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Abstract

Graphs and hyper-graphs are frequently used to recognize
complex and often non-rigid patterns in computer vision,
either through graph matching or point-set matching with
graphs. Most formulations resort to the minimization of
a difficult energy function containing geometric or struc-
tural terms, frequently coupled with data attached terms in-
volving appearance information. Traditional methods solve
the minimization problem approximately, for instance with
spectral techniques. In this paper we deal with data embed-
ded in a 3D ”space-time”, for instance in action recogni-
tion applications. We show that, in this context, we can take
advantage of special properties of the time domain, in par-
ticular causality and the linear order of time. We show that
the complexity of the exact matching problem is far inferior
to the complexity of the general problem and we derive an
algorithm calculating the exact solution. As a second con-
tribution, we propose a new graphical structure which is
elongated in time. We argue that, instead of approximately
solving the original problem, a better solution can be ob-
tained by exactly solving an approximated problem. An ex-
act minimization algorithm is derived for this structure and
successfully applied to action recognition in videos.

1. Introduction
In many applications involving the recognition of complex
visual patterns, as for instance recognition of object classes
or of actions in video scenes, salient local features collected
on sparse set of points provide a compact yet rich repre-
sentation, for classification or matching. This approach can

be robust, e.g. against occlusion and bypasses the tedious
segmentation task. The resulting representation is inher-
ently structural and is therefore difficult to use in a statis-
tical learning framework without sacrificing all or a part of
the spatial or spatio-temporal relationships. In fact, the en-
semble of local features is often converted into a numeri-
cal representation, discarding all or most of the structural
information in the process. A typical example is the bag-
of-words (BoW) formalism, originally developed for image
classification [35]. On the other hand, graphs (and hyper-
graphs) form a natural description of this type of data and
graph matching algorithms yield distances between graphs,
so that classification schemes such as k-nearest neighbor
can be used.

In this work we concentrate on hyper-graph matching
and point set matching, where the nodes of the graph(s)
correspond to space-time points, and the neighborhood re-
lationship is derived from proximity information. The goal
application in this work is human action recognition, where
matching corresponds to finding an action model point set
in a (usually larger) scene point set. Up to our knowledge,
prior work on space-time graph matching can be summed
up by two recent papers only: in [4] graphs are built from
adjacency relationships of space-time tubes produced from
oversegmenting the test video, and in [37] graphs are built
from proximity by thresholding distances in space time.
Both methods resort to off-the-shelf spectral methods or
slightly modified versions of them. In contrast, we pro-
pose to take advantage of some properties of the 3D space
in which the data is embedded to devise an exact algorithm.

Since the literature on human action detection has be-
come vast, we opt to focus our review only on methods
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making explicit use of 3D space-time geometry, and oth-
erwise we refer the interested reader to some recently pub-
lished surveys [2, 29]

Several methods for the detection of space-time interest
points have been proposed: periodic points [7], the 3D Har-
ris corner detector [16], extension of SIFT to space-time
[34], the 3D Hessian [40] and Gabor filters [28]. They
are usually combined with appearance and motion features
like cuboids (concatenation of gradient values) [7], spatial-
temporal jets [33], histogram of gradient and optical flow
values (HoG and HoF) [16] or 3D SIFT [34].

Among methods that use space-time 3D geometry, one
can cite [17], which divides the space-time volume into sev-
eral grids and construct spatio-temporal histograms, each
referenced with its grid position. In [27], the spatial position
of the features is combined within a probabilistic framework
where they divided the features into clusters and modeled
each cluster by its relative spatial position as well as the dis-
tribution of the appearance and position of interest points.
In [32], the correlation of spatio-temporal (ST) patterns is
measured and ST correlograms are constructed. Similarly,
in [24], ST correlograms are employed and mutual informa-
tion is maximized in clustering and determining the num-
ber of clusters. Pairwise spatio-temporal relations are intro-
duced in [31], based on a set of rules, and this information
is transformed into 3D histograms.

