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Abstract A new mesh optimization framework for 3D

triangular surface meshes is presented, which formu-

lates the task as an energy minimization problem in

the same spirit as in Hoppe et al. [1]. The desired mesh

properties are controlled through a global energy func-

tion including data attached terms measuring the fi-

delity to the original mesh, shape potentials favoring

high quality triangles and connectivity as well as budget

terms controlling the sampling density. The optimiza-

tion algorithm modifies mesh connectivity as well as the

vertex positions. Solutions for the vertex repositioning

step are obtained by a discrete graph cut algorithm ex-

amining global combinations of local candidates.

Results on various 3D meshes compare favorably

to recent state-of-the-art algorithms. Applications con-

sist in optimizing triangular meshes and in simplifying

meshes, while maintaining high mesh quality. Targeted

areas are the improvement of the accuracy of numeri-

cal simulations, the convergence of numerical schemes,

improvements of mesh rendering (normal field smooth-

ness) or improvements of the geometric prediction in

mesh compression techniques.
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1 Introduction

Nowadays, 3D triangular meshes are commonly used in

many fields, as the hundreds of thousands of existing

3D triangular models can attest. They are of interest

in visual effects, video games, scientific visualization,

3D animation and medical surgery simulation based on

finite element methods, to name a few. Most of the

existing triangular meshes are of unsatisfying quality

because of their inappropriate vertex sampling, which

is responsible for inequilateral triangles and irregular

connectivity. The origin of this irregular sampling may

be due to the scanning device, to 3D interactive solid

modeling software or to simplification algorithms.

This poor quality causes instability and divergence

of various mesh processing applications [2]. In that

context, several remeshing techniques have been intro-

duced in the literature. They consist in improving some

quality requirements under soft and/or hard constraint

conditions. Targeted goals vary according to the ap-

plication [3]. Simplification techniques tend to preserve

the overall shape of the mesh while removing as many

triangles as possible. Mesh smoothing methods consist

in removing high frequency noise so as to fair the mesh.

Finally, Mesh optimization aims at improving the mesh

quality, i.e. the regularity of the sampling and of the

connectivity.

In this paper, the mesh optimization problem is

stated as an energy minimization problem. The pro-

posed energy function (see equation 4) captures the fi-

delity to the initial mesh geometry, the mesh quality

(expressed in terms of triangle shape and vertex va-

lence) and the number of vertices (simplification versus

remeshing). Hence, according to the initial mesh and

desired goals of the method, it is possible to improve the

compactness of the representation, the triangle shape,



2

the vertex valence, while controlling the geometric error

introduced by such competing desires.

We solve the proposed energy minimization prob-

lem with an iterative two step minimization method.

The first step consists of a greedy mesh connectiv-

ity energy minimization process. Edge flips and edge

collapses/splits are done only if they decrease the en-

ergy function. The second step performs global ver-

tex repositioning, which is formulated as a discrete

max-flow/min-cut problem in a directed graph. More

specifically, this problem is solved using a variant of

QPBO (Quadratic Pseudo-Boolean Optimization), a

recent graph cut technique which guarantees a non-

increase of the energy function after the vertex reloca-

tion step. As a result, the energy minimization problem

is solved with guarantees on its convergence. Figures 4

and 5 show some results of our regularization algorithm.

1.1 Related work

Two classes of approaches have been identified in the

vast mesh optimization literature. The first group con-

sists of methods which do not offer a high control over

the geometric error and/or over the mesh connectivity

when new points are sampled on the surface. Varia-

tional partitioning frameworks [4–6] are based on ver-

tex/triangle clustering and are often used to produce a

coarser mesh with a high approximation quality. This

coarse mesh is then usually retiled or refined using local

re-triangulation to improve the point sampling. Param-

eterization methods [7] optimize 2D patches instead of a

3D surface, but they generally suffer either from distor-
tion produced by the global parameterization, or need

patch boundary post-processing resulting from local pa-

rameterization. Semi-regular remeshing [8] uses an ini-

tial coarse mesh partition and treats each patch sepa-

rately using subdivision rules. This produces a few ir-

regular vertices (those of the coarse mesh), well-shaped

triangles, and a small geometric error. However, it is

sensitive to the patch structure and the resulting ver-

tex sampling is difficult to control. Geodesic front prop-

agation techniques [9,10] consider geodesic equidistant

curves over the surface and allow to get well-shaped

triangles (vertices can be distributed according to the

local curvature). However, some post-processing steps

are needed to avoid artifacts when the curve topology

is complex and the geometric approximation error is

located near sharp features. All these methods give an

overall good triangle shape, but they suffer from a lack

of geometric error control when new points are sampled

on the surface, since they cannot locally control the ge-

ometric approximation of some high frequency features.

The second group of methods works directly on the

initial mesh simplices (vertices, edges and resulting tri-

angles), which allows a better control of the geometric

fidelity to the original 3D surface. Local approaches to

mesh optimization consist in using a set of local le-

gal moves (e.g. towards barycenters or angle-bisectors)

and connectivity modifications (topological operators)

to decrease an energy function. Such an approach may

lead to a local minima configuration, especially in com-

bination with greedy optimization (e.g. gradient de-

scent). Surazhsky and Gotsman [11] use local opera-

tions such as edge-collapse, edge-split and edge-flip to

regularize the mesh connectivity. Surazhsky et al. [11,

12] apply area-based smoothing to control both triangle

quality and vertex sampling over the mesh. To achieve a

precise isotropic vertex placement, Surazhsky et al. [12]

use a centroidal Voronoi tessellation (CVT). Global ap-

proaches to mesh optimization attempt to resolve the

vertex repositioning problem in a global way, most of

the time solving a sparse linear system [13,14] or us-

ing least squares approximation [15]. The main idea in

the global approaches using a so-called Laplacian global

operator [13–15], is to infinitely apply a Laplacian oper-

ator such that applying it one more time will not change

the current vertex positions. That allows a direct for-

mulation as a linear system. Then other constraints are

added to take into account invariant vertex positions or

to avoid the shrinking effect due to Laplacian smooth-

ing. These global vertex repositioning techniques de-

pend on the initial sampling and connectivity, and the

triangle shape may therefore be difficult to improve in

case of irregular configurations (e.g. irregular vertex de-

grees and/or low sampling). In most local approaches,

connectivity and the vertex positions are optimized sep-

arately as in [1]. That is essentially due to the fact that

the combinatorial complexity of mesh connectivity op-

timization does not allow to solve it neither globally nor

jointly with the vertex repositioning problem.

