detect multiple different activities which occur simultaneously in the

same video sequence.

• The visual results tested on our own dataset confirmed that our method can

detect activities in continous videos.

General conclusion
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From the obtained results, we can conclude that spatial and spatio-temporal relations

bring a significant improvement over local features. In addition, we have shown that

formulating the recognition problem as a graph matching problem allows to take into

account any relationships between local features (e.g. spatial and/or spatio-temporal

relationships), despite the difference across domains (e.g. in this thesis, we used graph

matching techniques to solve both object recognition and activity recognition problems).

Our experimental results from chapter 6 and 7 indicated that spatio-temporal infor-

mation and temporal direction among local features, which have been largely ignored

in the conventional bag of words models, have a significant influence on activity recog-

nition.

Our methods have several advantages over existing work as we described above.

However, there are also limitations to our approaches for which we will mention and

discuss several potential solutions in the next section.

8.2 Limitations and Future work

In this section, we first propose some potential solutions that can be considered as short

term work to resolve the limitations of our current works. Then, we would like to further

discuss about the future work which could be done to improve the two problems studied

in this thesis.

8.2.1 Limitations and some potential solutions

There are several possible extensions for this work, including:

Improvement of the patch-based Zernike moment features

Through experiments, we have proved that Zernike moments are suitable for sketch

recognition, in particular for storyboard scenes. Nevertheless, as shown by our exper-

imental results in chapter 4, our method gives worst results for simple model objects

such as bottles and mugs. This can be explained as follows: first, such model objects

are composed of only basic line-segments, and patches extracted from these objects are

themselve line-segments. Because Zernike moment descriptors calculated for such seg-

ments are not enough discriminative, the first step in our decoupled matching algorithm,

which searches the best match for each model patch, may return arbitrary best matches

from a “pool” of similar scene patches, i.e. pieces of segments can be present anywhere

in the scene. Therefore, the verification step, which checks for the consistencies, will fail.

We think that a combination of our patch-based Zernike moments with contours

descriptors like a group of k-adjacent segments (kAS) from [FFJS08a] (cf. chapter 3) can
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overcome this limitation.

Improvement of the decoupled approximate algorithm

By decoupling terms of the energy function (cf. function 2.6), our method can deal

with any graph size, and non-rigid transformation. Nevertheless, the second step of our

decoupled algorithm needs some best matches returned from the first step, to ensure

a reliable result. In practice, this requirement is sometimes not reached due to noise,

cluttered scenes, or descriptors used are not discriminative enough.

It is known that the energy function described in eq. 2.6 can be solved exactly if the

graph is a chain and the edges are between neighbors in the chain. The solution can be

calculated with complexity O(Nm.Ns2) with dynamic programming. In the context of

hidden markov models, this algorithm is known as the Viterbi algorithm.

Inspired from this, we could represent the graphs as chains of their nodes, which

allow us to find exact solutions without decoupling the terms of function 2.6. Figure

8.1 illustrates this idea. Based on the chain representation, dynamic programming algo-

Figure 8.1: Illustration of linear approximate matching. Here our patch-based represen-
tation on the left, can be represented as a linear order (right), which allows to quickly
calculate the global minimum.

rithm can be used for finding a global solution for eq. 2.6, which is a special case of the

belief propagation (BP) algorithm from [Pea88].

Improvement of the graph matching algorithms for activity recognition Although we

have used the high order matching (i.e. third order) to exploit the spatio-temporal

information, the relationships between triangles, which could speed up detection, have

not been taken into account. We intend to capture such relationships, e.g. pairs of

triangles.

Improvement of the detection of multiple instances of the same object/activity

Probably one of the major limitations of our methods proposed for both object and

activity recognition applications is the ability of our algorithm to detect multiple in-
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stances of exactly the same object or activity in the scene. Actually, we need to detect

the first instance, eliminate it, and restart a new process for other instances. This is quite

computationally expensive, and not optimal.

From the success of existing works [MGMR02][TKR08c][RLAB10], it seems that as-

sociation graphs can solve this problem. The main idea is to use another graph, called

association graph, where each entry holds a match hypothesis between a model node

and a scene node. This graph is constructed during matching, and the hypothesis are

iteratively updated. Once the matching is done, the number of connected components

retained in the association graph, represents potential candidats of the model.

How could we integrate this association graph into our actual algorithms? In our

second application of hypergraph matching for activity recognition, it would be easy to

do so, because the spectral-based algorithm, which we employed, is itself an iterative

process. For our decoupled approximate algorithm, we think that the association graph

would be updated in the first step of our algorithm. However, for each model patch,

we need to keep several of its corresponding scene patches to construct the association

graph. Then, in the second step, the consistencies need to be verified for all connected

components of the obtained association graph.

8.2.2 Future research

In this section, we reflect on what future work should be undertaken.

Learning graph matching or traditional graph matching? – From what we have learned

from this work, we believe that the future research for graph matching in computer vi-

sion will lie in learning graph matching techniques instead of standard graph matching

algorithms used so far. This would be due to the fact that traditional graph match-

ing techniques have several disadvantages. For instance, to recognize a model class, it

requires various template models, which will be matched against a scene graph. How-

ever, the obtained results are sometimes not reliable, because althrough they express the

same class model, two different pairs of graphs may give very different scores, i.e. due

to the problem of intra-class variation. Learning graph matching techniques can solve

this limitation.