Alternative methods consider an action as a three-
dimensional object in space-time. Examples are motion
history images [3] and solutions of the Poisson equation
[14]. Although these methods are relatively simple, they
can properly work in controlled settings only. In real life
situations, several confounding factors such as background
clutter, illumination variations, shadows, clothing and cam-
era resolution can affect the performance severely. Optical
flow features introduce dense motion information but suffer
from high computational complexity, e.g. [15]. In [25],
interest points, optical flow and image segmentation are
mixed, and classification is done with multiple search trees.
In [12], a parts-based model integrates spatio-temporal con-
figuration, states, and appearance.

The linear nature of the time dimension is frequently
used to devise methods based on sequence alignment. Ex-
amples are dynamic time warping, trajectory matching with
Gabor filters [10], accumulated co-occurrence data of tra-
jectories [36] etc. In [6], salient state transitions in HMMs
are learned. In [45], a chain graph model for action recogni-
tion exploits a priori knowledge of the nature and semantics
of relationships between different variables. In [1], the evo-
lution of silhouettes over time is modelled.

Our proposed algorithm is related to sequence alignment
in that it exploits temporal information and its linear na-
ture in a similar way. However, we do not perform sim-
ple sequence alignment. The novelty of our approach is

that we use a full-fledged hyper-graph model with all its
rich structural information stored in its nodes, embedded
in space-time, and in its hyper-edges built from proximity
information. The minimization algorithm we derived is ca-
pable of dealing with classical energy functions including
unary, binary and ternary terms, which makes it possible to
include scale invariant potentials, as e.g. the formulations
in [5, 8, 38] and others.

Techniques for graph matching and for point set match-
ing with graphs have been studied intensively in the field of
pattern recognition. While the graph isomorphism problem
can be calculated in polynomial time, it is widely known
that exact subgraph matching is NP-complete [38], as is
subgraph isomorphism [41]. Formulations like the one in
(1) are known to be NP-hard [38]. In fact, for two graphs
GM and GS with respective numbers of nodes M and S, the
brute force method needs to take into account SM possible
assignments over the whole set of nodes in GM . In the con-
text of object recognition, a method which approximates the
graph, which in turn enables computation of the exact solu-
tion in polynomial time has been proposed in [39]: a k-tree
is built randomly from the spatial interest points on an ob-
ject, which allows for the application of the classical junc-
tion tree algorithm [18]. In [43] a hyper-graph matching
method is presented which proceeds through convex opti-
mization of the relaxed problem in a probabilistic setting.
Recently, [8] generalized the spectral matching method for
pairwise graphs in [20] to hyper-graphs by using a tensor-
based algorithm which solves an eigen-problem on the as-
signment matrix. In [42], a convex-concave programming
approach is employed on a least-squares problem of the per-
mutation matrices. Several methods decompose the original
problem into sub problems which are solved with different
optimization tools like graph cuts [38, 44]. In [9], a multi-
label graph cuts minimizer is extended to 2D problems by
alternating between labels and nodes. In [23], a candidate
graph structure is created and the problem is formulated as a
multiple coloring problem on a layered structure. A solution
for the resulting integer quadratic programming problem is
advanced in [21] and in [19], the problem is extended to re-
lationships of general order (> 3) and solved with random
walks. Finally, in a related paper dynamic programming
and graph algorithms [11] are described.

The contributions in this paper are two-fold:

• A theoretical result stating that for the data embed-
ded in space-time, the exact solution to the point set
matching problem with hyper-graphs can be calculated
in complexity exponential on a small number, which
becomes bounded when the hyper-graph is structured
using proximity relationships.

• A practical solution to the action recognition problem
in videos applying the proposed algorithm to graphs
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Figure 1. A model point cloud structured into a hyper-graph is matched with a scene point cloud, eventually but not necessarily structured
into a hyper-graph.

designed with a special structure. This allows calcu-
lating matches with computational complexity, which
grows linearly in the number of model nodes and lin-
early in the number of scene nodes.

The paper is organized as follows: section 2 formulates the
graph matching problem and discusses related work on the
problem. Section 3 discusses the special properties of the
space in which our data are embedded and proposes an exact
space-time matching algorithm taking advantage of these
properties. In section 4 we propose a special structure of our
model graphs and derive an algorithm which further reduces
the computational complexity of the matching algorithm.
Section 5 describes the experiments and section 6 finally
concludes.

