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We would like to learn to predict a value y from observed input x
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Fitting and Generalisation

4 1. INTRODUCTION

Figure 1.2 Plot of a training data set of N =
10 points, shown as blue circles,
each comprising an observation
of the input variable x along with
the corresponding target variable
t. The green curve shows the
function sin(2πx) used to gener-
ate the data. Our goal is to pre-
dict the value of t for some new
value of x, without knowledge of
the green curve.
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detailed treatment lies beyond the scope of this book.
Although each of these tasks needs its own tools and techniques, many of the

key ideas that underpin them are common to all such problems. One of the main
goals of this chapter is to introduce, in a relatively informal way, several of the most
important of these concepts and to illustrate them using simple examples. Later in
the book we shall see these same ideas re-emerge in the context of more sophisti-
cated models that are applicable to real-world pattern recognition applications. This
chapter also provides a self-contained introduction to three important tools that will
be used throughout the book, namely probability theory, decision theory, and infor-
mation theory. Although these might sound like daunting topics, they are in fact
straightforward, and a clear understanding of them is essential if machine learning
techniques are to be used to best effect in practical applications.

1.1. Example: Polynomial Curve Fitting

We begin by introducing a simple regression problem, which we shall use as a run-
ning example throughout this chapter to motivate a number of key concepts. Sup-
pose we observe a real-valued input variable x and we wish to use this observation to
predict the value of a real-valued target variable t. For the present purposes, it is in-
structive to consider an artificial example using synthetically generated data because
we then know the precise process that generated the data for comparison against any
learned model. The data for this example is generated from the function sin(2πx)
with random noise included in the target values, as described in detail in Appendix A.

Now suppose that we are given a training set comprising N observations of x,
written x ≡ (x1, . . . , xN )T, together with corresponding observations of the values
of t, denoted t ≡ (t1, . . . , tN )T. Figure 1.2 shows a plot of a training set comprising
N = 10 data points. The input data set x in Figure 1.2 was generated by choos-
ing values of xn, for n = 1, . . . , N , spaced uniformly in range [0, 1], and the target
data set t was obtained by first computing the corresponding values of the function

- Data are generated with function
- Objective: assuming the function unknown, predict t

from x

[C. Bishop, Pattern recognition and Machine learning, 2006]



Fitting and Generalisation
Example: « Fitting » of a polynomial of order M

[C. Bishop, Pattern recognition and Machine learning, 2006]
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sin(2πx) and then adding a small level of random noise having a Gaussian distri-
bution (the Gaussian distribution is discussed in Section 1.2.4) to each such point in
order to obtain the corresponding value tn. By generating data in this way, we are
capturing a property of many real data sets, namely that they possess an underlying
regularity, which we wish to learn, but that individual observations are corrupted by
random noise. This noise might arise from intrinsically stochastic (i.e. random) pro-
cesses such as radioactive decay but more typically is due to there being sources of
variability that are themselves unobserved.

Our goal is to exploit this training set in order to make predictions of the value
t̂ of the target variable for some new value x̂ of the input variable. As we shall see
later, this involves implicitly trying to discover the underlying function sin(2πx).
This is intrinsically a difficult problem as we have to generalize from a finite data
set. Furthermore the observed data are corrupted with noise, and so for a given x̂
there is uncertainty as to the appropriate value for t̂. Probability theory, discussed
in Section 1.2, provides a framework for expressing such uncertainty in a precise
and quantitative manner, and decision theory, discussed in Section 1.5, allows us to
exploit this probabilistic representation in order to make predictions that are optimal
according to appropriate criteria.

For the moment, however, we shall proceed rather informally and consider a
simple approach based on curve fitting. In particular, we shall fit the data using a
polynomial function of the form

y(x,w) = w0 + w1x + w2x
2 + . . . + wMxM =

M∑

j=0

wjx
j (1.1)

where M is the order of the polynomial, and xj denotes x raised to the power of j.
The polynomial coefficients w0, . . . , wM are collectively denoted by the vector w.
Note that, although the polynomial function y(x,w) is a nonlinear function of x, it
is a linear function of the coefficients w. Functions, such as the polynomial, which
are linear in the unknown parameters have important properties and are called linear
models and will be discussed extensively in Chapters 3 and 4.

The values of the coefficients will be determined by fitting the polynomial to the
training data. This can be done by minimizing an error function that measures the
misfit between the function y(x,w), for any given value of w, and the training set
data points. One simple choice of error function, which is widely used, is given by
the sum of the squares of the errors between the predictions y(xn,w) for each data
point xn and the corresponding target values tn, so that we minimize

E(w) =
1
2

N∑

n=1

{y(xn,w) − tn}2 (1.2)

where the factor of 1/2 is included for later convenience. We shall discuss the mo-
tivation for this choice of error function later in this chapter. For the moment we
simply note that it is a nonnegative quantity that would be zero if, and only if, the

« Least squares » (of errors) criterion
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Figure 1.3 The error function (1.2) corre-
sponds to (one half of) the sum of
the squares of the displacements
(shown by the vertical green bars)
of each data point from the function
y(x,w).
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function y(x,w) were to pass exactly through each training data point. The geomet-
rical interpretation of the sum-of-squares error function is illustrated in Figure 1.3.