Other works related to the surface sampling im-

provement (e.g. direct sampling) or to the approxima-

tion error control (e.g. volume computation between

two meshes) may be of interest to the reader, but are

beyond the scope of this paper.

The proposed method is characterized by the fol-

lowing advantages:

– Many objects present a noticeable amount of sharp

features (sharp edges and corners), which are ro-

bustly detected and preserved during our optimiza-

tion process (see section 2.3). The coherency of ge-

ometric features is exploited in the feature edge de-

tection process to be more robust to the presence of

noise.
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– Geometric error is kept low, while triangle qual-

ity and compactness of the representation are im-

proved. No high frequency noise is introduced in

the smooth parts of the processed objects during

all optimization stages.

– Vertex regularity is improved only when it does not

penalize the triangle quality and the geometric er-

ror.

– The locality of our approach allows a high control

on the proposed vertex new positions, which can be

exploited to favor vertex positions alignment along

a curve.

Our main contributions are two-fold:

– A discrete-continuous mesh position optimization

algorithm for triangular meshes. New vertex posi-

tions are proposed locally and the decisions which

keep either the new vertex position or the old one

are globally taken based on the calculation of the

minimum st-cut/maximum flow in a graph. This

ensures a local control over the candidate positions

while minimizing the energy globally and avoiding

oscillation problems.

– A method for feature edge detection based on an im-

proved Potts model, which favors contiguous lines of

sharp edges with approximately the same dihedral

angles and directions for adjacent sharp edges.

The paper is organized as follows: section 2 introduces

the notations used throughout the paper, presents an

outline of our regularization algorithm and explains

how the method copes with sharp features. In section 3,

we present our global energy minimization problem and

in particular we define the objective function. Section

4 deals with the minimization of the objective function

and more precisely the optimization of mesh vertices

and connectivity. In section 5, we give experimental re-

sults and compare them with other recent algorithms

from the state of the art. In section 6, we conclude and

discuss some future work.

2 Outline of the proposed mesh optimization

algorithm

2.1 Notations

The following notations are used throughout the paper:

– M (resp. M’) denotes the initial mesh (resp. opti-

mized/remeshed model).

– X stands for all the remeshed model vertex posi-

tions. Vertices are indexed and thus Xs means the

current vertex position s. Xnew (resp. Xnew
s ) em-

bodies all new candidate positions (resp. the candi-

date position for vertex s) at a given vertex reposi-

tioning iteration. Xs, X
new
s ∈ R3.

– Y stands for all the initial model vertex positions,

Ys ∈ R3.

– Ns represents the set of vertex indices which are

in the one-ring neighborhood of the vertex indexed

by s (s /∈ Ns). XNs accounts for the set of vertex

positions which are in the one-ring neighborhood of

Xs. The neighbor relationship is symmetric: r ∈ Ns
⇒ s ∈ Nr.

– E denotes the current remeshed model edges. (s, r)

∈ E iff s ∈ Nr.
– F stands for all the initial mesh edges.

– T represents the remeshed model triangles. (s, r, q)

∈ T iff s ∈ Nr and s ∈ Nq and r ∈ Nq.

2.2 Algorithm description

The global scheme of our method for optimizing 2-

manifold triangular meshes is illustrated in figure 1

and in algorithm 1. In the initialization phase, we com-

pute principle curvatures and detect geometric features,

which remain constant during the subsequent steps.

Curvature extraction is based on normal cycles calcu-

lus [16]. The feature detection procedure is explained

in section 2.3. Features are preserved during the mesh

regularization process. After the initialization, the algo-

rithm follows a loop in which a single objective energy

function (defined in equation 4) is minimized by two dif-

ferent steps. Vertex positions are optimized at each it-

eration, while the mesh’s connectivity is optimized less

frequently (every five iterations in our experiments).

The interest of optimizing the mesh connectivity less

often resides in significantly decreasing the computa-

tion time (i.e. by an order of magnitude) while not de-

grading the output quality. The vertex repositioning

and mesh connectivity improvement stages are, respec-

tively, detailed in sections 4.1 and 4.2. The algorithm

offers the possibility to use the gradient of the energy

function during the vertex optimization stage, which

is particularly useful in the final iterations when vertex

positions are refined. The terminology [gradient]-guided

(resp. non-guided) iterations will thus refer to vertex

repositioning iterations which do (resp. do not) make

use of the gradient direction.

2.3 Robust feature edge and corner detection

Automatic detection of geometric features such as fea-

ture lines and corners has already been studied before
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Curvature computation
Detection of sharp features

Optimization of vertex positions
− Propose candidate positions
− Take joint global decision

Global
energy

Greedy connectivity optimization

function

U(x, y)

Fig. 1 The remeshing pipeline: at every iteration i, new vertex positions are chosen using a global energy minimum approximation;

less frequently, the mesh connectivity is improved to favor better global vertex configurations.

