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Abstract

Existing methods for text detection in images are simple: most of them are based on texture estimation or
edge detection followed by an accumulation of these characteristics. Geometrical constraints are enforced
by most of the methods. However, it is done in a morphological post-processing step only. It is obvious,
that a weak detection is very difficult — up to impossible — to correct in a post-processing step. We
propose a text model which takes into account the geometrical constraints directly in the detection phase:
a first coarse detection calculates a text ”probability” image. After wards, for each pixel we calculate
geometrical properties of the eventual surrounding text rectangle. These features are added to the features
of the first step and fed into a support vector machine classifier.

Keywords

Text detection, recognition, OCR, semantic indexing, content based video retrieval

1 Introduction

The existing OCR technology and document page segmentation algorithms were developed for scanned
paper documents, an application to natural image taken with a camera or video sequences is hardly pos-
sible. Therefore, robust reading from these media needs to resort to specific text detection and extraction
algorithms.

Text detection and extraction from images and video sequences is a relatively young research topic. The
first algorithms had been developed for complex scanned paper documents, for instance colored journals.
Then, the potential of text detection for semantic video indexing was discovered and algorithms working
on videos were proposed. These algorithms were mostly conceived for artificial text, i.e. text which has
been overlaid over the image by an operator after it has been taken by a camera. This kind of text is
often considered as easier to detect and more useful for indexing purposes as scene text, i.e. text which is
present in the scene when the image or video is shot.

By definition, camera based document analysis targets scene text, which is considered as being harder
to detect and to process. However, the distinction between artificial text and scene text has been made
from a conceptual point of view. From a signal processing point of view, the two types of text are not
necessarily very different, as figure 1 illustrates. Figure 1a shows an image with scene text taken with
a digital camera1 and a zoom into the text area. The high resolution of the image (1600×1200 pixels)
results in a high visual quality of the characters, which may be segmented very well. On the other hand,
figure 1b shows an image taken from a frame of an MPEG 1 video sequence with overlaid artificial text.
The low resolution results in a very bad quality of the characters, which cannot be segmented.

Thus, one of the most limiting factors for camera based document analysis algorithms is the image
resolution and therefore the size of the text. In this article we propose a method for the extraction of low
quality and low resolution text from images and videos. For this purpose we resort to signal features which

*The work presented in this article has been conceived in the framework of two industrial contracts with France Télécom
in the framework of the projects ECAV I and ECAV II.

1The image has been used in the ICDAR 2003 robust reading competition.
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(a)

(b)

Figure 1: Example images and zooms into the text area: (a) artificial text; (b) scene text.

can be robustly detected for text of very small size: contrast and word or phrase geometry as opposed to
character geometry.

This article is organized as follows: section 2 gives an overview of the state of the art of text detection
and extraction. Section 3 describes the general framework of text detection in video sequences. Section 4
treats the problem of text detection in still images or video frames. We model the signal and the geometric
properties of text, whose parameters are learned from training data. Section 5 presents the experimental
results obtained on a database of still images and video sequences containing artificial and scene text.
New evaluation measures are introduced in order to evaluate the detection performance of our algorithm.
Finally, section 6 gives a conclusion.

2 Previous work

The existing work on text detection can be classified according different criteria. The cited methods are
classified according to the type of algorithms they employ. However, a historical point of view is taken
into account.

Detection through segmentation and spatial grouping

The first text detection algorithms, introduced by the document processing community for the extraction
of text from colored journal images and web pages, segment characters before grouping them to words
and lines. Jain et al. [14] perform a color space reduction followed by color segmentation and spatial
regrouping to detect text. Although processing of touching characters is considered by the authors,
the segmentation phase presents major problems in the case of low quality documents, especially video
sequences. A similar approach, which gives impressive results on text with large fonts, has been presented
by Lienhart [24]. A segmentation algorithm and regrouping algorithm are combined with a filter detecting
high local contrast, which results in a method which is more adapted to text of low quality. Still, the
author cannot demonstrate the reliability of his algorithm in the case of small text. False alarms are
removed by texture analysis, and tracking is performed on character level, which might pose considerable
problems in the case of text as presented in figure 1b. Similar methods working on color clustering or
thresholding followed by a regrouping of components have been presented by Lee and Kankanhalli [21],
by Zhou and Lopresti [46] and by Sobottka et al. [35]. Hase et al. cluster the components and allow for
spatial arrangements which follow a quadratic function [11].
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Scanline processing

Some methods are scanline based, i.e. they proceed line by line during the classification phase. Mariano
and Kasturi perform a color clustering of the pixels of each scan line in order to find the pixels of the
text cluster [27]. Histograms of line segments of uniform color are computed and compared across lines to
form rectangles. Wong and Chen calculate gradient measures for each line and cut the lines to segments
of similar gray value [43]. Adjacent scanlines are merged using a statistical similarity criterion.

Detection in maps and charts

Methods for text extraction from very graphical documents, e.g. maps, followed similar patterns as the
ones developed by the document processing community. Tan et al. use a hierarchical processing of the
connected components in the image to find text as regrouped components [36]. Brès and Eglin [2] binarize
the map and glide a rectangular map across the image. Inside each window, measures as the number of
vertical segments, spacing, regularity etc. are calculated and used for the decision whether a pixel contains
text or not.

The methods based on segmentation work fine for high resolution images as newspapers and journals
but fail in the case of low resolution video, where characters are touching and the font size is very small.
New methods developed by the image and video processing community based on edge detection or texture
analysis were soon introduced when the attention focused to video.

Edge based detection

The video indexing system introduced by Sato et al. [32] combines closed caption extraction with super-
imposed caption (artificial text) extraction. The text extraction algorithm is based on the fact that text
consists of strokes with high contrast. It searches for vertical edges which are grouped into rectangles.
The authors recognized the necessity to improve the quality of the text before passing an OCR step.
Consequently, they perform an interpolation of the detected text rectangles before integrating multiple
frames into a single enhanced image by taking the minimum/maximum value for each pixel. They also
introduced an OCR step based on a correlation measure. A similar method using edge detection and
edge clustering has been proposed by Agnihotri and Dimitrova [1]. Wu, Manmatha and Riseman [44]
combine the search for vertical edges with a texture filter to detect text. Unfortunately, these binary edge
clustering techniques are sensitive to the binarization step of the edge detectors. A similar approach has
been developed by Myers et al. [29]. However, the authors concentrate on the correction of perspective
distortions of scene text after the detection. Therefore, the text must be large so that baselines and
vanishing points can be found. Since the detection of these features is not always possible, assumptions
on the imaging geometry need to be made.

