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The goal of this paper is to model the coverbal behavior of a subject involved in face-to-face social inter- 

actions. For this end, we present a multimodal behavioral model based on a dynamic Bayesian network 

(DBN). The model was inferred from multimodal data of interacting dyads in a specific scenario designed 

to foster mutual attention and multimodal deixis of objects and places in a collaborative task. The chal- 

lenge for this behavioral model is to generate coverbal actions (gaze, hand gestures) for the subject given 

his verbal productions, the current phase of the interaction and the perceived actions of the partner. In 

our work, the structure of the DBN was learned from data, which revealed an interesting causality graph 

describing precisely how verbal and coverbal human behaviors are coordinated during the studied in- 

teractions. Using this structure, DBN exhibits better performances compared to classical baseline models 

such as hidden Markov models (HMMs) and hidden semi-Markov models (HSMMs). We outperform the 

baseline in both measures of performance, i.e. interaction unit recognition and behavior generation. DBN 

also reproduces more faithfully the coordination patterns between modalities observed in ground truth 

compared to the baseline models. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Face-to-face communication is considered as one of the most

basic and classic forms of communication in our daily life [29] . Its

apparent simplicity and intuitive use conceals a complex and so-

phisticated bidirectional multimodal phenomenon in which part-

ners continually convey, perceive, interpret and react to the other

person’s verbal and co-verbal signals and displays [33] . Studies on

human behavior have confirmed for instance that co-verbal cues

– such as body posture, arm/hand gestures, head movement, fa-

cial expressions, and eye gaze – strongly participate in the en-

coding and decoding of linguistic, paralinguistic and non-linguistic

information. Several researchers have notably claimed that these

cues are largely involved in maintaining mutual attention and so-

cial glue [16] . 

Human interactions are paced by multi-level perception-action

loops [1] . Thus, a multimodal behavioral model should be able

to orchestrate this complex closed-loop system. In particular, the

model is facing the complex task of predicting multimodal behav-
✩ This paper has been recommended for acceptance by A. Petrosino. 
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or given a scene analysis while monitoring the intended goals of

he conversation. Our challenge in this paper is to build statisti-

al multimodal behavioral models that are trained by exemplars

f successful human–human (H/H) interactions i.e. that map per-

eption to action. The end goal of this research is to build user-

ware social robots that are able to engage efficient and believ-

ble face-to-face conversations with human partners. In this work,

his problem is solved in a data driven way through a dynamic

ayesian network (DBN) whose graphical structure and its param-

ters are learned from observed training data. We will show that

utomatically learning the model’s structure as well as parameters

eads to faithful predictions of multimodal scores that reproduce

ow humans coordinate their own modalities (intra) and between

ach other (inter). 

The paper is organized as follows: the next section briefly re-

iews the state-of-the art of multimodal behavior analysis and

odeling. In Section 3 , we present our face-to-face interaction

cenario, the experimental setting and the collected signals. In

ection 4 , the DBN model is presented and the structure of

ntra-frame and inter-frame dependencies is discussed. Two other

odels (HMMs/HSMMs) are used as baselines. In Section 5 ,

omparative performances of these models are given and dis-

ussed. We show that the DBN model outperforms the other

http://dx.doi.org/10.1016/j.patrec.2016.02.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2016.02.005&domain=pdf
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tatistical models both in terms of performance and reproduction

f coordination patterns. 

. Related work 

This research is a part of the general field of social signal pro-

essing (SSP) [36] , a new emerging domain spanning research not

nly in signal and image processing but also in social and human

cience. In recent years, it is becoming an attractive research area

nd there is an increasing awareness about its technological and

cientific challenges. SSP essentially deals with the analysis and

ynthesis of multimodal behavior in social interactions. 