For the problem of drawing recognition, Ferrari et al. in [FJS10] have alreadly in-

troduced an idea for learning a handrawn model (see figure 8.2) for each class (Mug,

Giraffe, Apple, ..). In fact, their method is like a voting-based mechanism, which relies

on the occurrences and connectedness of kAS features (cf. chapter 3) on training images.

We would like to note that our tests with kAS features have failed on storyboard scenes.
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Figure 8.2: Illustration of learning a model class from several sample examples. This
figure is adapted from [FJS10]

We think that it would be interesting to “learn” these models using graph matching,

i.e. learning graph matching. We may benefit from the work on learning graph matching

from Caetano et al. [CRM∗09].

How to reduce the complexity of graph matching algorithms? - Application to activity

recognition.

Although we have proposed several significant ways to reduce the complexity of the

matching problem, it is still of high computational cost. Moreover, our graph match-

ing algorithm is not scalable, since the complexity of our algorithm increases with the

graph sizes. We construct our graphs from local points extracted as local maxima of re-

sponse function. We think that the local maxima values of the response function, which

have been largely ignored in the recognition stage, may be useful to speed up detec-

tion and reduce the complexity. Generally, according to the response function (of any

detectors), a greater value is more significant (important) than a small one, i.e. not all

points contribute equally to recognition. Based on this, it would be interesting to de-

sign a multi-level graph matching algorithm, known as a hierarchical matching, where

the first level contains only a few important points (nodes) of the model. The matching

process would start from the first level, and during matching, the hypothesis (i.e. con-

sistencies constraint) would be checked to decide to continue or stop searching. This

solution may not require searching for all possible assignments, thus would reduce the

computation time significantly, however it would heavily rely on the response function

and the hypothesis defined. We may benefit from a similar idea introduced by Revaud

et al. [RLAB10], which has been successful applied for specific object recognition.
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Title: Inexact graph matching techniques: Application to object detection and human
action recognition

Abstract: Object detection and human action recognition are two active fields of research
in computer vision, which have applications ranging from robotics and video surveil-
lance, medical image analysis, human-computer interactions to content-based video an-
notation and retrieval. At this time, building such robust recognition systems still remain
very challenging tasks, because of the variations in action/object classes, different pos-
sible viewpoints, as well as illumination changes, moving cameras, complex dynamic
backgrounds and occlusions. In this thesis, we deal with object and activity recognition
problems. Despite differences in the applications’ goals, the associated fundamental
problems share numerous properties, for instance the necessity of handling non-rigid
transformations. Describing a model object or a video by a set of local features, we for-
mulate the recognition problem as a graph matching problem, where nodes represent
local features, and edges represent spatial and/or spatio-temporal relationships between
them. Inexact matching of valued graphs is a well known NP-hard problem, therefore
we concentrated on finding approximate solutions. To this end, the graph matching
problem is formulated as an energy minimization problem. Based on this energy func-
tion, we propose two different solutions for the two applications: object detection in
images and activity recognition in video sequences. We also propose new features to
improve the conventional Bag of words model, which is widely used in computer vi-
sion. Experiments on both standard datasets and our own datasets, demonstrate that
our methods provide good results regarding the recent state-of-the-art in both domains.

Keywords: Object recognition, object localization, activity recognition, graph matching,
pairwise features, multiple actions.



Titre: Mise en correspondance inexacte de graphes: application à la reconnaissance
d’objets et d’activits dans la vidéo.

Résumé: La détection d’objets et la reconnaissance des activites humaines sont les deux
domaines actifs dans la vision par ordinateur, qui trouve des applications en robotique,
vidéo surveillance, analyse des images médicales, interaction homme-machine, annota-
tion et recherche de la vidéo par le contenue. Actuellement, il reste encore très difficile
de construire de tels systèmes, en raison des variations des classes d’objets et d’actions,
les différents points de vue, ainsi que des changements d’illumination, des mouvements
de caméra, des fonds dynamiques et des occlusions. Dans cette thèse, nous traitons
le problème de la détection d’objet et d’activités dans la vidéo. Malgré ses différences
de buts, les problèmes fondamentaux associés partagent de nombreuses propriétés, par
exemple la nécessité de manipuler des transformations non-ridiges. En décrivant un
modèle d’objet ou une vidéo par un ensemble des caractéristiques locales, nous for-
mulons le problème de reconnaissance comme celui d’une mise en correspondance de
graphes, dont les noeuds représentent les caractéristiques locales, et les arrêtes représen-
tent les relations que l’on veut vérifier entre ces caractéristiques. Le problème de mise
en correspondance inexacte de graphes est connu comme NP-difficile, nous avons donc
porté notre effort sur des solutions approchées. Pour cela, le problème est transformé
en problème d’optimisation d’une fonction d’énergie, qui contient un terme en rapport
avec la distance entre les descripteurs locaux et d’autres termes en rapport avec les re-
lations spatiales (ou/et temporelles) entre eux. Basé sur cette énergie, deux différentes
solutions ont été proposées et validées pour les deux applications ciblées: la reconnais-
sance d’objets à partir d’images et la reconnaissance des activités dans la vidéo. En plus,
nous avons également proposé un nouveaux descripteur pour améliorer les modèles de
Sac-de-mots, qui sont largement utilisé dans la vision par ordinateur. Nos expérimenta-
tions sur deux bases standardes, ainsi que sur nos bases démontrent que les méthodes
proposées donnent de bons résultats en comparant avec l’état de l’art dans ces deux
domaines.

Mots clés: mise en correspondence de graphe, détection d’objets, localision d’objets,

reconnaissance des activités, pairwises features, activités multiples.
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