LeBourgeois [20] moves the binarization step after the clustering by calculating a measure of accumu-
lated gradients instead of edges. The coarse detection step of our work is based on a slightly modified
variant of this filter, but our detection technique also uses higher level features based on a robust esti-
mation of the geometry of the coarsely detected features. In his work, LeBourgeois proposes an OCR
algorithm which uses statistics on the projections of the gray values to recognize the characters.

A couple of methods use mathematical morphology in the detection step. Hori dilates Sobel edges into
text regions [12]. The emphasis of his work is set on binarization and removal of complex backgrounds.
Hasan and Karam dilate edges detected with a morphological detector [10]. The main drawback of their
algorithm are the strong assumptions on the geometry and the size of the text.

In the previously introduced methods, the features calculated for the discrimination between text and
non-text pixels are of very basic nature. This is due to the fact that in a neighborhood of small size, text
does not have a very distinctive signature. Most people use edge density and related features, as high
frequency components of wavelet decompositions etc. Very sophisticated texture features are of limited
use since the texture of text is very irregular, especially in case of short text. Sin et al. detect the text
using features calculated on the autocorrelation function of a scanline [34]. However, they exploit the
fact that text in their application (billboard detection) is very long and enclosed by a rectangular frame
(e.g. the panel of the billboard). Furthermore, several scanlines of a text rectangle are concatenated,
which creates problems due to the non-alignment of the phases of the Fourier-transforms of the different
scanlines. The method cannot be applied to short text.

Detection through learning methods

Various methods based on learning have also been presented. Li and Doermann use a Haar wavelet for
feature extraction [22]. By gliding a fixed size window across the image, they feed the wavelet coefficients
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to a MLP type neural network in order to classify each pixel as “text” or “non-text”. Clark and Mirmehdi
also leave the classification to a neural network fed with various features, as the histogram variance, edge
density etc. [7]. Similarly, Wernike and Lienhart extract overall and directional edge strength as features
and use them as input for a neural network classifier [40]. In a more recent paper, the same authors
change the features to a 20×10 map of color edges, which is fed directly to the neural network [25]. Jung
directly uses the gray values of the pixels as input for a neural network to classify regions whether they
contain text or not [16]. Kim et al. also use the gray values only as features, but feed them to a support
vector machine for classification [17]. Tang et al. use unsupervised learning to detect text [37]. However,
their features are calculated from the differences between adjacent frames of the same shot, resulting in a
detection of appearing and disappearing text. Text which is present from the beginning of a shot to the
end (a type of text frequently encountered for locations in news casts) is missed. Chen et al. [6] introduce
a two step process of fast candidate text line detection by edge detection and morphological processing
and text rectangle identification by SVM learning. The features fed to the SVM are an edge distance map
of the scaled text box. The drawback of the method is the simple coarse detection step. Text on complex
background is likely to touch the background, thus cannot be segmented and therefore not be verified by
the more complex identification step.

As usual, learning methods depend on the quality of the training data used to train the systems and
on the features which are fed into the learning machine. However, in video, text appears in various sizes,
fonts, styles etc., which makes it very difficult to train a generalizing system. The features which have
been presented in the previous work are very basic (gray values, normalized gray values, distances to the
edge map, etc.), it must be feared that they do not generalize well across the set of possible text types.

Detection in compressed data

Methods working directly in the compressed domain have also been introduced. Zhong, Zhang and Jain
extract features from the DCT coefficients of MPEG compressed video streams [45]. Detection is based
on the search of horizontal intensity variations followed by a morphological clean up step. Randall and
Kasturi [8] compute horizontal and vertical texture energy from the DCT coefficients. Unfortunately they
only obtain good results for large text. Gu [9] also uses the DCT coefficients to detect static non-moving
text and removes false alarms by checking the motion vector information. One of the problems of these
methods is the large number of existing video formats (MPEG 1&2, MPEG 4, Real Video, wavelet based
methods etc.) and the high rate of innovation in the video coding domain, which makes methods working
on compressed data quickly obsolete.

Although the research domain is very young, there exist already a high number of contributions. Only
few of them present complete methods beginning from the detection of the text until the last binarization
step before passing the results to an OCR. In most cases the model behind the detection algorithms is
very simple: edge detection, regrouping into rectangles.

3 The extraction framework

One of the major design goals of our method was the ability to extract text from still images as well as
video sequences. Therefore, in the case of video sequences, spatio-temporal approaches to text detection
were not an option, which treat the 3D input stream as such and detect the text directly in the 3D space.
Instead, a tracking method treats the input stream as a temporal sequence of images and detects text on
a frame by frame basis. The detected text objects are tracked across several frames in order to create the
text appearance, which is a result of the detection and the tracking process. In this article, we concentrate
on static, non moving text. A generalization of our work to simple, linear movement has been done by
Marquis et al. [28].

Apart from the detection itself, the additional temporal component in video sequences also leads to
consequences and open questions concerning the usage of the detected appearance. The detected text
forms a 3D object with a temporal dimension, which cannot be recognized by an OCR software directly,
at least not by existing OCR technology. Several possible techniques may be considered:

• Choose a single frame out of all possible frames of the appearance. This is a simple technique, which
has the disadvantage of losing the possible additional temporal information in the appearance.

• Use the 3D text object as it is and develop a new recognition algorithm which exploits the temporal
information directly in order to increase recognition performance.
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Figure 2: The scheme of our system.

• Integrate the 3D appearance into a single 2D image, exploiting the temporal information in order
to “clean up” the image and to create a single image of better quality.

• Apply the recognition algorithm to each of the frames in order to create a set of recognized text
strings. Apply symbolic statistics to the set in order to create a single string with the most probable
contents.

The first solution — choosing the text rectangle from a single frame for recognition — fails due do the
miserable quality of most text taken from videos. At least some processing is necessary to enhance the
image quality.

The second solution is beyond the scope of this work. The development of a new OCR technology
needs a tremendous amount of engineering experience in order to find the necessary heuristics which allow
these systems to obtain their excellent recognition performance. Instead, we apply commercial software,
which delivers excellent results on scanned printed or faxed documents.