One of the goals of SSP is automatic conversation and scene

nalysis [10] . The challenge is here to retrieve high-level infor-

ation such as cognitive activities (e.g. addressing, turn taking,

ackchannel), social emotions (e.g. happiness, anger, fear), social

elations (e.g. roles) as well as social attitudes (e.g. degree of en-

agement or interest, dominance, personality) [36] from the ex-

hanged signals. Several computational models have been pro-

osed to cope with these problems. Pentland et al. [31] have

haracterized face-to-face conversations using wearable sensors.

hey have built a computational model based on coupled hidden

arkov models (CHMMs) to describe interactions between two

eople and characterize their dynamics in order to estimate the

uccess of the intended goals. Otsuka et al. [30] proposed a dy-

amic Bayesian network (DBN) to estimate addressing and turn

aking (“who responds to whom and when?”). The DBN frame-

ork is composed of three layers. The first one perceives speech

nd head gestures, the second layer estimates gaze patterns while

he third one estimates conversation regimes. The objective of Ot-

uka and colleagues is to evaluate the interaction between regimes

nd behaviors during multi-party conversations. For social affect

etection, Petridis and Pantic [32] presented an audiovisual ap-

roach to distinguish laughter from speech and showed that this

pproach outperforms the unimodal ones. The model uses a com-

ination of AdaBoost and Neural Networks, where AdaBoost is used

s a feature selector rather than a classifier. The model achieved a

6.9% recall rate with 76.7% precision. A decision tree is used in

2] for automatic role detection in multiparty conversations. Based

ostly on acoustic features, the classifier assigns roles to each par-

icipant including effective participator, presenter, current informa-

ion provider, and information consumer. In [13] , support vectors

achines (SVM) have been used to rate each person’s dominance

n multiparty interactions. The results showed that, while audio

odality remains the most relevant, visual cues contribute in im-

roving the discriminative power of the classifier. More complete

eviews on models and issues related to nonverbal analysis of so-

ial interaction can be found in [ 10,36 ]. 

The second scope of SSP is the generation of relevant social be-

avior. The behavioral models should here predict the most ap-

ropriate sequence of multimodal signals for conveying given lin-

uistic, paralinguistic or non-linguistic information. One possible

pplication is to integrate these models into social agents [14] to

ake them capable of displaying social actions, social emotions

nd social attitudes via an appropriate animation of their artifi-

ial bodies. Several models have proposed to model and synthe-

ize human behavior. We here focus on data-driven approaches,

hich automatically infer the behavioral models from data us-

ng machine learning techniques. For instance, Morency et al. [26]

howed how sequential probabilistic models, i.e. HMMs (hidden

arkov models) and CRFs (conditional random fields) can directly

stimate listener backchannels from a dataset of human-to-human

nteractions using multimodal output features of the speaker, in

articular spoken words, prosody and eye gaze. They notably ad-

ressed the problem of automatically selecting relevant features

nd their optimal representation for probabilistic models. Lee and
arsella [17] also opted for a probabilistic approach to predict

peaker head nods and eyebrow movements for a virtual agent

pplication. The authors explored different feature sets (syntac-

ic features, dialog acts, paralinguistic features, etc.) and differ-

nt learning algorithms, namely HMM, CRF and latent-dynamic

RF (LDCRF). Quantitative evaluation showed that the LDCRF mod-

ls achieved the best performance, underlying the importance of

earning the dynamics between different gesture classes and the

rchestration of the gestures. In our previous work [24] , we pro-

osed statistical models that, for a given interaction scenario (i.e.

 sentence-repeating game), estimate the cognitive state of a sub-

ect – given his verbal activity and the multimodal behavior of his

nterlocutor – and then generate his gaze. We showed that sequen-

ial models (HMMs) are better than frame-based classifiers (SVMs

nd decision trees) in both tasks. Moreover, Huang and Mutlu [12]

sed dynamic Bayesian networks (DBNs) to model the coordina-

ion of speech, gaze, and gesture behaviors in narration. Given in-

ut speech features, the most probable coverbal behavior – ges-

ure type and gaze target – were computed. The evaluation of

heir model shows that this learning-based approach achieves sim-

lar performance compared to conventional rule-based approaches

hile reducing the effort involved in identifying hidden behavioral

atterns. More generally, these learning approaches frequently use

robabilistic graphical models because of their capacity to capture

ubtle covariations between modalities and coordination between

ultimodal events that often escape to human expertise. Other

nteresting properties of statistical models include their ability in

iscovering and exploiting hidden states and latent variables that

re not directly observed. That is why, in this work, the proposed

ehavioral models are data-driven and confronted to multimodal

bservation spaces. 

In the next section we describe the scenario we designed to

ollect multimodal data of H/H face-to-face social interactions. This

ata is then used to train and compare statistical models of joint

ehaviors. 

