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Abstract

We introduce a new causal hierarchical belief network for image segmentation. Contrary to classical
tree structured (or pyramidal) models, the factor graph of the network contains cycles. Each level
of the hierarchical structure features the same number of sites as the base level and each site
on a given level has several neighbors on the parent level. Compared to tree structured models,
the (spatial) random process on the base level of the model is stationary which avoids known
drawbacks, namely visual artifacts in the segmented image. We propose different parameterizations
of the conditional probability distributions governing the transitions between the image levels.
A parametric distribution depending on a single parameter allows the design of a fast inference
algorithm on graph cuts, whereas for arbitrary distributions, we propose inference with loopy belief
propagation. The method is evaluated on scanned document images from the 18" century, showing

an improvement of character recognition results compared to other methods.
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2 Introduction

Image segmentation techniques aim at partitioning im-
ages into a set of non overlapping and homogeneous
regions. Simple techniques, as for instance thresholding
or K-means clustering, exploit information from feature
space only (gray values, colors, spectral components) to
classify each pixel. Probabilistic graphical models are
widely used to incorporate spatial dependencies between
the image pixels into the classification process, combin-

ing observed nodes and hidden nodes and their inter-
actions. Very often Bayesian methods are employed in
order to combine models of the observation process (the
likelihood of the observation given a label configuration)
with models on the spatial interaction (the prior knowl-
edge). The main objective of graphical models is to
model the joint probability distribution of the variables
in order to be able to sample from it and to estimate the
most probable configuration of hidden variables given
the configuration of observed variables based on given
risk functionals.

In their seminal paper [10], Geman and Geman intro-
duced a maximum a posteriori (MAP) estimation tech-
nique for Markov Gibbs random fields (MRF) based on
Gibbs sampling and simulated annealing. The sites of



the random field correspond to the pixels of the im-
age and interactions between the sites are modeled us-
ing energy functions defined on the maximum cliques of
the neighborhood graph. The Markov condition, which
states that two sites are conditionally independent
given realizations of their neighbors (or more precisely:
P( X =xs| X, =x,,1 # s) = P(Xs=xs|X,=x,,7 € Ny),
where Ny is the set of neighbors of sites s), allows for
dependence of a given site on a site further away than
the local neighborhood. Although the update equations
are based on the local neighborhood of each pixel, the
long run behavior of the estimation algorithm takes into
account these long distance interactions.

An alternative to the two-dimensional MRF's are hid-
den Markov chains (MC) on a Hilbert-Peano scan of an
image [1]. The disadvantage of the weaker spatial inter-
actions of the nodes in the chain is compensated by the
substantially lower computational complexity achieved
by non iterative Viterbi like algorihms. Hybrid models,
where a Markov chain based segmentation algorithm is
used to initialize an iterative MRF based segmentation,
have been proposed recently [9].

Kuo and Agazzi extended the Markov chain model to
a pseudo 2D graph structure, where single rows form
Markov chains and the image (patch) consists of an ad-
ditional Markov chain formed from super states which
correspond to the individual rows [16]. The model does
not share the connectivity of a full 2D MRF model but
keeps the speed advantage of a Markov chain model. A
full extension to a 2D connectivity as proposed by Levin
et al is of exponential complexity [19].

Hierarchical models introduce a scale dependent com-
ponent into the classification algorithm, which allows
the algorithm to better adapt itself to the image charac-
teristics. This is justified by the hypothesis that second
order image statistics are scale dependent. Hierarchical
MRFs have been introduced by Bello [2], combining a
stack of flat MRFs with spatial cliques only. The so-
lution at each scale is used as an initialization for the
inference of the next finer level, which speeds up con-
vergence for this level. In this solution, there is no real
coupling between the different scales apart from the ini-
tialization. Kate et al introduce a MRF model based on
a pyramidal hierarchical graph structure [12], featuring
horizontal and vertical single level cliques as well as ver-
tical cross level cliques. The scale causal multi-grid in-
troduced by Mignotte et al. features similar inter-level
cliques [20].

Bouman and Shapiro were among the first to propose
causal hierarchical models [3]. In their work, a quad tree
models the spatial interactions between the leaf pixel
sites through their interactions with neighbors in scale.