2. Problem Formulation

In this paper we formulate the problem as a particular case
of the general correspondence problem between two point
sets. The objective is to assign points from the model set to
points in the scene set, such that some geometrical invari-
ance is satisfied. We solve the problem through a global en-

ergy minimization which takes into account a hyper-graph1

constructed from the model point set. The M points of the
model are organized as a hyper-graph G = {V, E}, where
V is the set of nodes (corresponding to the points) and E is
the set of edges. From now on we will abusively call hyper-
graphs ”graphs” and hyper-edges ”edges”. The edges E in
our graph connect sets of three nodes, thus triangles. Figure
1 illustrates the problem.

While our method requires the data in the model video
to be structured into a graph, this is not necessarily so for
the data in the scene video. While structural information on
the scene data can be integrated easily into our formulation,
which allows to add structural terms into the minimization
framework, giving a classical graph-matching problem, this
is not necessary for the method to work. Our formulation is
thus more general but can also deal with graph matching.

Each point i of the two sets (model and scene) is also
assigned a position pi = [ p<x>

i p<y>
i p

〈t〉
i ]T and a feature

vector fi describing the appearance of a local space-time
region around this point. When necessary, we will distin-

1A hyper-graph is a generalization of a graph, where a hyper-edge can
connect any number of vertices, typically more than two [43].
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guish between model and scene values by the superscripts
〈m〉 and 〈s〉: p〈m〉i , f

〈m〉
i , p

〈s〉
i , f

〈s〉
i etc. Note that symbols in

superscripts enclosed in angle brackets 〈.〉 are not numerical
indices, they are mere symbols indicating a category.

Each node i of the model graph is assigned a discrete
variable xi, i = 1..M , which represents the mapping from
the ith model node to some scene node, and can take values
from {1 . . . S}, where S is the number of scene nodes. The
whole set of variables xi is also abbreviated as x. A solution
of the problem is given through the values of the xi, where
a value of xi = j is interpreted as model node i being as-
signed to scene node j. To handle occlusions, an additional
dummy value ε is admitted, which semantically means that
no assignment has been found for the given variable.

Each combination of assignments x evaluates to an en-
ergy value using an energy function E(x). In principle, the
energy should be lower for assignments that correspond to a
realistic transformation from the model image to the scene
image, and it should be high otherwise. We search for the
assignments that minimize this energy.

Using pairwise edges mostly restricts geometrical coher-
ence constraints to distance similarities, which are not in-
variant to scale changes. Higher order matching through
hyper-graphs has been proposed in the context of object
recognition [20]. Typically, hyper-edges connect 3 nodes,
which allows to formulate geometrical constraints between
pairs of triangles. In particular, geometrical similarity can
be measured through angles, which are scale invariant. Our
proposed energy function is of the following form:

E(x) = λ1
∑
i

U(xi) + λ2
∑

(i,j,k)∈E

D(xi, xj , xk) (1)

where U is a data attached term taking into account fea-
ture distances, D is the space-time geometric distortion be-
tween two triangles and λ1 and λ2 are weighting parame-
ters. For convenience, all dependencies on all values over
which we do not optimize have been omitted. U is defined
as the Euclidean distance between the appearance features
of assigned points, taking into account a penalty WP for
the dummy assignment:

U(xi) =

{
W p if xi = ε

||fi〈m〉 − f 〈s〉xi || else
(2)

Since our data is embedded in space-time, angles are projec-
tions from 3D+t to 2D, thus include a temporal component
not related to scale changes induced by zooming. We there-
fore split the geometry term D into a temporal distortion
term Dt and a spatial geometric distortion term Dg:

D(xi, xj , xk) = Dt(xi, xj , xk) + λ3D
g(xi, xj , xk) (3)

where the temporal distortion Dt is defined as truncated

time differences over two pairs of nodes of the triangle:

Dt(xi, xj , xk) =

=

{
W t if ∆(i, j) > T t ∨∆(j, k) > T t

∆(i, j) + ∆(j, k) else
(4)

Here, ∆(a, b) is the time distortion due to the assignment of
node pair (a, b):

∆(a, b) = |(p〈m〉〈t〉a − p〈m〉〈t〉b )− (p〈s〉〈t〉xa
− p〈s〉〈t〉xb

)| (5)

and Dg is defined over differences of angles:

Dg(xi, xj , xk) =

∣∣∣∣∣∣∣∣ φ〈m〉(i, j, k)− φ〈s〉(xi, xj , xk)
φ〈m〉(j, i, k)− φ〈s〉(xj , xi, xk)

∣∣∣∣∣∣∣∣
(6)

Here, φ〈m〉(a, b, c) and φ〈s〉(a, b, c) denote the angles sub-
tended at point b for, respectively, model and scene triangles
indexed by (a, b, c).