. Face-to-face interaction 

.1. Scenario 

The objective of the proposed face-to-face interaction is to col-

ect multimodal behaviors observed in a collaborative task called

put that there” [4] involving an instructor and a manipulator. This

ask – simple as it can appear at first sight – is a very interest-

ng benchmark for studying and learning human strategies used

o maintain mutual attention and coordinate multimodal deixis to-

ards objects and locations. 

More concretely, the task consists in reproducing a particular

rrangement of cubes. Each game involves an instructor and a ma-

ipulator, the latter following orders of the former. The objective of

he statistical model is to learn and reproduce the instructor’s be-

aviors. The long-term goal is to transfer this model to a humanoid

obot that will instruct a human manipulator. Credible scenarios

here the HRI leads robots to instruct human partners are not so

ncommon: robots may serve as coaches for physical or mental

raining [8,11] or rehabilitation, education [5,9] as well as instruc-

ors for gaming or shopping recommendation [34] . 

In our scenario, the instructor has to reproduce a target ar-

angement of cubes with the help of the manipulator who is the

nly agent allowed to touch and move the cubes. Conversely, the

arget arrangement is only known to the instructor. The instructor

nd the manipulator must therefore cooperate (i.e. share knowl-

dge and coordinate their sensory–motor capabilities) to perform

his collaborative task. The game involves 16 cubes. Each cube is

arked by a colored symbol drawn on its upper side, i.e. a unique

ombination of one symbol (square, cross, circle and dot) and one
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Fig. 1. (a) The gaming table. (b) Example of a game in progress, the indication dis- 

played to the instructor should be transmitted to the manipulator in this way: "put 

the green cross at the right of the black dot". (c) The final target configuration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Example of an interaction, filmed by the scene camera mounted on the in- 

structor’s head. 
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color (red, green, blue and black). The gaming table comprises

three areas as shown in Fig. 1 a: 

• A manipulator space where the 16 cubes are initially randomly

positioned. This space is close to the manipulator. 
• A task space in the form of a 5 ×5 checkerboard where the tar-

get arrangement of the cubes must be reproduced. 
• A graphics tablet displaying the current target configuration, i.e.

which cube to move from the manipulator space and its desti-

nation area in the task space. These instructions are only visible

by the instructor. They are incrementally made available to the

instructor each time he performs a hand gesture on the tablet’s

touchscreen after the manipulator has effectively achieved the

previous move. To ensure independence of the input data, the

software randomly distributes source and target positions of

the cubes. 

At the start of each game, the task space is empty and a first

target cube is designated to the instructor to be placed at the cen-

ter of the chessboard. His goal is thus to identify it in the manipu-

lator space and to ask the manipulator to grasp and place it in the

right position of the task space. Although the game may be accom-

plished using verbal instructions only, the instructor is encouraged

to intensively use co-verbal behaviors such as gaze, head move-

ments and deictic gestures in order to lighten the cognitive load of
he manipulator, avoid verbal repetitions and ease the identifica-

ion of cubes and places (e.g. use rapid oscillations of index point-

ng to indicate absolute and relative positions). Subsequent posi-

ions are specified as relative positions with respect to a previously

laced cube, i.e. “above”, “below”, “at the right” and “at the left”

see examples in Fig. 1 b and c). 

.2. Experimental setting 

The aim of this experimentation is to train a model that pre-

icts the coverbal behavior of the instructor using only egocentric

bservations, which can then be used by a robot for the gener-

tion of its coverbal behavior. For that reason, the manipulator is

ot equipped with any sensors and the scene analysis is performed

rom the instructor’s viewpoint. Conversely, motion of the instruc-

or is captured by: 

• A Qualysis ® Motion Capture system (MoCap). Five markers were

placed on the helmet of the instructor to capture head move-

ments and another five markers on his right hand and his in-

dex to get his pointing gestures. The MoCap system uses four

infrared cameras, all facing the instructor. 
• A monocular Pertech 

® eyetracker, consisting of a head-mounted

eye camera and a scene camera. It delivers fixation data at

25 Hz. The video of the scene camera (see Fig. 2 ) is also used

for annotation and visual perception. 
• A head mounted microphone used to monitor the instructor’s

speech signal. 