We can solve the curve fitting problem by choosing the value of w for which
E(w) is as small as possible. Because the error function is a quadratic function of
the coefficients w, its derivatives with respect to the coefficients will be linear in the
elements of w, and so the minimization of the error function has a unique solution,
denoted by w!, which can be found in closed form. The resulting polynomial isExercise 1.1
given by the function y(x,w!).

There remains the problem of choosing the order M of the polynomial, and as
we shall see this will turn out to be an example of an important concept called model
comparison or model selection. In Figure 1.4, we show four examples of the results
of fitting polynomials having orders M = 0, 1, 3, and 9 to the data set shown in
Figure 1.2.

We notice that the constant (M = 0) and first order (M = 1) polynomials
give rather poor fits to the data and consequently rather poor representations of the
function sin(2πx). The third order (M = 3) polynomial seems to give the best fit
to the function sin(2πx) of the examples shown in Figure 1.4. When we go to a
much higher order polynomial (M = 9), we obtain an excellent fit to the training
data. In fact, the polynomial passes exactly through each data point and E(w!) = 0.
However, the fitted curve oscillates wildly and gives a very poor representation of
the function sin(2πx). This latter behaviour is known as over-fitting.

As we have noted earlier, the goal is to achieve good generalization by making
accurate predictions for new data. We can obtain some quantitative insight into the
dependence of the generalization performance on M by considering a separate test
set comprising 100 data points generated using exactly the same procedure used
to generate the training set points but with new choices for the random noise values
included in the target values. For each choice of M , we can then evaluate the residual
value of E(w!) given by (1.2) for the training data, and we can also evaluate E(w!)
for the test data set. It is sometimes more convenient to use the root-mean-square

Linear derivative -> direct solution



Model selection
Which order M for the polynomial?
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Figure 1.4 Plots of polynomials having various orders M , shown as red curves, fitted to the data set shown in
Figure 1.2.

(RMS) error defined by
ERMS =

√
2E(w!)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2πx). Values of M in the range 3 ! M ! 8
give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3, from
Figure 1.4.

[C. Bishop, Pattern recognition and Machine learning, 2006]

Underfitting

Overfitting

Underfitting



Model selection
Separation into (at least) two sets
- Training set
- Validation set (hold out set)

[C. Bishop, Pattern recognition and Machine learning, 2006]
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Figure 1.5 Graphs of the root-mean-square
error, defined by (1.3), evaluated
on the training set and on an inde-
pendent test set for various values
of M .
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For M = 9, the training set error goes to zero, as we might expect because
this polynomial contains 10 degrees of freedom corresponding to the 10 coefficients
w0, . . . , w9, and so can be tuned exactly to the 10 data points in the training set.
However, the test set error has become very large and, as we saw in Figure 1.4, the
corresponding function y(x,w!) exhibits wild oscillations.

This may seem paradoxical because a polynomial of given order contains all
lower order polynomials as special cases. The M = 9 polynomial is therefore capa-
ble of generating results at least as good as the M = 3 polynomial. Furthermore, we
might suppose that the best predictor of new data would be the function sin(2πx)
from which the data was generated (and we shall see later that this is indeed the
case). We know that a power series expansion of the function sin(2πx) contains
terms of all orders, so we might expect that results should improve monotonically as
we increase M .

We can gain some insight into the problem by examining the values of the co-
efficients w! obtained from polynomials of various order, as shown in Table 1.1.
We see that, as M increases, the magnitude of the coefficients typically gets larger.
In particular for the M = 9 polynomial, the coefficients have become finely tuned
to the data by developing large positive and negative values so that the correspond-

Table 1.1 Table of the coefficients w! for
polynomials of various order.
Observe how the typical mag-
nitude of the coefficients in-
creases dramatically as the or-
der of the polynomial increases.

M = 0 M = 1 M = 6 M = 9
w!

0 0.19 0.82 0.31 0.35
w!

1 -1.27 7.99 232.37
w!

2 -25.43 -5321.83
w!

3 17.37 48568.31
w!

4 -231639.30
w!

5 640042.26
w!

6 -1061800.52
w!

7 1042400.18
w!

8 -557682.99
w!

9 125201.43
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Figure 1.4 Plots of polynomials having various orders M , shown as red curves, fitted to the data set shown in
Figure 1.2.

(RMS) error defined by
ERMS =

√
2E(w!)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2πx). Values of M in the range 3 ! M ! 8
give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3, from
Figure 1.4.

Root Mean Square Error (RMS)



Big Data!
Overfitting increases if we increase the size of the training 
set.