3. Space-time matching

In our work, the geometric data are embedded in space-
time. We assume the following commonly accepted proper-
ties of space-time to derive an efficient algorithm:

Hypothesis 1: Causality — Each point in the two
sets (i.e., model and scene) lies in a 3-dimensional space
: (p

〈x〉
i , p

〈y〉
i , p

〈t〉
i ). The spatial and temporal dimensions

should not be treated in the same way. While objects (and
humans) can undergo arbitrary geometrical transformations
like translation and rotation, which is subsumed by geomet-
rical matching invariance in our problem, human actions
can normally not be reversed. In a correct match, the tem-
poral order of the points should be retained, which can be
formalized as follows

∀ i, j : p
〈m〉〈t〉
i ≤ p〈m〉〈t〉j ⇔ p〈s〉〈t〉xi

≤ p〈s〉〈t〉xj
(7)

Let us recall that the superscript 〈t〉 stands for the time di-
mension, and it is not an index.

Hypothesis 2: Temporal closeness — Another rea-
sonable assumption is that the extent of time warping be-
tween model and scene time axes must be limited. In other
words, two points which are close in time must be close in
both the model set and the scene set. This property can be
used to further decrease the search space during inference.
Since our graph is created from proximity information (we
threshold space-time distances between nodes to extract the
hyper-edges), it can be formalized as

∀ i, j, k ∈ E : |p〈s〉〈t〉xi
−p〈s〉〈t〉xj

| < T t ∨ |p〈s〉〈t〉xj
−p〈s〉〈t〉xk

| < T t

(8)
Hypothesis 3: Unicity of time instants — We assume

that time instants cannot be split or merged. In other words,
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all points of the same model frame should be matched to
points of the same scene frame.

∀i, j : (p
〈m〉〈t〉
i = p

〈m〉〈t〉
j ) ⇔ (p

〈s〉〈t〉
xi = p

〈s〉〈t〉
xj ) ∧

(p
〈m〉〈t〉
i 6= p

〈m〉〈t〉
j ) ⇔ (p

〈s〉〈t〉
xi 6= p

〈s〉〈t〉
xj )

(9)
Matching
Hypothesis nr. 3 implies that a correct sequence match con-
sists of a collection of single model frame to scene frame
matches. We therefore first reformulate the energy function
in equation (1) by splitting each variable xi into two sub-
sumed variables zi and xi,l, which are interpreted as fol-
lows: zi denotes the index of the scene frame the model
frame is matched to. The number of model frames is de-
notedM . Each frame i also possesses a numberM i of node
variables xi,1, . . . , xi,Mi

, where xi,1 denotes the node num-
ber in the scene graph the model node xi,1 is matched to.
Note that the number of possible values for variable xi,l de-
pends on the value of zi, since different frames may contain
different amounts of nodes. For convenience we will also
simplify the notation by representing a hyper-edge (and the
corresponding frame indices and node indices) as c and the
corresponding variables as (zc, xc); we also drop the param-
eters λ1 and λ2 which can be absorbed into the potentials U
and D. The reformulated energy function is now given as:

E(z, x) =
∑

(i,l)∈M×Mi

U(zi, xi,l) +
∑
c∈E

D(zc, xc) (10)

We now introduce a decomposition of the set of hyper-edges
E into disjoint subsets E i, where E i is the set of all hyper-
edges which contain at least one node with temporal coor-
dinate equal to i and no node has a higher (later) temporal
coordinate. It is clear that the set of all possible sets E i
forms a complete partition of E , i.e. E =

⋃
i E i. We can

now exchange sums and minima according to this partition-
ing:

min
z,x

E(z, x) =

min
z1;x1,1,...,x1,M1

[
M1∑
l=1

U(z1, x1,l) +
∑
c∈E1

D(zc, xc)+

min
z2;x2,1,...,x2,M2

[
M2∑
l=1

U(z2, x2,l) +
∑
c∈E2

D(zc, xc)+

...

min
zM ;xM,1,...,xM,M

M

[MM∑
l=1

U(zM , xM,l) +
∑
c∈EM

D(zc, xc)

]
...