(e.g. [17]). Geometric features are generally defined as

discontinuities in the normal direction (i.e. first deriva-

tives) or boundaries of the object.

In our method, feature detection allows to keep cor-

ner positions unchanged and to restrict vertices on fea-

ture lines to stick to these lines in the vertex optimiza-

tion step. In addition, during the connectivity optimiza-

tion stage, feature edges are prohibited from modifying

their direction. For instance, feature edge flipping is for-

bidden. By doing so, the intrinsic geometric properties

of the initial triangular mesh are preserved.

Intuitively, discontinuity edges or feature edges

could be detected by thresholding the edge dihedral

angles θi to classify them as either normal or sharp

using a threshold θTh. However, due to the presence of

noise, feature edges may be difficult to characterize with

this technique. For instance, some geometric models do

not have any dihedral angle threshold capable of distin-

guishing feature edges from others without connecting

true features with geometric artifacts or vice versa.

In the same lines of our vertex repositioning opti-
mization procedure described in the rest of the paper,
the classification performance of the feature edge detec-
tion process can be significantly boosted by taking the
decisions for all edges of the 3D model jointly, i.e. glob-
ally. This can be achieved through a model which com-
plements the information residing in the dihedral angles
of all edges with additional terms favoring consistent

feature lines, i.e. coherent neighboring edge labels. We
propose an improved Ising/Potts model, known from
image restoration [18], which in our case minimizes a
global energy function over all edge labels:

Ŵ = arg min
W

E(W ; θ, φ)

= arg min
W

∑
i

Ed(Wi; θi) − µ
∑

i,j:i∈Nj

S(φij)δ(Wi,Wj)
(1)

where W is the set of all indexed edge variables Wi,

θ is the set of all indexed dihedral angles θi, and φ is

the set of all indexed turning angles φij measured on

pairs of edges. Each binary edge variable Wi can take

a value/label in L={0, 1}, which correspond to normal

edge and feature edge. Ni is a set of edge indices which

correspond to edge variables adjacent to the edge in-

dexed by i.

The energy function is characterized by data at-

tached terms Ed which push the solution into the di-

rection determined by the dihedral angles, as well as

regularizing pairwise terms which favor geometrically

coherent feature lines. The weight µ sets the relative

strength of the pairwise terms compared to the data

attached terms.
Ed(Wi, θi) is a data attached term taking into ac-

count the dihedral angle θi of the edge and which has
been designed as a softened thresholding with threshold
θTh and linear dependency of the energy on the cosine
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of the angles:

Ed(Wi; θi) =

{
cos(θi) if Wi = 1 ⇔ feature
2cos(θTh)-cos(θi) else Wi = 0 ⇔ normal

(2)

δ is the Kronecker symbol equal to one whenever the

condition Wi = Wj is satisfied and zero otherwise. δ

can be interpreted as a term favoring the same label-

ing for neighboring edges. S(φij) is a function which

controls the strength of the regularizing term through

a measure of geometric coherency, i.e. homogeneous la-

bels are favored more if the neighboring edges are sim-

ilarly oriented:

S(φij) = exp {−50.(1− cos(φij))} . (3)

All pairwise terms in (1) are submodular (see also sec-

tion 4.1.2 on submodularity), therefore the global mini-

mum can be very efficiently computed using graph cuts

and Kolmogorov et al.’s st-graph construction [19].

Once the feature edges are detected, vertices can

be labeled given the decisions on the edges: a vertex is

considered as a corner if it has at least three adjacent

feature edges, or if it has two adjacent and non-aligned

boundary edges.

3 The global energy minimization problem

In this work the initial mesh M is copied and kept as

reference geometry during the remeshing process. The

optimized mesh M’ starts with the same vertices and

connectivity as M. All vertex positions Y of M remain

constant during the optimization process, but the set
X may evolve (addition/removal of vertices) since the

initial sampling may not be the one which minimizes

the objective function (4) given below, which depends

both on the vertex positions and on the mesh connec-

tivity. To each vertex of the remeshed model we keep a

link to the closest position of the original mesh, which

allows us to keep track of the geometric distance be-

tween a vertex of the optimized mesh and the surface

represented by the original mesh (cf. figure 2).

3.1 Definition of the objective function

The specific form of our objective energy function

U(X;Y ) is defined as a scalar combination of sums of

positive and unitless energy potentials. Each potential,

which we also call feature function, locally measures

a criteria (geometric error or a quality) and decreases

(resp. increases) when the criteria is locally more (resp.

Algorithm 1: The whole method, including the

continuous-discrete solution to vertex relocation.

K(0), C and imax are, respectively, start tempera-

ture, cooling speed and number of iterations. Re-

maining notations are defined in section 2.1. The

graph cut algorithm takes the global decision min-

imizing the energy presented in section 3 for the

whole set of vertices, considering for each vertex of

the remeshed model the current position Xs and

a new candidate position Xnew
s .

Input: M(Y ,F), K(0), C, imax

Output: M’(X,E)

Compute curvatures and feature edges

X ← Y ; E ← F ; K ← K(0);
for i← 0 to imax − 1 do

if i mod 5 = 0 then
Regularize connectivity

end

for Xs ∈ X do

σfreedom ←
0.5

1 + e−K
.||Xs, XNs ||g .min(1, ρmax)

Xnew
s ←

first with ∆sU < 0
and in sphere, out

of the following:


angle based smooth.

Laplacian smooth.

guided uniform
random

end
X ← globally optimize QPBO-P (X,Xnew, Y )

K ← K · C
end

less) respected. Unitless energy potentials have the ad-

vantage of being scale invariant.

