Learning high-level reasoning in vision, language and robotics

Christian Wolf Corentin Kervadec

May 28th, 2021

Our group

Christian Wolf Chair in Research and Teaching in Artificial Intelligence at INSA-Lyon, LIRIS UMR CNRS 5205 **liris.cnrs.fr/christian.wolf**

The group in Feb. 2020: Corentin Kervadec, Steeven Janny, Edward Beeching, Fabien Baradel, Théo Jaunet, Quentin Possamaï.

Learning vision & robotics

Gesture recognition

Pose estimation

Activity Recognition

H-C Interaction

3 INSA LIRIS

What happened here?

Algebraically manipulating previously acquired knowledge in order to answer a new question

[Bottou, ML 2014]

Vision and Language Reasoning

Companion robots

Awabot

Discovering object affordances

Shortcuts in learning

Train for classification including a class "to nail"

Test on data including new classes "remove a nail", "store a hammer »

WYGISNWYE: What you get is not what you expected!

WYGISNWYE

[Baradel, Wolf, Mille, BMVC 2018]

WYGISNWYE

[Baradel, Wolf, Mille, Taylor, CVPR 2018]

Visual navigation and spatial reasoning

Office space

Homes

Hospitals

Edward Beeching

Jilles Dibangoye

Olivier Simonin

A Deep-RL baseline

13 INSA LIRIS

Task: PointGoal (+GPS)

Task:

Find a target given coordinates, receive a direction vector et each step

- Recognize free navigation space
- Follow the direction vector
- Learn how to overcome obstacles (difference between Euclidean and geodesic path)

Task: ObjectNav

Task:

Find a target object given its object class.

- Recognize free navigation space
- Explore the environment
- Recognize the object when seen and move towards it.

Task: ImageGoal (object)

Task:

Find a target object given its visual appearance (image).

- Recognize free navigation space
- Explore the environment
- Recognize the object when seen by comparing it to a target image and move towards it.

Task: ImageGoal (location)

Task:

Find a target <u>location</u> given its visual appearance (image).

- Recognize free navigation space
- Explore the environment
- Exploit spatial regularities, eg. room layouts
- Recognize the location when seen and move towards it.

Task: K-item scenario

Task:

Navigate to a list of objects sequentially in the right order.

Required reasoning:

- Recognize free navigation space
- Explore the environment
- Map an object if I need to find it later (!)
- Recognize the object when seen and move towards it.

[Beeching, Dibangoye, Simonin, Wolf, ECML-PKDD 2020] [Beeching, Dibangoye, Simonin, Wolf, ICPR 2020]

18

What do we want the model to learn?

Generalization to new environments requires:

Information on the (seen) environment, e.g. position of a couch

Positions of objects placed in the environment

Regularities of the environment (eg. bath tubs are in bathrooms; toilets are accessible from an aisle, not the living room)

Object affordances

The task formulation decides how learned information is stored!

Tasks, regularities and generalization

What does my network learn: A reasoning strategy, or the environment?

Inductive bias for projective mapping

[Beeching, Dibangoye, Simonin, Wolf, ECML-PKDD 2020]

Spatial memory in Deep-RL

EgoMap: 3 Largest principal components

Object features retained in map

EgoMap: Attention

25 INSA LIRIS

EgoMap: 3 Largest principal components EgoMap: Attention

26 INSA LIRIS

EgoMap: 3 Largest principal components

When the object is not occluded, the agent does not attend to it

Quantitative results

	Scenario							
	4 item		6 item		Find and Return		Labyrinth	
Agent	Train	Test	Train	Test	Train	Test	Train	Test
Random	-0.179	-0.206	-0.21	-0.21	-0.21	-0.21	-0.115	-0.086
Baseline	2.341 ± 0.026	2.266 ± 0.035	2.855 ± 0.164	2.545 ± 0.226	0.661 ± 0.003	0.633 ± 0.027	0.73 ± 0.02	0.694 ± 0.009
Neural Map	2.339 ± 0.038	2.223 ± 0.040	2.750 ± 0.062	2.465 ± 0.034	0.825 ± 0.070	0.723 ± 0.026	$\textbf{0.769} \pm \textbf{0.042}$	0.706 ± 0.018
EgoMap	$\textbf{2.398} \pm \textbf{0.014}$	$\textbf{2.291} \pm \textbf{0.021}$	$\textbf{3.214} \pm \textbf{0.007}$	$\textbf{2.801} \pm \textbf{0.048}$	$\textbf{0.893} \pm \textbf{0.007}$	$\textbf{0.848} \pm \textbf{0.017}$	0.753 ± 0.002	$\textbf{0.732} \pm \textbf{0.016}$
Optimum	2.5	2.5	3.5	3.5	1	1	1	1

Mapping objects required

Not required

Spatial maps in robotics

Metric map (=2D or 3D Grid)

Beeching, Dibangoye, Simonin, Wolf, EgoMap: Projective mapping and structured egocentric memory for Deep RL, ECML-PKKD 2020

Topological map (=Graph)

Beeching, Dibangoye, Simonin, Wolf, Learning to plan with uncertain topological maps, ECCV 2020

29 INSA LIRIS

Hierarchical planning and control

[Beeching, Dibangoye, Simonin, Wolf, ECCV 2020]

Failure Case

[Beeching, Dibangoye, Simonin, Wolf, ECCV 2020]

Visual Question Answering

Corentin Kervadec Grigory Antipov B

Moez Baccouche Christian Wolf

(Intermediate) conclusion

- Our objective is to train agents to reason from large-scale datasets, avoiding shortcuts:
 - Creation of tasks and auxiliary losses
 - We imbue neural networks with inductive biases
 - Visualization of reasoning patterns
 - Multi-modal inputs
 - Learned spatial representations