Unfortunately, commercial OCR software is not adapted to the type of data, which is why we chose
the third solution: We integrate the text appearance into a single image of better quality, which is closer
to the type of data expected by commercial OCR software.

Our research team also successfully worked on the fourth way to use the text appearance. An algorithm
which uses new theoretical research on statistical processing of character strings done by our team is given
in [15].

A global scheme of our proposed system for text extraction from video sequences is presented in figure
2. As already stated, the detection algorithm for still images is applied to each frame of the sequence
separately. The detected text rectangles are passed to a tracking step, which finds corresponding rectangles
of the same text appearance in different frames. From several frames of an appearance, a single enhanced
image is generated and binarized, i.e. segmented into characters and background, before passing it to a
standard commercial OCR software.

Text in videos has gray level properties (e.g. high contrast in given directions), morphological proper-
ties (spatial distribution, shape), geometrical properties (length, ratio height/length etc.) and temporal
properties (stability). Our method makes use of these properties, starting from the signal and going se-
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quentially to the more domain dependent properties. The final step (the character segmentation) results in
a set of binary boxes containing text which need to be recognized by a classical commercial OCR system.

The global scheme of our system including the tracking, enhancement and binarization algorithms has
already been published in detail in [42]. In this work, we concentrate on the algorithm for text detection
in images or video frames, which will be described in detail in the next section.

4 Detection in still images

The heart of the extraction system is the detection algorithm for still images. A common issue in object
detection is the problem of finding a decision function for each pixel deciding whether it is part of the
object or not. The pre-attentive nature of the state of the art of computer vision tends to produce
algorithms whose results are not binary, but continuous. This is a very common problem in computer
vision, which is for example also encountered during edge detection algorithms. Gradient based edge
detection algorithms produce continuous outputs with smaller responses to noise and light background
texture and larger responses for edges, which (hopefully) correspond to object boundaries. The problem
of automatically determining a threshold which separates these two cases is far from being resolved.

The same is true in the case of text detection, the decision function needs to be thresholded. In [42]
we proposed a method which assumes that there is text in a frame or image and calculates the optimal
threshold using Otsu’s method based on discriminant analysis [31]. In this article we propose a different
approach, which learns text features from training data and therefore delegates the problem of finding a
threshold to the learning machine, which needs to learn a decision border in the feature space. The use
of machine learning allows us to benefit from several advantages:

• We increase the precision of the detection algorithm by learning the characteristics of text.

• We are able to use more complex text models, which would be very difficult to derive analytically
or to verify by heuristics.

• The discovery of support vector machine (SVM) learning and it’s ability to generalize even in high
dimensional spaces opens the door to complex decision functions and feature models.

The distinction of our work to other methods based on SVM learning lies in the choice of features. The
approaches [16] and [6] feed very simple features into the SVM, namely directly the gray values in a local
window around the pixel or an edge distance map. In these works, the scientists delegated the difficult
task of feature design to the learning machine. It is well known that implicit feature extraction does not
give the same results as wisely done manual feature design — finally, only the scientist knows what he or
she needs to detect, as opposed to the learning machine.

Our text model contains the following hypotheses:

Text contains a high amount of vertical strokes.

Text contains a baseline, i.e. its border area forms a regular rect-
angle.

Indeed, one of the main properties of text is its geometry: The presence of a rectangular bounding box
and/or the presence of a baseline2. On the other hand, the texture properties of text tend to get more
and more unreliable, as the detected text gets shorter and shorter.

Until now, existing text detection features have been very simple: gradient or edge densities, texture
features based on filtering (Gabor, derivatives of a Gaussian etc.) or high frequency components of wavelet
decompositions. While it is true, that higher level features as geometrical constraints etc. are enforced by
most of the existing methods, they are employed at a second stage for verification of a segmented rectangle
only. Very often, mathematical morphology is used to clean up noise and also to enforce geometrical
constraints, but once again this happens after the classification of the pixels — whether they are text
or non-text — has been done. As a consequence, the weakness of these approaches is the hard (up to
impossible) improvement of weak classification decisions. A very badly segmented image, where the text
box touches a complex background in many places, or where a text box and the background make a single
convex region, are impossible to correct.

2In document analysis, the baseline is traditionally the lower boundary of the text area. In our case, when we refer to
“baseline”, we mean the upper and/or the lower boundary line of the text, since the presence of these two lines is a necessary
condition for text.
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A logical step is to include the geometrical features directly into the decision process for each pixel.
Unfortunately, this is a chicken-egg problem: in order to estimate geometrical constraints, we first need
to detect text. Consequently, we adopted a two step approach:

• Perform a coarse detection to emphasize text candidates without taking into account geometrical
features. This detection is based on the detection of areas containing a high density of vertical
strokes.

• For each pixel, calculate geometrical features of its neighborhood based on the detection results from
step 1. Use these features together with the features calculated in step 1 and perform a new refined
detection.

4.1 Coarse detection - stroke density

The first coarse detection phase reuses the detection algorithm we presented in [42], which is a modified
version LeBourgeois’s algorithm [20]. It detects the text with a measure of accumulated gradients:

A(x, y) =

 bS/2c∑
i=−bS/2c

(
∂I

∂x
(x + i, y)

)2
 1

2

(1)

where A is the filtered image and I is the input gray value image. The parameters of this filter are
the implementation of the partial derivative and the size S of the accumulation window. We chose
the horizontal version of the Sobel operator as gradient measure, which obtained the best results in our
experiments3. The size of the accumulation window depends on the size of the characters and the minimum
length of words to detect. Since the results are not very sensitive to this parameter, we set it to a fixed
value S = 13.

4.2 Refinement - geometrical features

In this second step we detect the text baseline as the boundary of a high density area in the image which
is the result of the first, rough text detection. Detecting the baseline explicitly, i.e. by using a Hough
transform or similar techniques, is inherently difficult due to the irregularity of the boundary and the
possibility of very short text. Furthermore, the boundaries between the text region and the non-text
background may be fuzzy, especially if the text orientation does not totally coincide with the text filter
direction (e.g. if a text with 15◦ slope needs to be detected with a horizontal filter). Therefore, the
direct detection of lines and contours is rather difficult. Instead we detect, at each pixel, the height of the
eventually associated text rectangle, and check for differences in these heights across a neighborhood. In
text areas, the text height should remain approximately constant. Using the height instead of the vertical
position of the rectangle is more robust, especially to rotations of the text.