U(X;Y ) = λs
∑

(s,r,q)∈T

ψs(Xs, Xr, Xq) Shape

+ λd
∑

(s,r,q)∈T

ψd(Xs, Xr, Xq, Y ) Fidelity

+ λv
∑
s

ψv(Xs) Valence

+ λp
∑
s

1 Penalty

(4)

Here λs, λd, λv and λp are positive scalar weights.

The respective label subscripts s, d, v, and p denote

shape quality, data fidelity, valence quality, and vertex

penalty, respectively. The other symbols have been de-

fined in section 2.1.

U(X;Y ) evaluates the global configuration of the

optimized mesh, and assigns a scalar energy value to

each possible solution, i.e. each possible result mesh.

To make the equation easier to read, we abusively sim-

plified the dependency on the mesh connectivity in the

notation; in particular, there are no variables associated

to the connectivity information. It should nevertheless
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MESH

OPTIMIZED

INITIAL MESH

Ys′

Xs

Fig. 2 Representation of the graph used for constructing the

remeshed model: each vertex of the optimized mesh Xs is linked
to its current closest initial mesh vertex Ys′ and has access to the

whole initial mesh if needed.

be clear that the energy function depends on the vertex

positions as well as the mesh connectivity.

As a consequence, at each vertex relocation or

at each mesh connectivity modification, U(X;Y ) may

vary. By setting the parameters λ, a user can efficiently

and easily create meshes with the desired properties.

3.2 The feature functions

Our model contains four different kinds of positive fea-

ture functions: a shape function measuring the quality

of the mesh triangles, a data attached function encoding

the approximation quality of the new surface, a valence

potential function encoding the quality of the mesh con-

nectivity, as well as a term penalizing a high vertex

budget, which allows the user to control the number of

vertices of the resulting mesh.
The role of the first type is to favor equilateral mesh

triangles, therefore it is calculated on triangles:

ψs(Xs, Xr, Xq) =
R(Xs, Xr, Xq)

min(||Xs −Xr||, ||Xs −Xq ||, ||Xr −Xq ||)
(5)

where R(Xs, Xr, Xq) denotes the circumradius associ-

ated with the triangle (Xs, Xr, Xq) and ||.|| is the usual

Euclidean norm. Note that this feature function does

not depend on the initial vertices Y and that it is scale

invariant. ψs(Xs, Xr, Xq) can be extended to take the

value +∞ when the triangle (Xs,Xr,Xq) is degener-

ated (singularity of the function). The minimum of this

feature function for one triangle is reached when the

triangle is equilateral.

The data attached feature function

ψd(Xs, Xr, Xq, Y ) measures the geometric error

between a triangle (Xs, Xr, Xq) of the optimized model

and the initial mesh. Ideally, ψd should be equal to the

absolute volume error produced by a local operation

(either vertex repositioning or topological operation

on edges). However, exact volume error computations

may add extra cost to the whole iterative energy

minimization process, especially for the vertex reposi-

tioning step, where we calculate two different candidate

positions for each vertex (see section 4), which gives

six possibilities to check for each triangle. We therefore

calculate the exact direct volume error only during the

optimization of mesh connectivity. In particular, in the

latter case the tetrahedron volume error is calculated

over the subsequent local edge operations (and not

between the optimized and initial meshes for computa-

tion time purposes). More precisely, the volume error

associated with an edge flip, an edge collapse or an

edge split are, respectively, the tetrahedron volume

induced by the 4 points of the 2 adjacent triangles,

the sum of the tetrahedron volumes induced by each

one-ring neighboring edge and its adjacent old and

new center vertex position, and zero.

During the optimization of the vertex positions, we

approximate the fidelity term ψd by a point-to-surface

distance, whose main advantage is that it can be calcu-

lated vertexwise:

ψd(Xs, Xr, Xq, Y ) = F (Xs, Y ) + F (Xr, Y ) + F (Xq, Y )

(6)

where F (Xs, Y ) is the square of the shortest distance

between Xs and the initial mesh, i.e. the geometric dis-

tance. The distance F could be approximated up to

second order with the Pottmann distance [20,21], which

allows to directly compute the gradient of the energy.

Since this is not necessary in our discrete framework,

a direct computation of F as the orthogonal projec-

tion distance on the initial mesh was possible, which is

slightly faster and more robust in the presence of sharp

features.

The proposed ψd(Xs, Xr, Xq, Y ) approximation

works very well provided that the weighting factor λd
is high, which is the case for the targeted applications,

namely regularization where geometric fidelity must be

high.

The valence potential function is calculated on op-

timized mesh vertices:

ψv(Xs) = (|Nopt| − |Ns|)2 (7)

where |Ns| is the number of edges adjacent to vertex s,

i.e. the vertex degree, and |Nopt| is the optimal (desired)

vertex degree: 4 on borders and 6 otherwise.

The vertex budget energy cost is linear in the num-

ber of remeshed model vertices, and as can be seen from

equation (4), each vertex costs λp. In general, λp con-

trols the desired amount of vertices.

4 Minimization of the objective function

The next two subsections describe how the unique

global energy function is minimized through two dif-
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ferent steps, which update the vertex positions and the

mesh connectivity.

4.1 Global vertex repositioning

Updating the vertex positions of the current mesh

requires minimizing equation (4) over all variables

Xs∈R3, a continuous optimization problem. The en-

ergy potentials associated with the vertex valence and

with the vertex budget are constant at this stage and

therefore omitted.

