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Learning vision & robotics

Gesture Pose estimation
recognition

Robot Perception and Navigation

Activity Recognition

H-C Interaction

Physics
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What happened here”

Algebraically manipulating
previously acquired
knowledge in order to
answer a hew question

[Bottou, ML 2014]
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Vision and Language Reasoning

"‘How much money ao /
have in my hand?"

‘ ’/'a’ | leave the door
| open?”

'‘Did I leave the
lights on?"
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Companion robots

Awabot
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Discovering object affordances




Shortcuts in learning

Train for classification including Test on data including new classes

a class "to nail" "remove a nail", "store a hammer »

WYGISNWYE:
What you get is not what you expected!
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WYGISNWYE

- Attention on hands

Right Left Right

Joint important
for activity
=p- high attention _

1 Joint wrongly located
= oW attention

[Baradel, Wolf, Mille, BMVC 2018]
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WYGISNWYE

[Baradel, Wolf, Mille, Taylor, CVPR 2018]
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How can we evaluate biases in \

| ing? (CVPR 2021
earning? (C 021a) Which tasks favor emergence of
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= oo reasoning?
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What are the causal links in the
/ data? (ICLR 2020)
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Visual navigation and spatial reasoning

Office space

Edward Jilles Olivier Christian
Beeching Dibangoye  Simonin Wolf
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A Deep-RL baseline

P & ==p| Controller —
A

== Controller >

VAWl A AWy
VAIV."II
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Task: PointGoal (+GPS)

Task:

Find a target given coordinates,
receive a direction vector et each
step

Required reasoning:

- Recognize free navigation space

- Follow the direction vector

- Learn how to overcome
obstacles (difference between
Euclidean and geodesic path)
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Task: ObjectNav

Task:

Find a target object given its
object class.

Required reasoning:

o - Recognize free navigation space

carf:;,'s - Explore g‘he en V/'ropmem‘

- Recognize the object when seen
ana move towards it.
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Task: ImageGoal (object)

Task:

Find a target object given its visual
appearance (image).

Required reasoning:

- Recognize free navigation space

- Explore the environment

- Recognize the object when seen
by comparing it to a target image
and move towards it.
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Task: ImageGoal (location)

Task:

Find a target location given its
visual appearance (image).

Required reasoning:

- Recognize free navigation space

- Explore the environment

- Exploit spatial regularities, eg.
room layouts

- Recognize the location when
seen and move towards it.
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Task: K-Item scenario

Task:

Navigate to a list of objects
sequentially in the right order.

Required reasoning:

- Recognize free navigation space

- Explore the environment

- Map an object if | need to find it
later (1)

- Recognize the object when seen
and move towards it.

[Beeching, Dibangoye, Simonin, Wolf, ECML-PKDD 2020]
[Beeching, Dibangoye, Simonin, Wolf, ICPR 2020]
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What do we want the model to learn?

Generalization to new environments

requires: Agent Network
memory parameters

Information on the (seen) environment, e.g. / X

position of a couch

Positions of objects placed in the environment \/ X

Regularities of the environment (eg. bath tubs

are in bathrooms; toilets are accessible from an X ‘/

aisle, not the living room)

Object affordances \/ ‘/

The task formulation decides how learned information is stored!

19 INSA vris@



Tasks, regularities and generalization

What does my network learn:
A reasoning strategy, or the environment?
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Inductive bias for projective mapping

[Beeching, Dibangoye, Simonin, Wolf, ECML-PKDD 2020]
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Spatial memory in Deep-RL

Differentiable
affine

Perception
module

B T T T I —

A Time- stept /N
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6 item scenario: time-step 005

Projective mapping of
blue object

0.5

7 100

T -0.5
-05 00 05

EgoMap: Query position

EgoMap: Attention

EgoMap: 3
Largest ]
principal Object features
components retained in map
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6 item scenario: time-step 105

0.5
/ - 0.0
' -0.5
-0.5 0.0 0.5

EgoMap: Query position

EgoMap: 3
Largest
principal
components

Object features
retained in map

EgoMap: Attention
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6 item scenario: time-step 108

EgoMap: 3
Largest
principal
components

7

05

- 0.0

-05 0

.0

Collection of object n-

triggers attention to
objectn

1

-0.3
0.5

EgoMap: Query position

EgoMap: Attenfion
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6 item scenario: time-step 134

\

-0.5 0.0

EgoMap: 3
Largest
principal
components

0.5

0.5

- 0.0

-0.5

EgoMap: Query position

EgoMap: Attention
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o item scenario: time-step 140

0.5
odl 0.0
T -05
-0.5 0.0 0.5

EgoMap: Query position

EgoMap: 3
Largest
principal
components

When the object is not
occluded, the agent
does not attend to it

EgoMap: Attention
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Quantitative results

Scenario
4 item 6 item Find and Return Labyrinth
Agent Train Test Train Test Train Test Train Test
Random -0.179 -0.206 -0.21 -0.21 -0.21 -0.21 -0.115 -0.086
Baseline 2.341 +0.026  2.266 £+ 0.035 | 2.855 £ 0.164  2.545 £+ 0.226 | 0.661 £ 0.003  0.633 + 0.027 0.73 £0.02 0.694 + 0.009
Neural Map | 2.339 4+ 0.038 2.223 + 0.040 | 2.750 £ 0.062  2.465 + 0.034 | 0.825 +£0.070 0.723 £+ 0.026 | 0.769 + 0.042 0.706 + 0.018
EgoMap 2.398 + 0.014  2.291 + 0.021 | 3.214 £ 0.007 2.801 + 0.048 | 0.893 + 0.007 0.848 + 0.017 | 0.753 + 0.002 0.732 + 0.016
Optimum 2.5 2.5 3.5 35 1 1 1 1
<€ > < »

Mapping objects required

Not required
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Spatial maps in robotics

Metric map
(=2D or 3D Grid)

Beeching, Dibangoye, Simonin, Wolf,
EgoMap: Projective mapping and

structured egocentric memory for Deep RL,

ECML-PKKD 2020

Topological map
(=Graph)

Beeching, Dibangoye, Simonin, Wolf,
Learning to plan with
uncertain topological maps,
ECCV 2020
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Hierarchical planning and control

[Beeching, Dibangoye, Simonin, Wolf, ECCV 2020]
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Failure Case

[Beeching, Dibangoye, Simonin, Wolf, ECCV 2020]
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Visual Question Answering

B head

e tail Question groups

(context)
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How can we evaluate biases
in Iearning?/(CVPR 2021a)

== head Al
- tail Question groups
(context)
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How can we visualize and
transfer reasoning? (CVPR
2021b)
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Can we supervise reasoning
programs? (under
preparation)

Can we ground object
detection through language

(under eraration)

Can we weakly supervise word-
object alignment? (ECAI 2020)

,'/ O 48

Corentin Grigory Moez
Kervadec Antipov  Baccouche

( Is the red car in the top part or in the bottom of the picture?

bottom _ the ]
of " picture [SEP]

Christian
Wolf



(Intermediate) conclusion

— Our objective is to train agents to reason from
large-scale datasets, avoiding shortcuts:

— Creation of tasks and auxiliary losses

— We imbue neural networks with inductive biases
— Visualization of reasoning patterns

— Multi-modal inputs

— Learned spatial representations
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