Markov chains run from a single root node to each pixel
node, where all nodes apart from the leaf nodes are vir-
tual nodes which do not correspond to an image pixel.
The authors propose a sequential maximum a posteriori
(SMAP) estimator, which weights misclassifications of
sites on different levels differently. The quad tree shares
the main advantage of causal hierarchical models, since
its transition probabilities in scale can be chosen to be
independent of the scale. Furthermore, the tree struc-
ture makes efficient non iterative estimation algorithms
possible. The main problem of the quad tree structure is
the non stationarity it induces into the random process
of the leaf sites, explained by the fact that two neighbor-
ing pixels may or may not share a common parent node
depending on their position on the grid. This results in
visible “blocky” artifacts in the segmented image.

In the same paper [3], Bouman and Shapiro also pro-
pose a second model where each node has three parents.
At first sight, the structure of the dependency graph is
similar to our solution (which features four parents for
each site), however, the model proposed by Bouman is a
pyramidal model in that the number of nodes decreases
at each level. Moreover, the inference algorithm is not
the same. In both cases, the exact solution cannot be
calculated. In [3], the approximation supposes a hy-
brid model, where, during the inference algorithm, for
each site at a given level n, the model is supposed to
be a quad tree for all levels < n and a cyclic graph for
all levels > n. The structure of the dependency graph
therefore changes during the inference algorithm. In
our work, the whole graph keeps its full connectivity.
The cycle problem is circumvented using approximative
inference through loopy belief propagation.

The graphical structure of the prism machine intro-
duced by Rosenfeld [25] shares some similarities with
our model: both graphs are not pyramidal, i.e. each
level features the same number of nodes as the base
level, and in both cases the connectivity spreads ex-
ponentially with increasing level. However, Rosenfelds
graph has been designed for parallel computing, not in-
ference, therefore the connectivity is not as large.

The Markov quadtree model has been refined by
Laferte et al. [17]. The authors propose different esti-
mation techniques (MAP with a Viterbi like algorithm
as well as maximum of posterior marginals (MPM))
and an unsupervised parameter estimation technique
adapted to the quad tree based on the expectation-
maximization algorithm (EM) [6].

This first generation of Markov models suffers from
several shortcomings which have been addressed re-
cently. One of the problems is the independence of
the observed variables conditional to the hidden vari-



ables and other related hypothesis usually assumed in
the classical MRF and MC frameworks. In the frame-
work of the classical generative models, relaxing this
constraint by allowing a dependency of each observed
node to the whole set label nodes makes inference in-
tractable.

In a random field including level wise and inter level
quad tree cliques, Wilson and Li propose a solution
where the observation model is defined through the dif-
ferences between neighboring sites [31]. A more general
framework addressing these issues are the recently pro-
posed conditional random fields (CRF), initially pro-
posed with a chain structure for the labeling of se-
quences [18]. They tackle the problem by defining a
label field which is Markovian conditioned on the ob-
servation field: P(Xs=zs|Y = y, X,=x,,7 # s) =
P(Xs=x]Y =y, X,=x,,7 € Ny), where X is the label
field and Y is the observed field. In other words, instead
of defining the model generating the observations from
the “true” label field, the model directly expresses the
posterior probability P(X = z|Y = y) avoiding overly
simplifying the assumptions on the true underlying gen-
erative model. Compared to classical MRFs, the clique
potential functions are defined over the labellings of the
maximal cliques of the label nodes X and the full set Y
of observed nodes.

One of the shortcomings of classical (“generative”)
models is the independence hypothesis of the observed
variables conditional to the hidden ones. Different
solutions have been proposed [24, 31] but the most
widely used are “discriminative” or conditional random
fields (CRF) [18], initially proposed for chain structured
graphs. The concept has been extended to graphs on
a two dimensional regular lattice [15], spatio-temporal
graphs [30] and arbitrary graphs[26].

The work described in this paper concentrates on the
solution to the lack of shift invariance of the quad tree.
We propose a new generative model, a forthcoming pa-
per will introduce a discriminative model based on the
same graphical structure. Our new model combines sev-
eral advantages:

- Adaptation to the image characteristics with a hier-
archical graph structure (similar to the quad tree)

- A stationary random process at the base level
(where each site corresponds to one pixel of the
input image).