Unfortunately, the function U(X;Y ) is not con-

vex and standard gradient descent methods will most

likely return a sub-optimal solution. In addition, a least-

square or linear system approach will return an over-

smooth mesh, even if some constraints are added. This

suggests a discrete approach for obtaining high fidelity

meshes. Our work benefits from recent advances in op-

timization theory for discrete Markov Random Fields

(MRFs) [19] by transforming the continuous problem

into a discrete problem, similar to the technique pro-

posed for optical flow by Lempitsky et al. [22]. How-

ever, instead of employing a global discrete optimizer

to merge several solutions obtained by existing tech-

niques applied with different parameters, in our case the

global discrete optimizer takes decisions on candidates

calculated at each step in an iterative process. At each

iteration and for each vertex of the remeshed model,

a new candidate position is proposed and the optimal

decision for the whole set of vertices is calculated, i.e.

the decision minimizing (4). In the following two sub-

sections 4.1.1 and 4.1.2, we explain how we generate

new candidates and how we globally decide to keep or

not a new position.

4.1.1 Local candidate proposals

We force each valid candidate position to stay within
a small freedom sphere to prevent too much geometric
error and to avoid creating a geometric fold-over. A new
vertex candidate position will be rejected if it is outside
of the corresponding freedom sphere, leaving the cur-
rent vertex position unchanged. The more the region
around a vertexXs is curved, the smaller its freedom ra-
dius σfreedom is forced to be, which avoids large moves
around a point of high curvature and thus limits the in-
troduced geometric error. Moreover, like the stepwidth
in gradient descent, this radius decreases with time to
avoid big moves at the end of the optimization process.
Similarly to simulated annealing techniques [18], a tem-
perature parameter K decreases at each iteration (in-
troduced in the algorithm 1 and in section 5.1). The ra-
dius σfreedom is related to this temperature K through
a sigmoidal function, as well as to the local geodesic
radius of the Xs one-ring, and to the local maximal

Fig. 3 One vertex relocation step: take the best global decision

for each vertex between the current (blue) and the new candidate

position (orange) located in the vertex freedom sphere.

curvature radius measured on the initial mesh:

σfreedom(Xs, XNs , Y ) =
0.5

1 + e−K
.||Xs, XNs ||g .min(1, ρmax)

(8)

where ρmax is the maximum absolute curvature radius

at the closest initial mesh vertex Ys′ from Xs (σfreedom
thus depends on Y ). ||Xs, XNs

||g is the maximum ra-

dius such that the sphere centered on Xs with that

radius does not intersect the Xs one-ring neighborhood

of edges. In other words, it is the local geodesic radius,

computed as the minimum Euclidean distance from Xs

to its one-ring neighborhood of edges:

||Xs, XNs ||g = sup
ρ∈R+


ρ : ρ < ||Xs, u||
∀u on (r, q) ∈ E ,

∀r ∈ Ns,∀q ∈ Ns

 (9)

It is easy to see that a freedom radius strictly less than

0.5||Xs, XNs
||g for each optimized mesh vertex Xs pre-

vents the creation of new fold-overs (see figure 3). For

the same reason, the factor min(1, ρmax) in equation

(8) limits the radius to the value described above. Since

the initial mesh is normalized (its coordinates are di-

vided by its bounding box diagonal) before processing

and unnormalized at the end, the diagonal of the mesh

bounding box does not appear in the equation involving

the curvatures radius.

A good candidate position Xnew
s for replacing Xs

must decrease the energy. The local energy variation

∆sU due to the new vertex position Xnew
s can be com-

puted quickly from the vertexXs and its one-ring neigh-

borhood Ns. Because of the form of the energy function

(4),

∆sU = U
((
X \ {Xs}

)
∪ {Xnew

s };Y
)
− U(X;Y ) (10)

can also be computed much quicker from only a small

number of terms as

∆sU = U
(
{Xnew

s , XNs};Y
)
− U

(
{Xs, XNs};Y

)
(11)
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where the so-called local evidence U
(
{Xs, XNs};Y

)
= U(X;Y )|{Xs,Ns} only contains the terms in U(X;Y )

which involve the modified mesh vertex Xs or the one

ring XNs .

The global algorithm which jointly takes decisions

on candidate pairs (i.e. keeping either Xs or Xnew
s ) for

the whole mesh, is given below in section (4.1.2). The

convergence of the algorithm depends on the quality of

the new candidate positions, which leads us to choose

one candidate for each vertex among several candidates

calculated by different methods. They have been ranked

empirically in experiments, and the chosen candidate is

the first one satisfying the freedom sphere constraints

given above, i.e. Xnew
s must strictly be in the free-

dom sphere and ∆sU < 0, cf. (8), (10) and (11). If

no such candidate is found, the old position is kept.

The techniques are, in decreasing rate of empirically

measured convergence, angle-based smoothing, Lapla-

cian smoothing, uniformly taken and guided random

candidates. They consist in computing a displacement

vector −→v with different rules according to the method,

from which the new candidate position Xnew
s is set:

Xnew
s = Xs +−→v .

For angle-based (resp. Laplacian) smoothing, −→v =

γ
−→
v′ (γ ∈ R+), where

−→
v′ is computed as the mean di-

rection towards surrounding angle bisectors (resp. the

umbrella-operator U(Xs) = 1∑
r∈Ns

zr

∑
r∈Ns

zrXr−Xs

where the weights zr are set to the local area disper-

sion). For uniformly taken and random candidate po-

sitions, −→v has the global energy gradient direction for

gradient-guided iterations and is a direction on the local

tangent plane otherwise.

Special care is taken for vertex positions on feature

edges, for which new candidates are forced to lie on the

feature edge and which are kept only if the surrounding

feature edge directions do not change with this new

candidate. Vertices on corners remain unchanged.

4.1.2 Global candidate decisions

The global decision (i.e. keeping the current position or

choosing the new candidate) on the whole set of ver-

tices is taken by a graph cut technique. This involves

constructing an st-graph representing the energy func-

tion (4) such that the minimum cut/maximum flow on

this graph will give the solution which globally min-

imizes the energy. Although there are known graph

cuts techniques able to optimize functions of some re-

stricted classes where each variable may take values

from sets larger than 2, the eventual gain in quality is

far outweighed by the high computational complexity.