The text rectangle height is computed from the vertical profile of the first filter response, i.e. at each
pixel a vertical interval of T pixels centered on the given pixel is considered. In this interval, we search
for a mode (peak) containing the center pixel. Figure 3a shows an example image whose rectangle height
is estimated at the pixel position indicated by the cross hair. Figure 3b shows the vertical interval of
accumulated horizontal gradients with a visible peak in the center region of the interval (the center value
corresponds to the examined pixel). The dashed-dotted line shows the estimated borders of the mode.

4.2.1 Text height estimation

The peak may be more or less flat, depending on the orientation of the text. For the horizontal filter,
horizontal text creates a rectangular shaped peak, whereas slightly rotated text creates a flatter, more
trapezoidal peak. The areas of the interval which are outside of the mode, are undefined.

The detection of peaks has already been tackled in the framework of edge detection. In contrast to
classical step edges, “roof” edges or “ridge” edges are peak shaped functions. For instance, Ziou presents
a solution for the detection of roof edges [47] which is derived from Canny’s criteria of localization quality
and detection quality [5]. These solutions are based on linear filtering with infinite impulse response
followed by a maximum search in the filter response. In our case, we are not so much interested in
the localization of the maximum of the peak, which may be anywhere in the text rectangle, but in the
localization of the peak borders. The peak may either be situated in a flat environment, if the respective

3Since we integrate the gradient magnitude, we are not subject to the localization criteria as it was defined by Canny.
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Figure 3: Searching the mode in an interval (parameter T = 41): (a) the original image; (b) the vertical
interval of gradients and the estimated mode.

rectangle lies in an unstructured background, or neighbor other peaks, if the text is part of several lines.
Therefore, a simple model of the mode as a roof function with added white noise is not possible.

Instead of trying to find the closed form of an optimal filter kernel for a linear filter, we posed the peak
detection as optimization problem over the space of possible peak borders. We exploit various properties
of the situation at hand, based on the following assumptions:

• A high filter response inside the mode.

• A high contrast to the rest of the profile, i.e. the difference between the maximum of the mode and
the values at the borders should be high.

• The size of the mode, which corresponds to the height of the text rectangle, needs to be as small as
possible, in order to avoid the detection of multiple neighboring text rectangles.

Given an interval of N values G1 . . . GN where the center value GN/2 corresponds to the pixel to evaluate,
the following values are possible for the mode borders a and b: a ∈ [1, N/2 − 1] , b ∈ [N/2 + 1, N ]. The
border values are estimated maximizing the following criterion:

(a, b) = arg max
a,b

[
α1

(
1− width

N

)
+ α2

height

maxi(Gi)−mini(Gi)
+ α3

µ(Gi)
maxi(Gi)

]
where width = b− a + 1 is the width of the mode (i.e. height of the text rectangle),

height =
[

max
i∈[a+1,b−1]

(Gi)
]
− 1

2
(Ga + Gb)

is the height of the mode (i.e. the contrast of the text rectangle to its neighborhood), µ(Gi), i ∈ [a, b] is
the mean of the mode values and the αj , j ∈ 1..3 are weights. The criterion searches for a mode with
large height and mean but small width. The weights have been experimentally set to the following values:

α1 = 0.25 α2 = 1.0 α3 = 0.5

These weights emphasize the height criterion and still allow the width criterion to avoid the detection of
multiple modes.

Note, that the three mode properties — height, width and mean — are combined additively instead
of multiplicatively, as the criteria proposed by Canny. Multiplication favors configurations where all three
properties are high. However, in our case we wanted to put the emphasis on high mode height, which is
the main characteristic of text modes. The other two properties, width and mean, have been added to
further increase the performance and to restrict the choice of borders to a single peak. This choice to
combine the mode properties may be compared to the combination of multiple experts. In the case where
some of the experts are weakly trained, i.e. less reliable than others, the sum rule of classifier combination
is more powerful than the product rule [18].
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Figure 4: Combining the mode features of neighboring pixels: (a) the original image; (b) estimating
the mode at different pixels; (c) calculating the accumulated difference of mode widths; (d) the baseline
presence image.
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# Values Feature
1 Horizontally accumulated first derivative ∂I

∂x .
1 The width of the detected mode.
1 The height of the detected mode.
1 The difference of the heights of the mode to the left and to the right

border.
1 The mean of the gradient values in the mode.
1 The standard deviation of the gradient values in the mode.
1 The baseline presence (accumulated differences of the mode widths

across several modes in a horizontal neighborhood).
7 Total per orientation

28 Total

Table 1: The contents of a feature vector.

4.2.2 Text height regularity

Once the mode is estimated, we can extract a number of features which we already used for its detection:
width, height, mean, etc. Combining the properties of the modes of several neighboring pixels, we are able
to extract features on a larger spatial neighborhood, which is schematically shown in Figure 4. Figure
4b shows the accumulated gradients of an example image. As already mentioned, around each pixel we
want to classify, a vertical interval of accumulated gradients is considered and the mode in this interval is
estimated. Then the variability of the mode width across horizontally neighboring pixels is verified (figure
4c) by calculating the difference in mode width between neighbors and accumulating this difference across
a horizontal window of size Sw, where Sw is a parameter which depends on the text size:

∆W (x, y) =
bSw/2c∑

i=−bSw/2c

|W (x + i− 1, y)−W (x + i, y)| (2)

where ∆W (x, y) is the accumulated difference in mode width (which we call baseline presence) at pixel
(x, y) and W (x, y) is the mode width at pixel (x, y).

Figure 5 shows an example image and the resulting feature images, where the feature values are scaled
for each feature independently into the interval [0, 255] in order to be able to display them as gray values,
and the negative image is displayed. Note, that the mode width is approximately uniform in the text
areas, which results in low accumulated mode width differences in this area, displayed as close to white
in the respective feature image.

The final seven feature values corresponding to a single orientation are listed in table 1. The mode
estimation features are not rotation invariant, although they are robust to slight changes up to 25o.
Therefore, we calculate the features for the four principal orientations of the image (horizontal, vertical,
right diagonal, left diagonal) resulting in a 7× 4 = 28 dimensional feature vector.