- Fast inference using minimum cut/maximum flow
algorithms for a subclass of transition probability
distributions.

The paper is organized as follows: section 3 describes
the quad tree structured network and section 4 extends
it to the cube. Section 5 presents an inference algorithm
using loopy belief propagation and section 6 outlines
an interpretation of the hidden variables of the model.
Section 7 presents a fast inference algorithm for a para-
metric class of transition probability distributions. Sec-
tion 8 describes parameter estimation for the latter class
of distributions and section 6 introduces an estimation
technique for a nonparametric family of transition prob-
ability distributions. Section 9 discusses the computa-
tional complexity and memory requirements and section
10 experimentally validates the method. Finally, section
11 concludes.

3 Quad tree structured models

In the following we describe graphical models defined on
a directed graph G = {G, E'}, where G is a set of nodes
(sites) and E is a set of edges. The edges of the graph
assign, to each site s, a set of parent sites (written as
s7) and a set of children sites (written as s_). The set
of all descendants of a sites s is denoted s, the set of
all ancestors a sites s is denoted as s™. s_,s,,s~ and
st may be empty. The hierarchical nature of the graph
partitions the set of nodes into levels G, i € 0..L — 1,
G being the base level corresponding to finest resolu-
tion.

Each site s is assigned a discrete random variable X
taking values from the label set A = {0,...,C—1} where
C is the number of classes'. X, or short X denotes the
field of random variables of the graph, whereas X ) de-
notes the field of random variables at level [. The space
of all possible configurations of the field X is denotated
as Q = AlGI,

The graph structure induces a specific joint probabil-
ity distribution of the random field X:

P(X =z) = [[ P(Xs = 24| X~ = 2,-)
seG

As usual, uppercase letters denote random variables or
fields of random variables and lower case letters denote
realizations of values of random variables or of fields of
random values. In particular, P(X = x) will be abbre-
viated as P(x) when it is convenient.

!Unfortunately the two communities of image processing and
machine learning did not coordinate their notation. As a result, in
most image processing papers the symbol X determines the set of
hidden variables and the symbol Y determines the set of observed
variables, whereas in most papers in the machine learning com-
munity, especially the ones on discriminative models, the opposite
has been chosen.



Figure 1: The Markov quad tree with (a) and without
(b) observed nodes (shaded).

In the case of the Markov quad tree model [3][17], the
graph G forms a tree structure with a single root node
r € GLY, four children nodes for each node and a
single parent node for each node except the root node
(see figure la). Each path from the root site to one of
the leaf sites forms a first order Markov chain satisfying
the Markov property:

Vs e G

P(xs‘xG\s) = P(xs‘xs*)

The field X is hidden, the objective of the inference
algorithm is to estimate its values given the field of ob-
served nodes Y. Each observed variable Y is related to
a hidden variable X and is conditionally independent
of the other variables given the realization of the related
hidden variable:

P(ys|x) = P(ys|$s) Vse G

=Ilec P @

P(ylx) (ys|as)

This can be seen in the full dependency graph in shown
figure 1b, where each shaded observed node is connected
to its related hidden variable only.

The joint probability distribution of the full graph
(including observed nodes) factorizes as follows:

H p(@s|zs-) H p(ys|zs)

seG seG

= p(zr) H

s€G0) .. .G(L—-2)

P(:L’,y) =

Hp Ys|s)

seG

p(xs|xg—

As usual in Bayesian estimation techniques, the model
can therefore be seen as a combination of a likelihood
factor P(y|x) and a factor describing the a priori knowl-
edge on the estimated labels P(xz). The objective is to
estimate the hidden variables z given the observed vari-
ables y given a cost functional C(.,.) which determines
the “punishment” of a given estimation 2’ compared to
the “real” label field x*:

z= argmeigzlE[C(Xay)‘Y =y)]

In this paper we only consider the maximum a pos-
teriori estimation (MAP) estimation technique, which
corresponds to the following cost functional:

Clz,2') =1— 044
where 6; ; is the Kronecker delta given as

(1 ifi=
52’]_{0 else

The MAP estimator is given as the mode of the posterior
distribution:

T = argmaxp(zly)

= argmax

p(@)p(y|z)
TEQ )

p(y
= arg rgggp(x)p(ylx)

Other estimation techniques on the quad tree (sequen-
tial MAP and maximum of posteriori marginals) are
described in [3][17].