We therefore concentrated on a single new candidate

proposal for each vertex, which leads to binary valued

functions, i.e. each variable associated to vertex may

take values from a set of two values. For that purpose,

it is necessary to associate a binary labeling to {Xs,

Xnew
s }, for instance 0 could denote the current vertex

position Xs and 1 the proposed position Xnew
s .

Unfortunately, the energy function (4) is not sub-

modular, which makes its exact global minimization

with graph cuts difficult [19]. Submodularity is an

important concept in discrete optimization theory.

Its meaning is the equivalent of the “convex” con-

cept, restricted to discrete sets. This criterion requires

that, taking one of the vertices of a given triangle

(Xr, Xs, Xt) and fixing the decision to either 0 or 1,

the projection onto the two other vertices satisfies the

following constraint (without loss of generality we sup-

pose that Xr has been fixed):

ψs(Xr, 0, 0) + ψs(Xr, 1, 1) ≤
ψs(Xr, 0, 1) + ψs(Xr, 1, 0)

(12)

In the case of (4), this criterion is generally not satisfied

for the shape term ψs(Xs, Xr, Xq) of every triangle,

although a subset of triangles may satisfy the criterion.

In the proposed method, (4) is approximatively min-

imized with a variant of QPBO (Quadratic Pseudo-

Boolean Optimization), a graph cuts algorithm which

can deal with non-submodular terms (see section 5.1).

However, the output of QPBO is a partial labeling, i.e.

for some binary variables, the algorithm does not know

if it is better to choose zero or one. On the other hand,

convergence is guaranteed since, starting from an initial

configuration, QPBO guarantees that the new labeling

does not increase the energy (robustness). For a detailed

explanation of QPBO and its properties, see [23].

4.2 Iterative mesh connectivity optimization

Our goal is to optimize the remeshed model connectiv-

ity by minimizing the objective function (4). Unfortu-

nately a global optimization of the connectivity is in-

tractable — the optimal scheduling of local topological

operations cannot be computed in a reasonable amount

of time. Here, a greedy scheme has been adapted to al-

low control through the global energy function (4), i.e.

a local topological operator will be applied only if it

decreases the energy.

Three priority queues handle local topological oper-

ations, respectively for edge-flips, edge-splits and edge-

collapses. Each priority queue only contains valid local

operations, which do neither create a vertex fold-over,

nor change the direction of a feature edge and which

will decrease the energy if applied. The priority of each

queue is directly related to the energy decrease.
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Again, calculating the optimal order of operation

types — and therefore of priority queues — is in-

tractable. Experimental tests (and intuition) led to the

choice of giving higher priorities to flips, then to splits,

and last to collapses.

Each priority queue is mutable: after the application

of a local operation, each neighboring edge that already

was in the priority queue is updated, i.e. removed if the

local operation is no more applicable or its priority is

updated. To make sure that the connectivity optimiza-

tion step will terminate in a finite number of local op-

erations, we limit the maximum number of consecutive

operations of the same topological operator.

Topological changes and their energy — edge col-

lapses and splits change the number of triangles of the

mesh and therefore also the number of terms of the en-

ergy function. As a consequence, a change of the energy

function is not necessarily an image of a quality/fidelity

change of the mesh, but related to differences in the

amount of mesh simplices. The budget term controlled

through weight λp has been designed to compensate for

this. Its role is actually two-fold:

– To compensate for the lost terms in topologi-

cal changes, leading to roughly unchanged vertex

counts before and after optimization, if λp has been

judiciously chosen.

– To control the vertex budget, if desired. A mesh sim-

plification algorithm producing high quality meshes

is obtained simply by increasing λp.

5 Experimental results

In order to demonstrate the efficiency of our method,

we applied it to several mesh models with unadapted

sampling and very irregular connectivity, and which

contain both, smooth parts and sharp features. Some

visual results are given in figures 4, 5, 6, 7 and 8. The

presented results have been obtained on an Intel Core 2

Duo P8400 (2.26 GHz) with 4 GB RAM with running

time between 31 s and 3 min 56s. About 50% (resp.

50%) of the total running time is used for the connec-

tivity optimization (resp. vertex repositioning). Clearly,

the complexity of the connectivity optimization is lin-

ear in the number of edges of the input mesh, while the

complexity of vertex repositioning is directly related to

the complexity of the chosen graph-cut technique. The

selected graph-cut technique is based on a push-relabel

version of the max-flow algorithm with polynomial com-

plexity in the worst case. Fortunately, the empirical (or

average) complexity is nearly-linear with respect to the

size of the input [24]. The average complexity of our

method is nearly-linear with respect to the size of the

input mesh (e.g. number of vertices, edges and trian-

gles), which has been confirmed by our experiments (cf.

figure 11).

5.1 Implementation details and settings

The temperature and cooling parameters mentioned

in section 4.1.1 and detailed in algorithm 1 allow to

decrease the radius of the freedom sphere associated

with a given vertex when the number of iterations/the

elapsed time increases. Their names are borrowed from

physics, more precisely from the solidification of a melt-

ing metal. For the cooling schedule we used the sug-

gestions in [25] (page 356), setting the temperature K

to K(i) = K(0) · Ci where i denotes the current itera-

tion (0 ≤ i ≤ imax − 1). The initial temperature K(0)

has been set to 100 and the constant controlling the

speed of the cooling process C has been set to 0.95. The

chosen total number of iterations of our algorithm is

imax = 170: a higher number of iterations does not im-

prove significantly the results while adding extra com-

putation time on the presented models (cf. figure 12).