4.2.3 Reducing the computational complexity

For speed reasons, the classification is done on every 16th pixel only, i.e. on every 4th pixel in x direction and
every 4th pixel in y direction. The classification decisions for the other pixels are bi-linearly interpolated.

The most complex step during the feature calculation phase is the mode estimation. It is possible to
perform this calculation only on pixels which are evaluated later in the classification phase, which reduces
the complexity tremendously. However, the mode properties are reused to calculate the baseline presence
feature (equation 2), so the calculation of this feature needs to be changed since the mode properties of
the immediate neighbors of a pixel are not available anymore. Instead, the differences in mode width
between the nearest horizontally neighbors with available mode properties are accumulated:

∆W (x, y) =
bSw/2c∑

i=−bSw/2c

|W (x + 4(i− 1), y)−W (x + 4i, y)|

where of course the length parameter Sw needs to be adapted to the new situation. Figure 6 shows an
example image and the baseline presence feature image with feature calculation on every pixel (6b) and
with feature calculation on every 16th pixel and bi-linear interpolation of the other pixels (6c). As can be
seen, no significant difference can be noted between the two feature images.
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Figure 5: From left to right and top to bottom: The original image, the accumulated gradients (darker→
better), mode width, mode height (darker→ better), difference of mode heights (brighter→ better), mean
(darker→ better), standard deviation (darker→ better), baseline presence (brighter→ better).
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(a) (b) (c)

Figure 6: (a) example image; (b) the baseline presence with feature calculation at every pixel; (c) the
baseline presence with feature calculation at every 16th pixel only.

Figure 7: The hierarchical structure of the algorithm.

4.3 From classification to detection

The feature vectors of a training set are fed into a learning machine in order to learn the differences
between the features of text and non-text, as we will explain in section 4.4. In this section we describe
how the classification of the pixels is carried out on images and how it is translated into detection results.

In order to be able to detect text of various sizes in images of various sizes, the detection algorithm is
performed in a hierarchical framework. Each input image forms the base of a Gaussian pyramid, whose
height is determined by the image size. The classical detection approaches apply a classification step
at each level of the pyramid and collapse the pyramid by combining these intermediate results (see for
instance [40]).

The combination of the results of different levels is a difficult problem. Boolean functions as AND
and OR have drawbacks: The OR function creates a response for each response on one of the levels of
the pyramid, therefore large images with high pyramids tend to create many responses and many false
alarms. The AND function only responds if the text is detected at all levels, and therefore eliminates the
advantages of a hierarchical solution. We decided to partly delegate this problem to the learning machine
by creating feature vectors which contain features taken from two levels. Figure 7 illustrates the principle:
a Gaussian pyramid is built for the image as already stated above. As done in the classical approaches,
classification is done at each level of the pyramid for each pixel of the image. However, each feature
vector is doubled: it contains the features calculated on the level itself as well as the features calculated
for the central parent pixel. Therefore the dimensions of the feature vectors are doubled from 28 to 56
dimensions.

Since a single feature vector now contains the features from two levels, the classification decisions are
more robust to changes of text size. Text, which is normally detected at a certain level l, will also be
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detected on a lower level l − 1 with a higher probability, since the features for level l are included in the
feature vector for level l − 1.

Of course, the fact that we create vectors with features from two different levels does not solve the
problem of finding a way to collapse the hierarchical decisions into a flat result. We chose a simple OR
function for the combination of the results of the different levels. However, we do not combine the results
on pixel level but on rectangle level. Hence, the detection of text on one level of the pyramid involves the
following steps:

• Calculation of the features on each pixel of the level, using the neighborhood of the pixel itself as
well as the neighborhood of the central parent pixel.

• Classification of the feature vector, i.e. of the pixel, using the learned model.

• Post processing of the decision image and extraction of text rectangles as bounding boxes of con-
nected components. We perform the morphological and geometrical post-processing already de-
scribed in [42].

The hierarchical detection and post-processing results in a list of detected rectangles per pyramid level.
The final list of rectangles consists of the union of all rectangles, where each rectangle is projected to the
base of the pyramid in order to normalize their sizes and positions. Overlapping and touching rectangles
are merged according to fixed rules using the amount of overlap area (see [42] for details).

4.4 Learning

The feature vectors given in the previous section have been designed to distinguish single pixels between
text and non-text. It is the task of learning machines to learn this distinction from training data, i.e. from
a set of positive and negative examples.

From the large pool of existing learning machines, we chose support vector machines (SVM) for the
task of classification between the two classes. Lately, they received tremendous attention in the learning
community and have been applied successfully to a large class of pattern recognition problems, where they
performed better then competing techniques, e.g. artificial neural networks.

A major advantage of SVMs is their smaller sensitivity to the number of dimensions of the feature
space (the curse of dimensionality), which hurts the performance of neural networks. Indeed, whereas a
reduction of the dimensionality of the feature space with tools as e.g. the principal components analysis
is crucial when “traditional” learning techniques are employed, learning with SVM often does not require
this reduction.

Support Vector Machine learning has been introduced by Vapnik to tackle the problem of learning with
small data sets. The interesting point which distinguishes SVM learning from classical neural network
learning is the fact, that SVMs minimize the generalization error using a principle called the structural
risk minimization. A detailed introduction would be too long for this article, the interested reader is
referred to [4] for a tutorial on SVM learning or Vapnik’s books for a detailed treatment of the theory
[38][39].

In this work, we conducted ν-SVM learning[33] instead of classical C−SVM learning. In ν-SVM
learning, the classical training parameter C, which depends on the dimension of the problem and the size
of the training set, is replaced by a a new normalized parameter ν ∈ [0, 1]. This parameter is independent
of the size of the data set, which allows to estimate it on a smaller training set before training the classifier
on a large training set.

4.4.1 Reducing the complexity

Support vector machines are currently significantly slower than learning machines with a similar gener-
alization performance. The complexity of the classification process is proportional to the dimension of
the problem and the number of support vectors in the model. Since the dimension of the problem cannot
always be changed easily, the key to the reduction of the computational complexity is a reduction of the
number of support vectors.