Direct evaluation of equation (2) is intractable be-
cause of the large size of the configuration space (|| =
CIGl). Fortunately, the particular form of the posterior
distribution due to the absence of cycles in the depen-
dency graph allows the application of optimization tech-
niques similar to the ones used for the Viterbi algorithm
[29][11]. Using dynamic programming, the best config-
uration can be computed in two recursive passes. The
first bottom up pass calculates the maximum posterior
probability of a labeling of site s and its descendants
sy given a labeling of the parent node s~ (denoted as
ws(xg—)) as follows:

Hﬂt

teEs_

ps(5-) = maxp(ys|as)p(ws|z-

where the product over the children sites t € s_ is omit-
ted for the leaf sites. The best label for each site, i.e.
label resulting in the maximum probability, is stored:

Hﬂt

teEs_

vs(xg—) = argmaxp(ys\xs (zs|ae

The top down pass is initialized by the choice of the
root label x,:

T = argmaxp(yr|xr)p(a:r) H Ms(xr)
Ty

ser_

The lower levels can be directly selected from the values
stored in the bottom up pass:

Ts = Vs<xs*)



4 The proposed cube model

The main disadvantage of the Markov quad tree is the
non stationarity introduced into the random process of
the leaf sites G(©) due to the fact that, at any given level,
two neighboring sites may share a common parent or not
depending on their position on the grid. In particular,
for any two given neighboring leaf sites s and s’, the
minimum level [ containing a common ancestor of s and
s’ may be any value between 1 (the two nodes share an
immediate parent) and L — 1 (the root node r is the
only common ancestor of s and s’) depending on their
position on the grid. This lack of shift invariance causes
visible “blocky” artifacts in the segmentation results.

We propose therefore a new model, which combines
the advantages of causal hierarchical models with the
shift invariance of stationary Markov random fields.
The extension of the Markov quad tree to the Markov
cube is shown in figures 2a-d, where for easier represen-
tation the one dimensional case is shown. In this case,
the quad tree corresponds to a dyadic tree (figure 2a).

First, a second dyadic tree is added to the graph,
which adds a common parent to all neighboring leaf
sites which did not yet share a common parent in the
original tree. In the full two dimensional case, three new
quad trees are added. Note, that the graph now con-
tains 2 root nodes in the 1D representation and 4 root
nodes in the full 2D model. The problem is solved for
the first level, where all neighboring sites share common
parents. The number of parents increased from 1 to 2
(1D representation) or 4 (the full 2D model). The result
of this step is seen in figure 2b. We repeat the process
for each level, where at each level several new trees are
added. The new trees connect sites of the original quad
tree, but also sites of the trees added at the lower levels.
The final result can be seen in figure 2d. Note, that the
final graph is not a pyramid anymore, since each level
contains the same number of nodes. In general, each
node has 4 parents (2 in the 1D representation) a part
from border nodes which may have less parents.

The whole graph can be efficiently implemented by
a cube of dimensions N x N x 1d(N), N being the
height /width of the image?. The parents and children
of site s having coordinates x and y on level [ are given
as follows:

T+A", y+ A" I+1
o x4+ A", y+ AP, [ +1
x+ AP, y+ A" [+1
r+ AP, y+ AP, [4+1

2For ease of notation we assume images having equal height and
width. The algorithm is, however, not subject to any restrictions.

s r+A,, y+A, -1
T ) x4, y+A,, -1
x4+ A, y+A4A, [—-1
where
-1 ifl=0 0 ifl=0
n _ D —
A { —9l=1 ¢lse A { 2=1 glge
0 ifl=1 1 ifl=1
An _{ —2l=2 qlse Ap _{ 20-2 ¢lge

The probability distribution induced by the graph sat-
isfies the following Markov condition:

p(xs|xG\s) = p(xs’xs*) Vse G

As for all causal hierarchical models, sampling from the
joint probability distribution represented by the graph
can be done in a single top down sweep, since the di-
rected dependency graph does not contain cycles (taking
into account the direction of the edges): labels for the
top level nodes are sampled according to the prior dis-
tribution p(z), and the labels for the nodes of the suc-
cessive levels are sampled according to the conditional
distributions (zs|z;) and the labels of the respective
parents.