For the purpose of annotation and data verification, we also

quipped the environment with a camera mounted on the ceil-

ng in order to have access to the complete scene. A chronome-

er is also placed in the visual field of the ceiling and scene cam-

ras in order to accurately tag and synchronize the different videos

treams. Claps are also performed before and after each interaction

n order to precisely synchronize audio and video. 

.3. Data and modeling 

We recorded 30 games in which the instructor interacted with

hree different partners (10 games with each one). Each game con-

ists in placing the first 10 cubes of one random arrangement. The

ean duration of a single game is around 1 min and 20 s ( ∼20 0 0

rames, 40 ms per frame). To model our interaction, five discrete

ariables were annotated semi-automatically (see below): 
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Fig. 3. The model of joint behavior captures the interleaving multimodal behaviors 

of both interlocutors structured by joint interaction units (IU). It is further used to 

predict an output stream (GT and FX) given partial observation of the joint activity 

(SP and MP). 
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• IU: interaction units. These are joint sub-tasks describing the

sequential organization of an elementary interaction. We dis-

tinguish (and annotated) six different IUs: 

◦ Get: get the instruction from the tablet 

◦ Seek: seek the cube that must be moved 

◦ Point: point the cube in the manipulator space 

◦ Indicate: indicate the position in the task space 

◦ Verify: verify the manipulation 

◦ Validate: validate and acknowledge the manipulation 

• MP: manipulator gestures. We distinguish between five values

(rest / grasp / manipulate / end / none). 
• SP: instructor speech with five values (cube / preposition / ref-

erence cube / else / none). 
• GT: region of interest pointed by the instructor’s index finger

with five values (rest / cube / target location / reference cube /

none). 
• FX: gaze fixations of the instructor; we distinguish eight re-

gions of interest (manipulator’s face / manipulator space / task

space / cube / target location / reference cube / tablet / else). 

MP and FX have been annotated manually using Pertech scene

ideo. SP is automatically transcribed by a speech recognition sys-

em. GT is annotated semi-automatically using the Qualysis sig-

als and adjusted manually using Pertech scene video. Finally IU

s manually annotated on the basis of gaze triggering events. The

lan ۚsoftware [35] is used to edit the multimodal scores. Note that

hese multimodal scores are time-series of our five discrete vari-

bles sampled at 25 Hz. 

These joint multimodal scores are used to infer a coverbal be-

avioral model for the instructor. This model should first esti-

ate the sequence of IUs given verbal and perceived cues and sec-

ndly to trigger the appropriate co-verbal behaviors: onsets of GT

nd FX are supposed to trigger gesture controllers that will effec-

ively perform the pointing gestures, respectively by hand/finger

nd head/eye, while taking into account contingent parameters

uch as the referent target location and size. Our behavioral mod-

ls compute what to perform and when to do it. The gesture con-

rollers finally compute how to do it with the available effectors of

he avatar. 

Actually, the data is organized into three streams: 

• The input stream consists in "SP" and "MP" 
• The output stream consists in "GT" and "FX" 
• The interaction unit stream contains "IU" 

Let us repeat that notions like "input" and "output" are always

o be considered from the point of view of the instructor. The be-

avioral model (see Fig. 3 ) will estimate the joint IUs from the in-

ut stream and generate the optimal output stream that is turned

nto coverbal actions. Note that we are interested in synthesizing
o-verbal cues, not speech; for this reason, the speech activity of

he instructor is considered as an input observation. In the next

ection, we will present our proposed behavioral models. 

. Behavioral models 

In this section, we present the statistical behavioral models,

hich will first be trained on the joint input, interaction and out-

ut streams. Machine learning and statistical modeling are used

o intrinsically associate actions and percepts given synchronized

ensory–motor streams and to organize sequences of percepts

nd actions into so-called joint sensory–motor behaviors. Our first

odel is based on a dynamic Bayesian network [28] . 

.1. DBN 

A dynamic Bayesian network (DBN) is a probabilistic graphi-

al model (PGM) that provides a compact representation of condi-

ional independence relationships among stochastic processes [15] .