]
(11)

In general the hyper-edges have variable temporal spans,
which makes it impossible to define a recursion scheme
with regular structure. We therefore define the concept of

Figure 2. A special graphical structure for the model point set de-
signed for very low computational complexity: a second order
chain. No requirements whatsoever are imposed on the scene point
set, however.

the reach Ri of frame i, which consists of the set of edges
which reach into the past of frame i and which are part of i
or its future:

Ri =
{
c ∈ E : [min〈t〉(c) < i] ∧ [max〈t〉(c) ≥ i]

}
(12)

where min〈t〉(c) and max〈t〉(c) are, respectively, the mini-
mum and the maximum temporal coordinate of the nodes of
edge c. Note that, per definition E i ⊆ Ri.

We also introduce the expression X i for the set of all
variables zi or xi,j involved in the edges of the reachRi:

X i =
{
zj : ∃k : (j, k) ∈ c ∧ c ∈ Ri

}
∪{

xj,k : (j, k) ∈ c ∧ c ∈ Ri
} (13)

Finally, the set of reach variables Ri without the variables
of frame i itself is denoted as X i−

X i− = X i \ {zi} \ {xi,k : k ∈ {1 . . .M i} (14)

Now a recursive calculation scheme for (11) can be devised
by defining a recursive variable αi which minimizes the
variables of a given frame as a function of the variables of
its reach:

αi(X i−) = min
zi;xi,1,...,xi,Mi

[
Ni∑
l=1

U(zi, xi,l)+

+
∑
c∈Ei

D(zc, xc) + αi+1(X (i+1)−)

]
(15)

For this recursion to work the following relation must
hold, which it does per definition: X (i+1)− ⊆ (X i− ∪
zi;xi,1, . . . , xi,Mi

).
Calculation starts at the last frame i = M and iterates by

calculating αi from αi+1. At each step, a minimum is cal-
culated over all variables of frame i for all possible values
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of the variables in X i− . The computational complexity thus
depends on the number of variables in the reach Ri and on
the size of their domain:

O

(
max

i

[ ∏
v∈Vi

|domain(v)|

])
≈ O

(
max

i

[
S
|X i

z |〈〈s〉〉|X
i
x||
])

(16)
where S is the number of scene frames, 〈〈s〉〉 is the aver-
age number of nodes per frame, and |X i

z | is the number
of variables of set z in X i. The complexity is thus very
much lower than the complexity of the brute force approach,
which is given by O(SMM |E|). Let us recall that S is the
total number of nodes in the scene and M is the total num-
ber of nodes in the model, i.e. S � S and S � 〈〈s〉〉.
Furthermore, both |X i

z | and |X i
x| are bounded and low when

the graph is constructed from proximity constraints. How-
ever, in practise and for general graphs it is still too high for
practical usage. The next section will introduce a special
structure which further decreases complexity.

4. A special graphical structure
Most formulations of point set matching or graph match-
ing problems in computer vision are NP-complete. Since
exact minimization is infeasible one classically resorts to
approximate solutions. In this work we advocate an alter-
native and perhaps better idea, which is to approximate the
problem — the graphical structure in this case — and to
solve the new problem exactly. This is particular appealing
in point matching problems where the structure of the graph
is less related to the description of the object, but rather to
the constraints of the matching process. We recall that the
graphical structure is obtained from adjacency or proximity
information, so changing it will not significantly harm the
description of the space-time object. As mentioned in sec-
tion 3, a similar philosophy has been put forward by [39] in
the context of object recognition, where the graph is struc-
tured into a k-tree.

We propose to structure the model points as follows:

• We keep a single point in each model frame by choos-
ing the most salient one, i.e. the ones with the highest
confidence of the interest point detector. However, no
restrictions are applied to the scene frames, which may
contain an arbitrary number of points.