If the energy gradient can be computed for the vertex

optimization step, the last 20 iterations are gradient-

guided which tends to fine-tune the final result.

Concerning the detection of robust features (cf. fig-

ure 13), we experimentally set θTh = 35o and µ = 0.1.

We also experimentally fixed the quality/fidelity trade-

off of our method by setting the scalar weighting fac-

tors of the objective function with the following values:

λs = 1, λd = 105, λv = 0.1 and λp = 1. For candidate

proposals in the vertex repositioning stage, γ is set to

0.1 for angle-based or Laplacian candidates.

In the connectivity optimization step, the maximum

number of local topological change iterations is set to

10.

For the vertex repositioning step and its related

energy minimization, we used the implementation of

QPBO-P given in Rother et al. [26], which is avail-

able online1. We also performed experiments with other

approximative graph cut techniques designed for non-

submodular functions, namely classical QPBO and

QPBO-I (both introduced in [26]) and energy trunca-

tion to create a submodular function [27]. The results

were slightly lower with these alternative techniques.

Belief Propagation (BP) [28] is also an alternative to

graph cuts techniques like QPBO-P. While both types

of methods give approximate results only on this type

of energy functions, their strengths and weaknesses are

different. BP can be applied to non-submodular func-

tions on multiple labels, it’s complexity being O(|L||C|),

1 http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html
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where L is the set of labels and |C| the maximum clique

size (3 in our case). The exactness of BP depends on the

absence of cycles in the graph, whereas the exactness of

QPBO-P depends on the submodularity of the energy

function. Our choice towards QPBO-P, rather than to-

wards BP, is motivated by the fact that QPBO-P gives

an exact solution if the function is submodular, and

high quality solutions if the number of non-submodular

terms is low, which is the case in our problem, whereas

the number of cycles is extremely high. Furthermore,

nodes for which QPBO-P is able to find a solution are

optimal (part of the exact solution of the problem). In

our problem, at each step more than 99% of the vertex

repositioning decisions are globally optimal, which gives

in practice excellent results, in addition to the complex-

ity advantages of the method. In addition, QPBO-P

guarantees that the global energy does not increase af-

ter each vertex repositioning step. This last point is no

more guaranteed with the BP in the presence of cycles,

even the convergence of the energy minimization is not

guaranteed in that case [29].

Figure 12 shows the evolution of the global energy

during 170 steps for a single CAD model.

5.2 Discussion

To illustrate the mesh quality, average triangle mini-

mum and maximum angles are presented in table 1.

Large angles cause discretization errors and large er-

rors in interpolated derivatives while small angles are

responsible for poor conditioning [2]. For high-quality

meshes, the average minimum (resp. maximum) angle

should be greater than 30o (resp. less than 90o). The

closer to 60o the mean minimum and maximum an-

gles are, the better are the results. According to ta-

ble 1 and figure 8 and regarding the mean minimum

and maximum triangle angles, regularized meshes ob-

tained by our method are high-quality meshes. More-

over, figures 4, 5, 6 and 8 confirm this. Note that the

regularized mesh vertex sampling is similar to the orig-

inal mesh vertex sampling. That is convenient for reg-

ularizing meshes for which the initial vertex sampling

must be preserved. Table 1 also shows that the vertex

valence is slightly improved by our method, i.e. when it

does not penalize neither triangle shape nor geometric

fidelity. The number of irregular vertices can be signifi-

cantly reduced by increasing λv (e.g. to 0.6). However,

the improvement in valence can degrade the fidelity to

the original surface and may need additional global it-

erations to keep the mean triangle quality high.

To evaluate the surface fidelity of the remeshed

models, the Hausdorff distance and the maximum of

the two RMS (Root Mean Square) distances normalized

to the bounding box diagonal are presented in table 1.

These distances have been obtained using the Metro

tool [30]. According to these distances, to table 1 and to

figure 8, the geometric error introduced by our method

is small.

Our method preserves high frequency mesh features

(cf. figure 7), while considerably improving triangle

quality. Let’s note that the number of vertices does

not need to be chosen. It adapts itself to the geom-

etry while maintaining the same order of magnitude,

given the proposed setting of the vertex budget weight

λp.

We compared our method to those of Valette et al.

[6], Surazhsky et al. [11,12], and Liu et al. [14]. As can

be seen in table 1, our method gives better results in

terms of triangle shape and surface fidelity when com-

pared to Valette et al. and Liu et al.; Surazhsky et al.’s

methods generate more regular triangles (better mean

min and max angles), but our method better approxi-

mates the original surface. For instance, in reference [11]

their proposed method smoothes the triceratops eye (cf.

figure 7) resulting in a significant loss of details.

Our method can deal with high genus (i.e. > 1)

models (cf. figure 10), and thus avoids the stitch-

ing problem that occurs in parameterization-based ap-

proaches (e.g. [7]).

5.3 Mesh simplification

The proposed energy minimization framework allows

to simplify meshes by simply changing the setting of

the weight parameters, such that edge collapses are fa-

vored. This is achieved by setting the vertex penalty

weight λp to higher values (λp = 25 in our simplifica-

tion examples). Some simplified meshes are presented

in figure 9. These results show a high fidelity to the

original triangular surface mesh, while the number of

vertices is significantly decreased. However, by favoring

the removal of triangles, the average triangle quality is

degraded.

In the same manner, it is possible to refine a coarse

mesh by changing the vertex penalty weight λp to nega-

tive values. To avoid varying vertex density over the re-

fined mesh, refinement steps should alternate with reg-

ularization steps.