The graph as it is described in figure 2d (in a 1D
representation) corresponds to the hidden part, i.e. the
prior model p(x) in the Bayesian sense. In this work, as
in the Markov quad tree model presented in section 3,
we consider one observed node related to each hidden
node and independence of the observed nodes condi-
tional to the hidden nodes, i.e. the full joint probability
distribution (including the observed nodes Y¢) induced
by the graph satisfies equation (1) and factorizes as fol-
lows:

p(e,y) = [] »plxs)

s€GO)

I

seGW), 1>0

p(xs|zs-) H p(ys|ws)

s€G

(3)

As the Markov quad tree, the full Markov cube in-

cluding observed nodes is parametrized through three

probability distributions: the discrete prior distribution

of the top level labels p(z), the transition probabilities

p(zs|zs—) and the likelihood of the observed nodes given

the corresponding hidden nodes p(ys|zs) — a probabil-
ity density.

For the inference algorithm, observations at different

cube levels are needed. These observations may directly



Figure 2: A one dimensional representation of the stepwise extension of the Markov quad tree [17] (represented
as a dyadic tree) to a Markov cube (represented as a ”"Markov square”): a quad tree (represented as a dyadic
tree) (a) after adding additional connections on the first level including the corresponding tree structure (b) after
adding additional connections on the second level including the corresponding tree structure (c¢) the full Markov

cube (d).

be taken from multi-resolution data, as long as the spe-
cific reduction function® of the graphical structure is
taken into account. In most cases this will require re-
sampling the data in all levels except the finest one. In
image segmentation applications, the only available ob-
servations are at the base level (y(0)). The higher levels
can be calculated recursively, e.g. through a mean filter.

In image segmentation applications, the only avail-
able observations are at the base level (ys;)). The
higher levels can be calculated recursively through a
mean filter:

5 Inference with loopy belief propa-
gation

The MAP estimator for the Markov cube is given as

3The term reduction function is taken from image pyramids
where a set of nodes at one level is represented by (“reduced to”)
a single node at a higher level. In the case of the Markov cube
where the number of nodes does not shrink at higher levels, a more
adapted term could perhaps be “integration function”.

8)
I

arg max p(z)p(y|z)

= argmaxp(z,y)

I1

seGW | >0

p(xs|zs-) H P(ys|zs)

seG

(4)
Direct evaluation of equation (4) is intractable, and non
iterative inference algorithms similar to the ones for the
Markov quad tree are are made impossible by the cycles
in the directed dependency graph (when the direction of
the edges is not taken into account). Loopy belief prop-
agation [22] is an approximative inference technique for
general graphs with cycles. In practice, convergence
does occur for many types of graph structures. Murphy
et al. present an empirical study [21] which indicates
that with LBP the marginals often converge to good
approximations of the posterior marginals.

= argmax [] p(x,)
s€G0)

Loopy belief propagation is equivalent to the sum-
product (or max-product) algorithm proposed for fac-
tor graphs [14]. Any directed or undirected dependency
graph can be transformed into a factor graph which con-



tains two different types of nodes: variable nodes cor-
responding to the random variables of the model and
factor nodes corresponding to the factors of the joint
probability distribution. Figure 3 shows the 1D repre-
sentation of a Markov cube without observed nodes as
well as a small part of the full 2D Markov cube with
observed nodes and their corresponding factor graphs.

The sum-product algorithm operates by passing mes-
sages between the nodes of the graph, each message be-
ing a function of the corresponding variable node. Due
to the nature of our graph, there are two types of mes-
sages: messages from a variable node to a factor node,
and the opposite:

- messages from a variable node x5 upwards to the
factor node.

- messages downwards to a variable node x5 coming
from the factor node.

- for each child z. of a variable node x4, a message
from s downwards.

- for each child x. of a variable node x5, a message
upwards to x;.

The message passing schedule for the cube alternates
between bottom up passes and top down passes.