Different methods exist in literature for this purpose. Burges proposes the minimization of the
quadratic error of the initial hyper plane and a new one with a — fixed — lower amount of vectors
which are not necessarily data vectors [3]. The method has the disadvantage of being difficult to imple-
ment. Osuna and Girosi propose the usage of SVM regression to approximate the original hyper plane
with a new function with less support vectors [30]. We used this approach for the reduction of our model.
The algorithm to reduce the model can be outlined as follows:
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1. Train the full classification model with a given kernel and parameters.

2. Run epsilon support vector machine regression (SVMR) on the hyper plane evaluated at the support
vectors, i.e. (si, f(si)). This results in a new hyper plane with fewer support vectors.

The parameters of the SVMR algorithm are C (the sum of the slack-variables as in C-SVM classification)
and the ε for Vapnik’s ε-insensitive cost function defined as:

|x|ε =
{

0 if |x| < ε
|x| − ε else

The two parameters define the accuracy of the approximation and therefore the performance of the reduced
classifier and the number of support vectors.

4.5 The training algorithm

The learning machine as described above needs a training set with positive and negative samples in order
to learn to model. In the case of object detection problems, and as a special case text detection problems,
the positive examples are not hard to determine. On the other hand, which samples shall be chosen as
negative samples? Practically speaking, the size of the training set is limited since the complexity of
the training algorithm grows non-linearly with the number of the training samples. Hence, the negative
samples need to be chosen wisely in order to represent the class of non-text as closely and completely as
possible.

To tackle this problem, we employed the well known bootstrapping approach for the selection of the
training set, i.e. the negative samples depend on the positive ones and are chosen in an iterative algorithm.
as follows:

1. The initial training set consists of the positive training sample set TP and 1
K |TP | randomly chosen

vectors from a large set of negative samples TN , where K is the number of bootstrap iterations.

2. Training is performed on the training set.

3. The returned model is applied to the rest of the negative samples and the correctly classified samples
are removed from this set. From the remaining set, the 1

K |TP | samples with the smallest distance
to the separating hyperplane are added to the training set.

4. Go to step 2 until the number of iterations has been performed.

During the training phase, we perform another iterative algorithm: We employ n-fold cross validation
in order to estimate the generalization error of the model we obtained by the learning process. The
two iterative processes, bootstrapping and N-fold cross validation, are combined into a single training
algorithm as follows:

1. Create two sets of training samples: a set TP of positive samples and a large set TN of negative
samples.

2. Shuffle the two sets and partition each set into N distinctive and non-zero subsets of sizes 1
N |TP |

and 1
N |TN |, respectively, where N is the parameter from the N-fold cross validation.

3. i = 1.

4. For each of the two sets, choose subset i.

5. Train the SVM on the two sets using the iterative bootstrapping method described above.

6. Test the model on the samples not chosen in step 4 and calculate the error.

7. i = i + 1.

8. Go to step 4 until the number of iterations is reached (i.e. i=N).

At each iteration, N−1
N (|TP | + |TN |) samples are used for training and 1

N (|TP | + |TN |) samples are used
for testing. The final generalization error is computed as the mean of the errors computed in step 6 over
all iterations.
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5 Experimental Results

To estimate the performance of our system on still images, we used a database containing 384 ground-
truthed images in format CIF (384×288 pixels), among which 192 contain text and 192 do not contain text.
The former image set contains a mixture of 50% scene text and 50% artificial text. To test the system on
video sequences, we carried out exhaustive evaluations using a video database containing 60.000 frames in
4 different MPEG 1 videos with a resolution of 384×288 pixels. The videos provided by INA4 contain 323
appearances of artificial text from the French television channels TF1, France 3, Arte, M6 and Canal+.
They mainly contain news casts and commercials.

As already stated, the proposed method consists of a classification step and post-processing step
(morphological and geometrical post-processing and combination of the levels of the pyramid). Hence, the
experiments and the evaluation of the detection algorithm need to be conducted on two different levels:

• An evaluation on pixel level, i.e. feature vector level, which evaluates the discrimination performance
of the features and the performance of the classifier. We also based the choice of the learning
parameter of the learning machine and the choice of the kernel and its parameters on the results
of this evaluation, in order to keep the choice independent of the parameters of the post-processing
step.

• An evaluation on text rectangle level.

The experiments performed on the two levels of evaluation are described in the next two sub sections.

5.1 Classification performance

The estimation of the classification error with 5-fold cross validation helped us to determine various choices:

• The choice of the kernel;

• The kernel parameter;

• The learning parameter ν;

• The reduction parameters C and ε for the reduction of the number of support vectors;

For speed reasons, we carried out the evaluation on two training sets of different sizes. For the selection
of the kernel, its parameters and the training parameters, we chose for each feature type 3,000 vectors
corresponding to text pixels (positive examples) and 100,000 feature vectors corresponding to non-text
pixels (negative examples). In this step, we determined an optimal polynomial kernel of degree 6 and a
learning parameter of ν = 0.37. Once the optimal parameters were selected, we trained the system with
50,000 positive feature vectors and 200,000 negative samples. All learning was done with combined boot
strapping (3 iterations) and 5-fold cross validation as described in section 4.5, i.e. not all negative samples
were actually used in the final training set.

Table 2 shows the effect of the reduction of the number of support vectors. The full, unreduced
trained SVM model contains 22,100 support vectors, which results in very high classification complexity.
The classification of an image of size 384×288 pixels takes around 15 minutes on a Pentium III-700 (if only
every 4th pixel in each dimension, i.e. every 16th pixel is classified!). However, by applying the technique
described in section 4.4.1, a large reduction of the number of support vectors can be achieved without
a significant loss in classification performance. A reduction from 22,100 support vectors to 806 support
vectors decreases the classification performance only by 0.5 percentage points (see table 2a). The tradeoff
between the number of support vectors and the classification performance can be controlled conveniently
by tuning the parameter ε of the model reduction algorithm. More information on the run-time complexity
of the classification algorithm for different models with numbers of support vectors is given in sub section
5.4.

The classification performance figures given above have been achieved calculating the features for each
pixel. However, as explained in sub section 4.2.3 and shown in figure 6, the calculation may be accelerated
by calculating the features on each 4th pixel in each dimension only. The classification results for this
calculation mode are given in table 2b. The final model we used throughout this work is the one reduced
with parameters C = 100 and ε = 1.0 resulting in 610 support vectors.

