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To go deeper ...

These next 15 (1) slides will never be able to replace a full
lecture in the theory of machine learning. The interested
reader is referred to:

Shai Shalev-Shwartz and Shai Ben-
UNDERSTANDING David

%ﬁgnmg Understanding Machine Learning,

from Theory to Algorithms
Cambridge University Press, 2014




We would like to learn to predict a value y from observed input x

Y = h(QZ‘, 9)

Handcrafted from domain Learned from data or
knowledge interactions
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Fully
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~itting and Generalisation

- Data are generated with function ¢ = sin(27x)

- Objective: assuming the function unknown, predict t
from X

[C. Bishop, Pattern recognition and Machine learning, 2006]



—itting and Generalisation

Example: « Fitting » of a polynomial of order M

M
y(z, W) = wy + wix + wex® + ... +wyrM = ijxj

7=0

« Least squares » (of errors) criterion

t

E(w) = % Z {y(zn, W) =t}

| inear derivative -> direct solution

[C. Bishop, Pattern recognition and Machine learning, 2006]



Model selection

Which order M for the polynomial?
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[C. Bishop, Pattern recognition and Machine learning, 2006]



Model selection

Separation into (at least) two sets

- Training set
- Validation set (hold out set)

Root Mean Square Error (RMS)

Erms = /2E(w*) /N

Erwvs

—©— Training
—O— Test
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[C. Bishop, Pattern recognition and Machine learning, 2006]



Big Datal

Overfitting increases if we increase the size of the training
set.

[C. Bishop, Pattern recognition and Machine learning, 2006]



he 3 problems of Machine Learning

1. EXxpressivity

— What is the complexity of the functions my model can
represent?

2. Trainability

— How easy is training of my model (i.e. solving the optimization
problem)?

3. Generalization
— How does my model behave on unseen data?
— In presence of a shift in distributions?

(D’apres Eric Jang & Jascha Sohl-Dickstein)



Learning formulations

Supervised learning — Labels y* are available during training:
= min £ (h(z,0),y")

Unsupervised learning — no labels, discovery of regularities in
the data. Different objectives are possible.

Self-supervised learning — prediction of masked parts of the
data itself, for instance the future:

é — m@in L (h(mt—A:t—17 (9)7 xt)

= Pretraining step, usually followed by task oriented
training.

Reinforcement learning — learning from interactions,
maximizing the cummulated reward R over a horizon:

0=J(mg)= E [R(1)

T~



Biological neurons

Devin K. Phillips



Neural networks

« Perceptron »

y1 ()

Input Output

y(x, w) = szmz



Deep neural networks

Input Hidden Output
layer layer layer



Deep neural networks

y1 ()



Gradient descent

Minimize the error on known data
‘Empirical Risk Minimization”

E<W>T glt+1] — glt] +%V£(h(x, 9),y*)

Learning rate

>
Wi Can be blocked in a
WA WBl lwg local minimum
\

[C. Bishop, Pattern recognition and Machine learning, 2006]



Demo session:
Tensortlow
playground



Tensorflow Playground
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https://playground.tensorflow.org