6 Interpretation of the hidden vari-
ables

In this section, we propose a methodology to estimate
the conditional probability distributions p(xs|xs—) by
taking into account statistical invariance of images be-
longing to the same corpus. We propose to give an inter-
pretation of the hidden variables x4 (i.e. the variables
belonging to level [>0) such that :

1. the independence model given by the structure is
satisfied. Given a topological enumeration of ver-
tices, a variable zs should be independent of all
smaller index variables given its parents x .

2. the conditional probabilities are significantly dif-
ferent of conditional probabilities obtained on ran-
domly binary images.

3. the conditional probabilities are close for all images
of the corpus

For simplicity reasons, in the following we describe the
binary case (C' = 2), the adaptation to multiple labels
is straightforward. Let x; be a vertex of the Markov

cube and [ its level. We call U, the set of vertices of
level 0 reachable by a directed path from x. U,, is a
2! % 2! square on the image. Then, we naturally define
the class of x¢ as the class with the maximum number
of variables Uy, (in case of equality, we choose the class
randomly). In order to achieve estimation, we just have
to compute the frequency of label 0 (resp 1) for each
parent configuration. In our corpus, the 3 issues claimed
above were verified. This interpretation allows several
strategies for estimation of the conditional probabilities:

- Nonparametric definition of the conditional proba-
bilities. Given initial labels at the base level, the
labels at the upper levels are computed as described
above and the probabilities are estimated using his-
tograming.

- Parametric functions are fitted to the histograms.
This strategy is pursued in the next section.

7 Inference with graph cuts

Algorithms calculating the minimum cut/maximum
flow in a graph are a powerful tool able to calculate
the exact MAP solution on a number of binary label-
ing problems [8, 4, 5, 13] with low order polynomial
complexity. It has been shown recently, that energy
functions for which the optimal solution is equivalent
to the minimum cut in an appropriate graph contain
only “regular” terms on binary labels [13], where regu-
lar means that any projection of a term F(x;, xj, zy, . . .)
onto any subset of two of its arguments satisfies the fol-
lowing condition:

E(0,0)+ E(1,1) < B0, 1) + E(0,1)  (5)
In the case of the proposed model, not all energy terms
are regular, especially the terms corresponding to the
logarithm of the transition probabilities In p(zs|z4-), so
the general model cannot be solved with graph cuts.
However, for a large sub class with interesting proper-
ties, graph cut solutions can be found. We propose a
regularizing term based on the number of parent labels
which are equal to the child label:

1 ST —
p(asla, ) = a7

(6)
where «; is a parameter depending on the level [,
&(xs, x4—) is the number of labels in ™ equal to x5 and
Z is a normalization constant. The such defined tran-
sition probabilities favor homogeneous regions, which
corresponds to the objective of an image segmentation



Figure 3: A cube (left) and its factor graph (right) in one dimension (top) and two dimensions (bottom)

algorithm. We then decompose it into a sum of binary
terms:

In p(zs|zs-) = Z [(Ine) 0p,0,] —Z
s'es—

where 9, is the Kronecker delta defined as 1 if a = b
and O else. It should be noted that each binary term
is regular in the sense of [13]. Fig. 4 shows a cut
graph constructed for the dependency graph of Fig.
3b: the cut with minimum cost separating source S
from sink T corresponds to the exact MAP estimate
for a Markovcube with binary labels (C' = 2). Each
non terminal node is connected to one of the termi-
nal nodes with weight |Inp(ys|lzs = 1)/p(ys|zs = 0)],
according to the sign inside the absolute value. The
weights of top level nodes s contain an additional term
Inp(xs =1)/p(zs = 0). Additionally, each non terminal
node is connected to each of its parents with an undi-

rected edge and weight In .
Minimum cut algorithms are restricted to binary la-
beling problems (C' = 2). Discontinuity preserving en-

(7)

ergy minimization with multiple labels is NP-hard [5],
but the a-expansion move algorithm introduced in [5]
allows to find a local minimum with guaranteed max-
imum distance to the global minimum. It consists of
iteratively applying the minimum cut algorithm to the
sub problem of labeling each node of the whole graph be-
tween two labels: keeping the current label and chang-
ing the a new label o, which is changed at each iteration.