• Each model point i is connected to its two immediate
predecessors i − 1 and i − 2 as well as to its two im-
mediate successors i+ 1 and i+ 2.

This creates a planar graph with triangular structure, as il-
lustrated in figure 2. The general case of the energy func-
tion (1) can be simplified in this case. The variable split
into pairs (zi, xi) we introduced in section 3 is not neces-
sary anymore. Furthermore, the neighborhood system can

be described in a very simple way using the index of the
nodes of the graph, similar to the dependency graph of a
second order Markov chain:

E(x) =

M∑
i=1

U(xi) +

M∑
i=3

D(xi, xi−1, xi−2) (17)

The reach of this structure is constant and consists of two
edges only, as Ri = {(xi−2, xi−1, xi), (xi−1, xi, xi+1)};
the set of reach variables is also constant X i =
{xi−2, xi−1, xi}. The general recursive formula of the in-
ference algorithm can be derived as

αi(xi−1, xi−2) = min
xi

[
U(xi) +D(xi−2, xi−1, xi)

+ αi+1(xi, xi−1)

]
(18)

with the initialization

αM (xM−1, xM−2) = min
xM

[U(xM ) +D(xM , xM−1, xM−2)]

(19)
During the calculation of the trellis, the arguments of the
minima in equation (18) are stored in a table βi(xi−1, xi−2).
Once the trellis completed, the optimal assignment can be
calculated through classical backtracking:

x̂i = βi(x(i− 1), x(i− 2)), (20)

starting from an initial search for x1 and x2:

(x̂1, x̂2) = arg min
x1,x2

[U(x1) + U(x2) + α3(x1, x2)] (21)

The algorithm as given above is of complexity O(M ·S3): a
trellis is calculated in a M × S × S matrix, where each cell
corresponds to a possible value of a given variable. The cal-
culation of each cell requires to iterate over all S2 possible
combinations of its two successors.

Exploiting the different hypotheses on the spatio-
temporal data introduced in section 2, the complexity can
be decreased further:

Ad) Hypothesis 1 — taking causality constraints into
account we can prune many combinations from the trellis
of the optimization algorithm. In particular, if we calculate
possibilities in the trellis given a certain assignment for a
given variable xi, all values for the predecessors xi−1 and
xi−2 must be necessarily before xi, i.e. lower.

Ad) Hypothesis 2 — similar as above, given a certain
assignment for a given variable xi, we will allow a maxi-
mum number of T t possibilities for the values of the suc-
cessors xi−1, xi−2, which are required to be close.

Thus, the expression in equation (18) is only calculated
for values (xi−1, xi−2) satisfying the following constraints:

|xi − xi−1| < T t ∧ |xi−1 − xi−2| < T t ∧
xi > xi−1 ∧ xi−1 > xi−2.

(22)
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B HC HW J R W
B 100 0 0 0 0 0
HC 0 100 0 0 0 0
HW 3 26 71 0 0 0
J 0 0 0 69 31 0
R 0 0 0 25 75 0
W 0 0 0 3 3 94

B HC HW J R W
B 100 0 0 0 0 0
H 3 97 0 0 0 0
H 6 15 79 0 0 0
J 0 0 0 72 28 0
R 0 0 0 8 89 3
W 0 0 0 6 0 100

(a) (b)
Table 1. Confusion matrix with (a) and without (b) model pruning.
Respective accuracies: 84.8%, 89.3%. (B: Box, HC: Handclap,
HW: Handwave, J: Jog, R: Run, W: Walk).

Method B HC HW J R W Tot.

Laptev et al. [17] 97 95 91 89 80 99 91.8
Schuldt et al. [33] 98 60 74 60 55 84 71.8
Li et al. [22] 97 94 86 100 83 97 92.8
Niebles et al. [26] 99 97 100 78 80 94 91.3
Our method 100 97 79 72 88 100 89.3

Table 2. Comparison with existing methods using the same KTH
dataset protocol. (B: Box, HC: Handclap, HW: Handwave, J: Jog,
R: Run, W: Walk).

These pruning measures decreases the complexity to
O(M ·S·T t2), where T t is a small constant measured in the
number of frame, so the complexity is linear on the number
of points in the scene: O(M ·S).