Finally, figure 8 shows three result images and the text detection results without post processing. The
result images are calculated on the original scale of the image (as opposed to the feature vectors, which
are calculated on two scales).

4The Institut National de l’Audiovisuel (INA) is the French national institute in charge of the archive if the public
television broadcasts. See http://www.ina.fr
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C ε Recall Precision H.Mean #SVs
no reduction 81.0 96.0 87.9 22100
1000 0.01 80.5 95.9 87.5 2581

0.1 80.3 95.8 87.4 806
1 75.5 96.6 84.8 139

10000 0.01 80.5 95.9 87.5 2581
0.1 80.3 95.8 87.4 806

1 75.5 96.6 84.8 139

(a)

C ε Recall Precision H.Mean #SVs
no reduction 84.0 93.2 88.4 19058
100 1.0 78.3 93.0 85.0 610
100 1.5 69.3 93.7 79.7 236

(b)

Table 2: The effect of the reduction of the number of support vectors on the classification performance:
(a) feature calculation for each pixel; (b) partial calculation of the features only (each 16th pixel).

5.2 Detection performance in still images

In contrast to an evaluation on pixel level, for object detection systems (and as a special case, text
detection systems), the notion of “the object has been detected” is not well-defined. The question cannot
be answered with a simple “yes” or “no”, since objects may be partially detected. Therefore, the familiar
precision/recall measures need to be changed to incorporate the quality of the detection.

5.2.1 Evaluation measures

Unfortunately, until now there is no widely used evaluation scheme which is recognized by the scientists
of the domain. We therefore used different evaluation schemes, among which are schemes proposed by
other researchers and our own techniques which address some short comings of the already existing ones:

The ICDAR measure A simple but effective evaluation scheme has been used to evaluate the systems
participating at the text locating competition in the framework of the 7th International Conference
on Document Analysis and Recognition (ICDAR) 2003 [26]. The two measures, recall and precision,
are changed slightly in order to take into account the amount of overlap between the rectangles: If
a rectangle is matched perfectly by another rectangle in the opposing list, then the match functions
evaluate to 1, else they evaluate to a value < 1 proportional to the overlap area.

The ICDAR evaluation scheme has several drawbacks:

• Only one-to-one matches are considered. However, in reality sometimes one ground truth
rectangle may correspond to several text rectangles or vice-versa.

• The amount of overlap between two rectangles is not a perceptively valid measure of detection
quality (see figure 12).

• The inclusion of overlap information into the evaluation measures leaves room for ambiguity: a
recall of 50% could mean that 50% of the ground truth rectangles have been matched perfectly,
or that all ground truth rectangles have been found but only with an overlap of 50%, or anything
in between these two extremes.

The CRISP measure We developed an evaluation scheme which addresses these problems. Inspired by
the method presented in [23], it takes into account one-to-one as well as many-to-one and one-to-
many matches. However, the algorithm aims at an exact determination — controlled by thresholds
— whether a ground truth rectangle has been detected or not.

One-to-one matches need to fulfill an additional geometrical constrained in order to be validated:
the differences of the left (respectively right) coordinates of the rectangles need to be smaller than
a threshold which depends on the width of the ground truth rectangle. This constraint, which does
not depend on the overlap information, avoids the stituation that a rectangle is considered as being
detected, although a significant part of its width is missing.
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(a) (b)

Figure 8: Detection without post-processing: (a) original images; (b) classification results.

These adapted precision and recall measures provide an intuitive impression on how many rectangles
have been detected correctly and how many false alarms have been produced. Please note that text
which is only partly detected and therefore not matched against a ground truth rectangle will
decrease the precision measure, in contrast to the ICDAR evaluation scheme.

Details on these text detection evaluation schemes and other evaluation methods together with their
advantages and disadvantages are given in [41].

5.2.2 Generality

As for information retrieval (IR) tasks, the measured performance of an object detection algorithm highly
depends on the test database. It is obvious that the nature of the images determines the performance
of the algorithm. As an example we could think of the text type (artificial text or scene text), its size,
the image quality, noise, fonts and styles, compression artifacts etc. On the other hand, the nature of
the images is not the only variable which determines the influence of the test database on the detection
performance. The structure of the data, i.e. the ratio between the relevant data and the irrelevant data,
is a major factor which influences the results. In [13], Huijsmans et al. call attention to this fact and
adapt the well known precision/recall graphs in order to link them to the notion of generality for an IR
system, which is defined as follows:

GeneralityIR =
number of relevant items in the database

number of items in the database
Very large databases with low generality, i.e. much irrelevant clutter compared to the relevant material,
produce results with lower precision than databases with higher generality. However, unlike IR tasks, text
detection algorithms do not work with items (images, videos or documents). Instead, images (or videos)
are used as input, and text rectangles are retrieved. Nevertheless, a notion of generality can be defined as
the amount of text which is present in the images of the database. We define it to be
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Dataset #† G†† Eval. scheme Recall Precision H. mean
Figure 9a: 6 6.63 ICDAR 48.8 49.7 49.3
Text CRISP 52.8 47.3 49.9
Figures 9a+9b: 12 3.5 ICDAR 49.1 37.4 42.5
Text + no text CRISP 63.8 47.2 54.3
Artificial text + 144 1.49 ICDAR 54.8 23.2 32.6
no text CRISP 59.7 23.9 34.2
Artificial text + 384 1.84 ICDAR 45.1 21.7 29.3
scene text + no text CRISP 47.5 21.5 29.6

†Number of images
††Generality

Table 3: The detection results of the learning based method for different datasets and different evaluation
schemes.

Generality =
Number of text rectangles in the database

Number of images in the database
(3)

Another difference to IR systems is the lack of a result set window, because all detected items are returned
to the user. Therefore, the generality of the database does influence precision, but not recall. Thus, the
influence of the database structure on the system performance can be shown with simple two-dimensional
precision/generality graphs.

Finally, a decision needed to be made concerning the generality level of the database when result tables
or graphs are displayed which contain a fixed level a generality. In other words, we needed to decide how
many images with zero ground truth (no text present) should be included in the database. We concluded,
that a mixture of 50% images with text and 50% images without text should be a reasonable level. We
should keep in mind that this amount is not representative for realistic video streams. However, a larger
part of non-text images would introduce a higher bias into the detection system. The detection results
for realistic videos are given in sub section 5.3.