8 Parameter estimation

We chose the unsupervised technique Iterated Condi-
tional Estimation (ICE) [23] for parameter identifica-
tion. Given supervised estimators of the parameters
from a realization of the full set of variables (X,Y), an
iterative procedure alternates between estimating the
parameters and creating realizations of the label field
based on the current parameters. The initial set of pa-
rameters can be obtained from an initial segmentation
of the input image.



I p(ysles = 1)/p(yslas = 0)

—Inp(yslzs = 1) /plysles = 0)

Figure 4: The cut graph constructed for the binary problem from the dependency graph shown in Fig. 3b,
including the two terminal nodes S and 7. For more than 2 labels, the expansion move algorithm ressorts to a

similar graph.

The prior probabilities of the top level labels 3; can
be estimated using histogram techniques. Similarly, for
most common observation models, maximum likelihood
estimators of the sufficient statistics of the conditional
distributions are readily available. In this paper, we
work with a simple observation model assuming Gaus-
sian noise, requiring as parameters means and (co)-
variances for each class. Arbitrary complex likelihood
functions are possible using Gaussian mixtures.

For the parameters «; of the transition probabilities,
we propose a solution based on least squares estimation
similar to the works proposed by Derin et al. for the
estimation of Markov random field parameters [7]. For
each level [, we consider pairs of different site labels g
and g (s € GV) with equal parent labels z,- = zy-.
Note that the parent sites are different, whereas their
labels are equal. From (6) the following relationship can
be derived:

alg(z-91$5* )

- af(zs’*""s‘)

P _
(5], .

P (ws’ |l‘5—)

Expressing the conditional probabilities through abso-

lute probabilities and taking the logarithm we get:

VRSN 1t

The right hand side of the equation can be estimated
from the label process, e.g. by histogramming, whereas
the factor in the left hand side can be calculated di-
rectly. Considering a set of different label pairs, we can
augment this to

bl [lnay] = a (10)

where b is a vector where each element corresponds to
the value in the left hand side of equation (9) for a given
label pair and each value in the vector a corresponds to

the right hand side of equation (9) for a given label pair.
The solution of the over determined linear system can
be found using standard least squares techniques.

9 Complexity and storage

Inference complexity for loopy belief propagation (LBP)
can be given as O(I - N - M - (H — 1) - C®) where [ is
the number of iterations. H is the height of the cube
and bounded by [log, max(N,M)]. Storage requires
N -M-(H —1)-15C variables. In practice, LBP in its
original form is applicable for low numbers of classes (2,
3 or maximum 4), which is enough for a large number
of problems. For higher numbers of classes, the classes
may be quantized and the message passing equations
slightly changed.

Inference with minimum cut/maximum flow is consid-
erably faster with a complexity bounded by O(FE x f),
where F is the number of edges in the graph and F' is
the maximum flow. We use the graph cut implemen-
tation by Boykov and Kolmogorov [4] which has been
optimized for typical graph structures encountered in
computer vision and whose running time is nearly lin-
ear in running time in practice [5]. Table 1 gives ef-
fective run times and memory requirements measured
on a computer equipped with a single core Pentium-M
processor running at 1.86Ghz.

10 Experimental results

We evaluated the model on synthetic data as well as
real scanned images. In all experiments, we initialized
the label field with k-means clustering after low pass
filtering.
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Figure 6: Restoration and OCR results on real data, from left to right, top to bottom: input image, k-means,
MRF[13], markovcube, 4x Tonazzini et. al [27] (plane #1, plane #2, plane #3, all 3 planes combined), 2x

Tonazzini et al. [28] (plane #1, plane #2).

Method || MB | sec. Method || Error rate
K-means 1 1 K-means 27.01
Quad tree 5 1 K-means (incl. low pass filter) 9.01
MRF-GC ~20 2 Quad tree 7.57
Cube-LBP (4 levels, non-param.) 103 | 46 MRF-GC 6.28
Cube-LBP (4 levels, parametric) 103 | 46 Cube-LBP (4 levels, non-parametric) 6.82
Cube-LBP (5 levels, parametric) 150 | 64 Cube-LBP (4 levels, parametric) 6.91
Cube-GC (5 levels, parametric) ~180 4 Cube-LBP (5 levels, parametric) 6.84

Cube-GC (5 levels, parametric) 5.58

Table 1: Execution times and memory requirements of
different algorithms.