BNs generalize static Bayesian nets (BNs) with a temporal ex-

ent by incorporating temporal dependencies among random vari-

bles. DBNs also generalize hidden Markov models (HMMs) and

heir variants, which can be seen as special cases. Because of their

ntuitive graphical presentation, the ability to deal with uncer-

ainty and to model complex temporal relationships among vari-

bles, DBNs have been successfully applied to several domains.

hese characteristics make DBNs particularly attractive and use-

ul in modeling the dynamics of multimodal behavior in face-to-

ace interactions [12] . An extensive review of PGMs and particu-

arly DBNs (representation, learning, and inference) can be found

n [15,28] . 

DBNs are directed acyclic graphs in which nodes represent ran-

om variables and edges represent conditional independencies. Se-

antically, an edge from a parent node X to a child node Y means

hat node X has influence over node Y. In some situations and

epending on the application, this dependency structure may be

iven by an expert [19] . If not, several methods have been intro-

uced to learn the network’s structure automatically from data.

n our application, our DBN structure (see Fig. 4 ) has been totally

earned from the data described in the previous section. 

The intra-slice structure is learnt using the K2 algorithm [6] .

he inter-slice structure is learned using the REVEAL algorithm

21] . We employed the Bayes Net Toolbox [27] for training and in-

erence. The reveal algorithm assumes no intra-slice arcs, the opti-

al set of parents (slice t ) for each child node (slice t + 1) is then

alculated separately. The idea is to infer the connections between

odes from measures of mutual information between children and

arents. For the K2 algorithm, each node has no parents initially.

hen, according to a given order of examination of nodes, the al-

orithm incrementally adds a parent (with a maximum of four par-

nts per node) if it improves significantly the score of the resulting

tructure. The adopted order was IU, MP, SP, GT, FX i.e. interaction

nit in the first level and sensory–motor data in a lower level. The

U is considered at the highest level since it reflects the cognitive

tates that guide the sensory–motor behaviors [18] . The resulting

ausality network (see Fig. 4 ) presents very interesting proprieties:

• The interaction units influence both perception and action

streams (black arrows). 
• The instructor reacts to the manipulator actions (MP impacts

SP, GT and FX) (blue arrows). 
• The speech activity (SP) of the instructor influences his co-

verbal behavior (GT and FX) (green arrows). This is consistent

with co-verbal contingency [22] . 
• Each random variable (slice t + 1) is influenced by its history

(slice t ) (gray arrows). 
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Fig. 4. The learned structure of our DBN model (variables in gray circles are the 

variables to predict in the inference stage). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Exact estimation rates for all models, the dashed line illustrates the random 

level. 
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• Perception–action loops can be easily identified by the follow-

ing sequences of edges in the dependency graph: 

◦ MP → SP → MP (2 slices: t and t + 1) 

◦ MP → GT → SP → MP (3 slices) 

◦ MP → FX → GT → SP → MP (4 slices) 
• There is a mutual influence between the modalities of instruc-

tor’s behavior: 

◦ SP → GT → SP (green and red arrows) 

◦ SP → FX → GT → SP (green and red arrows) 

◦ GT → FX → GT (yellow and red arrows) 

4.2. HMM and HSMM 

In order to compare the performance of the DBN model with

a state-of-the-art baseline, we trained a second behavioral model

based on HMMs. In this case, the conditional independence prop-

erties, i.e. the graphical structure of the model, are fixed and not

learned. For each dyad, we model each interaction unit with a sin-

gle discrete hidden Markov model (DHMM) and the whole inter-

action with a global HMM, that chains all single models with a

task-specific grammar. The hidden states of these HMMs model the

perception–action loop by capturing joined behaviors. In fact, the

observation vectors are composed of two parts: the first part con-

tains the perceptual streams and the second part observes action

streams. The “hidden” states are then intrinsically sensory–motor.

At the training stage, all data are available while in testing only

perceptual observations are available. For that reason, after train-

ing, two sub-models are extracted: a recognition model that will

be responsible of estimating sensory–motor states from percep-

tual observations and a generation model that will generate actions

from these estimated states. For more details, please refer to [23] . 

A third model based on hidden semi-Markov model (HSMM) is

also tested. In fact, a major inconvenient of conventional HMMs is

state duration modeling. Durations of hidden states implicitly fol-

low a geometric distribution, which may be often inappropriate to

adequately constrain the state-specific residence time. As an exten-

sion of the HMM, the HSMM explicitly models state durations [37] .