5.2.3 Results

Figure 9 shows the performance of the detection system on 6 images containing text and 6 images not
containing any text. The images have been chosen randomly from our image database, which is further
illustrated by the first two segments of table 3 which give the performance measures of the system applied
to these images. The lower two segments of table 3 give the performance figures for the whole dataset,
which are comparable to the ones for the 12 images. The shown examples illustrate the good detection
performance of the system.

The dependence of CRISP precision on the generality of the dataset is given in figures 10a and 10b for,
respectively, the dataset containing artificial text only and the dataset containing both types of text. We
remark that the precision/generality curves are very flat, which illustrates an excellent behaviour when
applied to sources of low generality, as e.g. video sequences.

Figure 11 illustrates the dependence of the CRISP performance measure on the internal thresholds
used by this evaluation method. In order to determine whether a rectangle has been detected or not,
the amount of detected rectangle surface is thresholded. In other words, if a rectangle has been detected
partially only, then it’s surface recall is < 1. If the surface recall is below a threshold, the detection is
rejected. Similarily, if the detected rectangle is bigger than the ground truth rectangle, then the surface
precision is < 1. Figure 11 presents the CRISP recall and precision, i.e. measures on rectangle level, w.r.t.
to these thresholds.

As can be seen in figure 11a, the evaluated detection performance only slightly depends on the surface
recall thresholds. This may be explained by the fact, that most text is detected with a slightly larger
rectangle than the retangle given in the ground truth.

On the other hand, the detection performance significantly depends on the surface precision thresholds.
When a surface precision of 100% per rectangle is enforced, the performance drops to zero. Unfortunately,
as explained before, the surface precision per rectangle alone is not a perceptively valid measure capable
of deciding whether the detection performance is sufficiently precise. As an example, figure 12 shows two
different detection results with a precision value of only 77.1%. This relatively low value is astonishing
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(a)

(b)

Figure 9: Some detection examples: (a) images with text; (b) images without text.
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Figure 10: Precision for different generalities. Reciprocal generality is displayed on the x-axis: (a) artificial
text + no text; (b) artificial text + scene text + no text.

Video files
Category #1 #2 #3 #4 Total
Classified as text 92 77 55 60 284
Total in ground truth 110 85 63 64 322
Recall (%) 83.6 90.6 87.3 93.8 88.2
Positives 161 121 106 125 513
Total detected 209 138 172 165 684
Precision (%) 77.0 87.7 61.6 75.8 75.0
Harmonic mean (%) 80.2 89.1 72.3 83.8 81.1
Generality 0.80 1.04 0.85 0.70 0.85
Ratio text frames 0.39 0.32 0.31 0.40 0.34

Table 4: The detection results for video sequences given on text object level.

given the detection in figure 12a, which is perceived as rather precise. For this reason we set the “standard”
threshold throughout this work to a surface precision of 0.4, a rather small value. However, we added an
additional constraint through an additional threshold on the differences of the x-coordinates of the ground
truth rectangle and the detected rectangle.

5.3 Detection performance in video sequences

Table 4 shows the results for the detection in video sequences. We achieve an overall detection rate of
88.2% of the text appearing in the video. The remaining 11.8% of missing text are mostly special cases,
which are very difficult to treat, or text with very weak contrast. Comparing these results with the ones
of our previous system [42], we remark a small drop in recall (93.5% → 88.2%), which can be explained by
the change from a system based on heuristics to a system based on learning. However, detection precision
is significantly higher (34.4% → 75.0%).

5.4 Execution time

The execution time of the algorithm implemented in C++ on a Pentium III with 700 Mhz running under
Linux is shown in table 5. The execution time has been measured for an input image in CIF format, i.e.
of size 384×288 pixels. As already mentioned, the classification largely depends on the number of support
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Figure 11: The system performance evaluated with the CRISP method for different evaluation thresholds
(the vertical bars indicate the threshold chosen throughout this work): (a) changing the thresholds related
to surface recall; (b) changing the thresholds related to surface precision.
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Figure 12: The ground truth rectangle and detected rectangles for an example image. Surface precision
and recall for figures (a) and (b) are equivalent.

vectors, which in turn depends on the parameters of the regression algorithm used to approximate the
decision function. The classification time can be reduced from 8 minutes and 49 seconds with the full
model down to 3 seconds with a very reduced model. The final model we chose is the one with 610 support
vectors. The times and performances given in table 5 have been achieved by calculating the mode feature
properties only on the pixels which are classified.

6 Conclusion

In this article we proposed a method to detect and process text in images and videos. We propose an
integral approach for the detection in video sequences, beginning with the localization of the text in single
frames, tracking, multiple frame enhancement and the binarization of the text boxes before they are passed
to a commercial OCR.

The detection method exploits several properties of text. Among these are geometrical properties,
which are fed into the detection algorithm at an early stage, in contrast to other existing algorithms which
enforce the geometrical constraints in a post processing phase.

The perspectives of our work on detection are further improvements of the features, e.g. normalization
to the overall contrast in the image, integration of geometrical texture analysis [19] and an improvement
of the run-time complexity.

A further perspective of our work is the generalization of the method to a larger class of text. Until
now, we did not restrict ourselves to artificial text. However, generally oriented scene text is not yet fully
supported. Although the features and the classification algorithm itself have been designed for multiple
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Model Full reduced reduced
# Support vectors 19,058 610 236
Feature calculation (sec) 1 1 1
Classification (sec) 528 18 3
Total 529 19 4
Classification Recall (%) 84.0 78.3 69.3
Classification Precision (%) 93.2 93.0 93.7
Classification H. mean (%) 88.4 85.0 79.7

Table 5: Execution time on a Pentium III with 700 Mhz for different SVM model sizes. The final model
is the one with 610 support vectors.

orientations, the post-processing steps need to be adapted. For the detection of distorted scene text, a
module for the detection and the correction of text orientation and skew needs to be conceived.

As already mentioned, our work already has been extended to linear movement of the movie casting
type [28]. A further extension to more complex movement might be envisioned.

The text detection and extraction technology itself seems to have reached a certain maturity. We
believe that the future will show that the integration of different methods (e.g. structural and statistical
methods) will further boost the detection performance, especially in cases where the type of data is not
known beforehand. For instance, in a hierarchical framework, structural methods on lower levels might
confirm detections done on higher levels by texture or edge based methods.
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