10.1 Pixel level evaluation

To be able to evaluate the model’s segmentation per-
formance quantitatively, we applied it to 30 synthetic
images of size 512x512 (60 images total) and very low
quality subject to multiple degradations: low pass filter-
ing, amplification of ring shaped frequency bands caus-
ing ringing artifacts, low quality JPEG artifacts and
additional Gaussian noice in various stages (with vari-
ances between 0=20 and 0=40). We compared the cube
model with different methods of the state of the art: flat
MRF segmentation with a Potts model and graph cut
optimization [13], a quad tree [17] and k-means clus-
tering. The k-means algorithm is only method whose

Table 2: Pixel level segmentation performance on syn-
thetic images of size 512x512 and (C'=2)

performance is improved when the image is low pass fil-
tered before the segmentation. Table 2 shows the error
rates on the different sets.

10.2 Measuring OCR improvement

To further evaluate our algorithm we tested it on a real
application, namely the restoration of images degraded
with ink bleedthrough. The goal is to remove the verso
component from the recto scan, which makes it a three
class segmentation problem. We chose a dataset con-
sisting of 6 images of pages scanned with 600dpi con-

10



Figure 5: Zoom into the results shown in figure 6: (top)
segmentation result (bottom) restoration result (left)
MRF (right) markovcube.

Method H ‘ Recall ‘ Precision
No restoration t - -
K-Means (k=3) 61.23 51.74
Tonazzini et al. [28] || t - -
Tonazzini et al. [27] || t - -
Tonazzini et al. [27] || § | 13.13 25.43
MRF [13] 69.10 58.42
Simple markovcube 69.34 61.19

TNot available: lack of OCR performance makes
a correct evaluation impossible
SResults obtained combining all source planes

Table 3: Evaluation of the character recognition (OCR)
improvement caused by different restoration methods
when applied to scanned document images.

taining low quality printed text from the 18"

the Gazettes de Leyde, a journal in French language
printed from 1679 to 1798. We tested our method’s
ability to improve the performance of an OCR algorithm
and compared it to several widely cited algorithms: k-
means clustering, a flat Markov random field (MRF)
with graph cuts optimization [13], as well as two well
known methods? based on source separation [27, 28].

century,

Figure 6 shows parts of the images together with the
OCR results. We manually created groundtruth and
calculated the recall and precision measures on charac-
ter level, which are given in table 3.

As we can see, our general purpose model outper-
formes all other segmentation algorithms. The flat MRF
directly models the interactions between pixels, which

4We thank Anna Tonazzini for providing us with the source
code of the two source separation methods and her kind help in
setting up the corresponding experiments as well as for the inter-
esting discussions.
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in theory is more powerful than the scale interactions
of the markov cube. However, this is only interesting
in cases where no long run interactions are needed, e.g.
in images with small structures. In images with larger
and, more importantly, scale varying content, the hier-
archical nature of the markov cube manages to better
model the image contents, which directly translates into
a better restoration segmentation and restoration per-
formance.

Surprisingly, the recognition performance on the re-
sults of the two source separation results was very dis-
appointing. Unfortunately, the recognition performance
on these results was not good enough to include it in the
table. Most of the output was blank or gibberish, mak-
ing an evaluation impossible.

Figure 5 shows a zoom into the results comparing the
flat MRF and the markov cube. As we can see, the
hierarchical nature of the cube results in a better seg-
mentation performance by removing artifacts and filling
holes.

11 Conclusion and discussion

In this paper we presented a new causal model which
features the advantages of hierarchical models, i.e. scale
dependent behavior and the resulting adaptivity to the
image characteristics, without the main disadvantage
of the quad tree model, i.e. the lack of shift invari-
ance. Bayesian maximum a posteriori estimation on
this model has been tested on binarization and ink bleed
through removal tasks for document images and com-
pared to widely used graphical models. Segmentation
quality is better or equal to the results of a MRF model,
the difference depending on the scale characteristics of
the input image and the nature of the degradation. We
proposed two inference algorithms: loopy belief propa-
gation and an algorithm based on graph cuts for regular
transition probability distributions.
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