The structure of the HSMM is similar to the HMM model. However,
SMM needs an additional parameter matrix corresponding to the

uration probabilities of the different sensory–motor states. This

atrix is learned from data. For more details, we refer to [25] . In

he next section we will show the DBN results and a comparison

ith HMMs/HSMMs is made. 

. Results and discussion 

The proposed models should be able to (1) estimate the in-

eraction units from input observations (speech activity of the in-

tructor / gestures of the manipulator); when the two partners

ooperate, the sequential organization of the interaction units

hould ideally reflect the shared mental states of the conversation

artners at that particular moment; (2) generate suitable actions

hand gestures and gaze fixations of the instructor) that reflect his

urrent awareness of the evolution of the shared plan. The learned

BN model captures these relationships. In order to estimate an

ptimal output stream (in the DBN model sense) given an observed

nput stream, we used the junction tree algorithm [7] . Its role is

o perform offline estimation by computing the MPE (most prob-

ble explanation) of IU, GT and FX given the whole sequence of

P and SP. The junction tree algorithm gives an exact solution to

his combinatorial problem, similar to the Viterbi algorithm used

or aligning HMMs states with observations. 

For all models, 30-fold cross validation was applied. In this

aper, we tackle the non-trivial problem of evaluating the sim-

larity of two sequences. A direct frame-by-frame comparison is

f course always possible. However, a simple example can illus-

rate the problems of this approach: if two sequences A and B are

iven, where B is a shifted version of A by a single frame, the di-

ect matching may result in a large dissimilarity measure, despite

he fact that these sequences have identical structures. We address

hese shortcomings by first aligning the sequences before calculat-

ng classification measures. 

The Levenshtein distance [20] is adopted for the evaluation be-

ause it computes a warped distance between predicted and orig-

nal signals, which is tolerant to small miss-alignments. In fact,

he Levenshtein distance is a metric for measuring the differ-

nce between two sequences; it computes the minimum number

f elementary operations (insertions, deletions and substitutions)

equired to change one sequence into the other. From this op-

imal alignment, recall, precision and their harmonic mean (the

 -measure) can be directly computed. Note that elements of the

equence are frames i.e. one instant t in a DBN, HMM or HSMM

orresponds to one 40 ms frame. In this paper exact estimation

ates are presented ( Fig. 5 ) but we mainly compare the F -measures
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Fig. 6. Levenshtein estimation rates for all models, the dashed line illustrates the 

random level. 
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Table. 1 

Normality tests (Kolmogorov–Smirnov tests at the 5% signif- 

icance level): + means that the histogram distribution comes 

from a standard normal distribution, otherwise -. 

SP GT FX 

Real + - + 

DBN - - + 

HMM - - - 

HSMM - - - 

Table. 2 

Chi squared distance between the histogram of the real interac- 

tion and the histograms of different models. 

HMM HSMM DBN 

Real Speech coordination 397.17 137.67 79.38 

Gesture coordination 402.68 172.37 142.94 

Gaze coordination 630.53 250.97 141.85 
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H  
f the Levenshtein evaluation ( Fig. 6 ), all these rates are given at

he level of frames. 

.1. Rates comparison 

A direct comparison between all models is shown in Figs. 5

nd 6 . For both figures, the estimation rates of the three models

re largely higher than random rates, computed from the empirical

istribution of the data. Thanks to its capacity to explicitly model

tate durations, the HSMM leads to better Levenshtein rates ( Fig. 6 )

n IU recognition (79% vs. 72%) and gaze generation (69% vs. 60%)

ompared to the basic HMM. The DBN model outperforms signif-

cantly both models (95% of confidence level): 85% for IU estima-

ion, 87% for gesture generation and 71% for gaze generation. The

ame finding is observed for exact evaluation rates ( Fig. 5 ). This

erformance gap may be explained by the fact that the DBN inter-

stingly authorizes direct dependency relations between input and

utput observations. On the contrary, in the HMM paradigm, there

s no direct relationships between the input and output variables of

he observation vector (MP, SP, GT, FX) which presents a significant

imitation compared to general dynamic Bayesian networks. Note

owever that [3] have proposed so called Input/output HMMs that

ould partially solve the problem. 