6 Conclusion and future work

In this paper we have presented a method for mesh op-

timization which includes robust feature detection with

an improved Potts model and an original way of com-

puting vertex positions using global combination of lo-
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Model #v Irreg Amin Amax ErHaus ErRMS Time

(%) (deg) (deg) (10−3) (10−3) (sec)

Fandisk (init) 6495 20 43.4 86.1 - - -

Fandisk (Liu) 6495 20 44.7 82.0 3.3 0.8 n/a
Fandisk (our) 5905 12 49.0 75.9 1.6 0.03 232

Cow (init) 2904 53 30.2 93.7 - - -

Cow (Liu) 2904 53 35.1 88.2 5.3 0.9 n/a

Cow (our) 2695 39 41.0 81.0 5.5 0.5 59

Shark (init) 2560 32 20.8 97.4 - - -

Shark (Liu) 2560 32 26.2 107.5 3.0 0.3 n/a
Shark (Sur1) 2560 31 50.6 71.1 6.8 0.8 n/a

Shark (our) 1719 47 36.2 84.8 4.0 0.6 42

Hand (init) 7950 58 32.4 94.1 - - -

Hand (Liu) 7950 58 34.3 92.2 8.8 0.4 n/a
Hand (Val) 6802 45 46.1 77.5 2.6 0.2 9

Hand (our) 5847 33 50.2 72.3 1.7 0.2 193

Bimba (init) 8857 62 34.2 92.8 - - -

Bimba (Liu) 8857 62 38.1 87.0 4.9 0.5 n/a
Bimba (Sur1) 8857 20 53.6 67.6 6.0 0.5 n/a

Bimba (Val) 8143 48 45.2 78.1 6.0 0.4 10

Bimba (our) 7986 41 47.6 75.3 3.0 0.2 232

Egea (init) 8268 75 34.7 93.5 - - -
Egea (Liu) 8268 75 38.2 88.3 2.6 0.2 n/a

Egea (Sur2) 8705 7 52.4 69.1 2.7 0.2 15

Egea (our) 7783 43 48.8 74.1 2.6 0.2 236

Triceratops (init) 2832 59 29.6 95.5 - - -
Triceratops (Sur2) 2758 13 42.2 82.5 8.4 1.1 12

Triceratops (our) 2412 44 41.5 81.0 3.6 0.5 55

Table 1 Statistics on the remeshed models: number of vertices, percentage of irregular vertices, mean minimal angle, mean maximal

angle, Hausdorff distance, maximum between the 2 RMS distances measured by Metro normalized to the bounding box diagonal, and

running time. Liu, Val, Sur1, and Sur2 correspond respectively to [14], [6], [12], and [11]. Displayed times for Sur2 have been computed
on a Pentium 4 PC (2.4 GHz) with 512 RAM [11], while others are from an Intel Core 2 Duo P8400 (2.26 GHz) with 4 GB RAM.

cally proposed candidates. Its main advantages are its

feature sensitiveness and its ability to improve triangle

shapes while preserving the original surface fidelity. The

obtained results are better than other methods in terms

of surface fidelity and surface fidelity/triangle quality

trade-off. Our method is quite general, because by set-

ting well-chosen weights in our objective function, a

user can improve the vertex valence, improve the com-

pactness of the representation or improve the quality of

the triangles.

As future work, we will investigate quadrangular

and anisotropic remeshing. We will also tackle combi-

natorial optimization (when computationally tractable)

in the connectivity processing to improve mesh connec-

tivity configuration. The robustness against local shape

variations in the edges detection process will be im-

proved by setting θTh automatically (using statistics

on geometrical measures) in equation 2, rather than by

asking the end-user.
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Fig. 5 Results obtained with our method. From top to bottom: bimba, egea, triceratops. Left: input model, right: remeshed model.

(a) (b) (c) (d)

Fig. 6 Comparisons between (a) the original hand model, (b) Valtette et al. [6] (c) Liu et al. [14] and (d) our method.
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Fig. 7 Comparisons for the triceratops model (top) and the egea model: the original (left), our remeshed version (middle), the

Surazhsky and Gotsman [11] remeshed version (right). The features surrounding the triceratops eye are well-preserved by our method.

(a) (b)

#v 1243
Irreg (%) 46

Amin (deg) 25.1

Amax (deg) 95.4
ErHaus (10−3) -
ErRMS (10−3) -

#v 1157
Irreg (%) 30

Amin (deg) 40.5

Amax (deg) 81.1
ErHaus (10−3) 1.7
ErRMS (10−3) 0.2

Fig. 8 Comparisons between (a) the original CAD model and (b) our remeshed version. Note that we obtain a better Amin and

Amax angle convergence towards 60o. A lower vertices number denotes an optimized triangle distribution since less triangles are
required to cover the same surface while introducing an insignificantly small geometric error.
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(a) (b)

(c) (d)

Fig. 9 Results obtained for simplification: (a) original fandisk model; (b) simplified fandisk model (933 vertices; ErHaus (10−3) =

3.0; ErRMS (10−3) = 0.2); (c) original hand model; (d) simplified hand model (1518 vertices; ErHaus (10−3) = 4.5; ErRMS (10−3)
= 0.7).

(a) (b)

Fig. 10 Results obtained for a genus 3 model: (a) the original genus 3 model and (b) our remeshed version.
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Fig. 11 Empirical complexity of our method: the 8 leftmost (resp. 4 rightmost) points reprensent the running times for our data set
(resp. 4 additional meshes obtained by one or two triangle subdivisions of the fandisk, Bimba and Egea models). The dashed line is a

linear least square fitting of the points.
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Fig. 12 Evolution of the global energy (cf. equation 4) during 170 iterations for the CAD model presented in figure 8.
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(a) (b)

Fig. 13 Extracted feature edges from (a) the fandisk model and from (b) the shark model. Feature edges (in black) are preserved
during our mesh optimization algorithm (see figure 1).