5. Experimental Results

We tested the proposed method on the widely used pub-
lic KTH dataset [33]. It includes 25 subjects performing
6 actions (walking, jogging, running, handwaving, hand-
clapping and boxing) recorded in four different scenarios
including indoor/outdoor scenes and different camera view-
points. We use the same protocol as proposed in the origi-
nal paper [33]. First, we build up a model dictionary which
consists of subsequences extracted from sequences of the
training and validation set. We use 383 sequences of the
KTH set for training out of total number 599 sequences
and use the remaining portion for testing. We generate sev-
eral model graphs by partitioning the sequences into subse-
quences each containing somewhere between 20 to 30 num-
ber of frames with salient interest points. This results in
1429 model graphs in total.

Spatio-temporal interest points extracted with the 3D
Harris detector [17] constitute the nodes of the proposed
graphical structure. Appearance features fi are the well
known HoG/HoF extracted with the publicly available code
from [17]. As mentioned in section 4, we choose a single
point per model frame based on the confidence score of the
detector. ALL points are kept for the testing videos.

The parameters are fixed as follows. The penalty param-
eter WP should theoretically be higher than the average lo-
cal energy of correctly assigned triangles and lower than the

average local energy of incorrectly assigned triangles. We
estimate it by sampling energies (without penalty) of pairs
of training sequences in two settings: intra-class and inter-
class, resulting in two histograms of local energies. We
set WP = 8.4 as the point of minimal Bayes error. The
weighting parameters are optimized over the validation set:
λ1 = 0.6, λ2 = 0.1, λ3 = 10, T t = 30 and W t = 60.

Action classes on the unseen subjects are recognized
with a nearest neighbor (NN) classifier where the distance is
defined as the matching energy (1). The average recognition
performance of the proposed scheme is found to be 84.8%.
The main cause of this modest performance is the poor dis-
crimination between the jogging and running classes (see
Table 1a). The algorithm also suffers from handwaving,
while significantly successful in boxing, handclapping and
walking. We conjecture that the disparate number of model
sets could be a factor.

Dictionary Learning — we balanced and optimized
the dictionary with Sequential Floating Backward Search
(SFBS), which removes irrelevant model graphs from the
training set. SFBS has been successfully used as a su-
pervised feature selection method in many previous stud-
ies [30]. Briefly, we start with a full dictionary and pro-
ceed to remove conditionally the least significant models
from the set, one at a time, while checking the performance
variations. Deletions which improve the performance are
made permanent in this greedy search. After a number of
removal steps, we reintroduce one or more of the removed
ones provided they improve the performance. The half of
the training sequences is used as validation set during dic-
tionary learning. We select 44 models out of 705 as our best
subset of model graphs, which increased test performance
to 89.3%. As expected, the handwaving and running se-
quences benefit the most from dictionary learning (see Ta-
ble 1b). However, the algorithm still mixes jogging up with
running.

Sample matched model and scene sequences are illus-
trated in Figure 3, where the first three actions (handwav-
ing, boxing, walking) are successfully matched while the
last one (running) gives an example of mismatch. Table 2
proves that our method has a comparable performance with
state-of-the-art methods in the literature while using much
less information. We want to point out that many results
have been published on the KTH database, but the proto-
cols are not comparable for most of them, see the excellent
review in [13]. In the table we chose results obtained with
the same protocol.

The algorithm has been implemented in Matlab. It
matches a model graph in approximately 13.8 seconds for
an average scene of 30 seconds (S = 755) on a CPU with
3.33GHz and 4GB RAM.
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Figure 3. Examples for matched videos: the top three matches are correct, whereas the bottom match is incorrect.

6. Conclusions and Future Work

In this paper we showed that — when the data is embedded
in space-time — the exact solution to the point set matching
problem with hyper-graphs can be calculated in complexity
exponential on a small number, which is bounded when the
hyper-graph is structured with proximity information. As a
second contribution we presented a special graphical struc-
ture which allows to perform exact matching with very low
complexity, linear in the number of the model nodes and
the number of scene nodes. The method has been tested
on the KTH dataset where it shows competing performance
with very low runtime. Future work will concentrate on a
GPGPU implementation and on modelling more complex
activities with hierarchical models.
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