.2. Coordination histograms 

Beyond the comparison between prediction performances, we

valuated the capacity of each model to capture and reproduce

he micro-coordination between multimodal streams (speech, de-

ctic gesture and eye gaze). To this end, we here propose the con-

ept of “coordination histograms ”. These histograms give a global

icture of the coordination patterns between different modalities.

hey can be computed both on data from ground truth and pre-

icted output streams. They are thus quite suitable for characteriz-

ng similarity between generated interaction patterns and real in-

eraction patterns. In the following, we compare the coordination

istograms computed for original data, output streams predicted

y DBN, HMM and HSMM. 

Let us recall that each modality is segmented into a certain

umber of discrete events e.g. GT has five events (rest, cube, etc.).

 coordination histogram for each stream is computed as follows:

or each event onset, we look for the nearest event onset of the

ther modalities (i.e. SP and FX) and calculate the time delay be-

ween these two events. We then tabulate these delays for all

vents into a histogram, called coordination histogram for that par-

icular stream. A coordination histogram captures the global struc-
ure of the micro-coordination between one modality and the oth-

rs given synchronous streams of discrete values. Let us consider

he histogram in Fig. 7 b, top row. The value of ∼600 for the high-

st bin centered on value "0" indicates that, in the ground truth

ata, 600 events of type "GT" had the nearest neighboring “FX”

r “SP” event in the range [-50 ms, + 50 ms], which is the interval

orresponding to the central histogram bin of 100 ms. Similarly, we

ompute coordination histograms for SP and FX (see the first row

f Fig. 7 ) for ground truth. Coordination histograms are also com-

uted for streams generated by the statistical models: DBN (second

ow in Fig. 7 ), HMM (see third row of Fig. 7 ) and HSMM (last row

f Fig. 7 ). 

Kolmogorov–Smirnov tests of normality (see Table 1 ) show that

round truth histograms are derived from a standard normal dis-

ribution (SP and FX). This finding illustrates that human behavior

s paced by hidden patterns. For our models, only the FX coordi-

ation histogram of the DBN model verifies this property. When

omparing histograms in Fig. 7 , we can see that distributions of the

BN model are visually more similar to the ground truth distribu-

ions than the other models. In Table 2 , we provide the chi-squared

istances between the coordination histograms for data of ground

ruth and the three models. The smallest distances are those of the

BN model: besides having the best prediction rates, the DBN also

odel exhibits the most faithful behavior coordination among the

roposed models. 

. Conclusions and perspectives 

In this paper, we introduce an original scenario for a face-to-

ace collaborative task. The multimodal data collected on dyads

nvolved in this task were used to train joint behavioral models

ased essentially on HMMs, HSMMs and DBNs. These models are

rained to predict the face-to-face interaction units and to gener-

te coverbal behaviors of a given subject given his verbal behavior

nd the observed behavior of his partner. The conditional struc-

ure between variables discovered by the dynamic Bayesian net-

ork evidences and assesses the complex relationships between

he different modalities of the human behavior. As a result, DBN

eads to better performances in both IU recognition and behavior

eneration. We further introduced the concept of a coordination

istogram, which is a new method to evaluate the capability of be-

avioral models to faithfully reproduce natural coordination among

is and others’ modalities. The coordination histograms produced

y DBN were the closest to ground truth histograms compared to

MM and HSMM. 

The DBN has the best performance compared to HMM and

SMM, but there is still a gap to 100%. Part of this gap is
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Fig. 7. Coordination histograms computed with a 100 ms bin. (a) Speech coordination with gesture and gaze. (b) Gesture coordination with speech and gaze. (c) Gaze 

coordination with speech and gesture. 
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certainly due to human variability – occurring even when subjects

are performing such repetitive tasks – and the consistency of semi-

automatic labeling of events by human labelers. We also think that

the DBN could be improved by considering latent variables, their

durations and additional modalities such as head or body motion.

Other models should also be considered such as long short-term

memory (LSTM) networks. 

The quest for objective performance should be complemented

with subjective assessment of the entire generation process, in-

cluding both planning by the present proposal and gestural con-

trollers that will effectively perform the movements. In our future

work, we plan to implement these models on our iCub robot, put

the robot into a real face to-face interaction and get a subjective

evaluation of the relevance of our models. 
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Synchronized videos, speech data and annotations used in this

xperiment are freely available under the item “Put-that-there” at

ttp://www.gipsa-lab.fr/projet/SOMBRERO/data.html . 
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