[C. Bishop, Pattern recognition and Machine learning, 2006]
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Figure 1.6 Plots of the solutions obtained by minimizing the sum-of-squares error function using the M = 9
polynomial for N = 15 data points (left plot) and N = 100 data points (right plot). We see that increasing the
size of the data set reduces the over-fitting problem.

ing polynomial function matches each of the data points exactly, but between data
points (particularly near the ends of the range) the function exhibits the large oscilla-
tions observed in Figure 1.4. Intuitively, what is happening is that the more flexible
polynomials with larger values of M are becoming increasingly tuned to the random
noise on the target values.

It is also interesting to examine the behaviour of a given model as the size of the
data set is varied, as shown in Figure 1.6. We see that, for a given model complexity,
the over-fitting problem become less severe as the size of the data set increases.
Another way to say this is that the larger the data set, the more complex (in other
words more flexible) the model that we can afford to fit to the data. One rough
heuristic that is sometimes advocated is that the number of data points should be
no less than some multiple (say 5 or 10) of the number of adaptive parameters in
the model. However, as we shall see in Chapter 3, the number of parameters is not
necessarily the most appropriate measure of model complexity.

Also, there is something rather unsatisfying about having to limit the number of
parameters in a model according to the size of the available training set. It would
seem more reasonable to choose the complexity of the model according to the com-
plexity of the problem being solved. We shall see that the least squares approach
to finding the model parameters represents a specific case of maximum likelihood
(discussed in Section 1.2.5), and that the over-fitting problem can be understood as
a general property of maximum likelihood. By adopting a Bayesian approach, theSection 3.4
over-fitting problem can be avoided. We shall see that there is no difficulty from
a Bayesian perspective in employing models for which the number of parameters
greatly exceeds the number of data points. Indeed, in a Bayesian model the effective
number of parameters adapts automatically to the size of the data set.

For the moment, however, it is instructive to continue with the current approach
and to consider how in practice we can apply it to data sets of limited size where we

M=9



The 3 problems of Machine Learning
1. Expressivity

– What is the complexity of the functions my model can 
represent?

2. Trainability
– How easy is training of my model (i.e. solving the optimization 

problem)?

3. Generalization
– How does my model behave on unseen data?
– In presence of a shift in distributions?

(D’après Eric Jang & Jascha Sohl-Dickstein)



Learning formulations
Supervised learning — Labels y⇤ are available during training:

✓̂ = min
✓

L (h(x, ✓), y⇤)

Unsupervised learning — no labels, discovery of regularities in
the data. Di↵erent objectives are possible.

Self-supervised learning — prediction of masked parts of the
data itself, for instance the future:

✓̂ = min
✓

L (h(xt��:t�1, ✓), xt)

) Pretraining step, usually followed by task oriented
training.

Reinforcement learning — learning from interactions,
maximizing the cummulated reward R over a horizon:

✓̂ = J (⇡✓) = E
⌧⇠⇡✓

[R(⌧)]



Biological neurons

Devin K. Phillips



Neural networks
« Perceptron »

OutputInput

Recognition of complex activities through unsupervised
learning of structured attribute models

April 30, 2015

Abstract

Complex human actions are modelled as graphs over basic attributes and their spatial

and temporal relationships. The attribute dictionary as well as the graphical structure

are learned automatically from training data.

y(x,w) =
DX

i=0

wixi

1 The activity model

A set C = {ci, c2, . . . , cC} of C complex activities is considered, where each activity ci is
modelled as a Graph Gi = (Vi, Ei), and both, nodes and edges of the graphs, are valued. For
convenience, in the following we will drop the index i and consider a single graph for a given
activity.

The set of nodes V of the graph G is indexed (here denoted by j) and corresponds to
occurrences of basic attributes. Each node j is assigned a vector of 4 values {aj, xj, yj, tj} :
the attribute type aj and a triplet of spatio-temporal coordinates xj, yj and tj. The edges
define pairwise logical spatial or temporal relationships: before, after, overlaps, is included,

near, . . .).
Examples of graphs for the three activities Leaving a baggage unattended, Telephone con-

versation, and Handshaking between two people are shown in figure 1. Note, that one node
of a model graph can be matched with several consecutive attribute occurrences in the test
video. For instance, when the model Telephone conversation (figure 1b) is matched, the node
Person will in general be matched to multiple occurrences of a person in the video — as
long as the conversation will last. Also, the graphs shown in the figure are only examples,
the actual graphs are learned automatically and will in general not correspond to a graph
designed by a human.

The attribute type variables aj = k may take values k in an alphabet ⇤ = {1, . . . , L}.
These values can correspond to fixed (manually designed types), as for instance Person, or
automatically learned attributes. Associated to each possible type k is a feature function
�k(v, x, y, t;⇥k) �! {0, 1} which evaluates whether in the spatio-temporal block centered on
(x, y, t) of the video v the attribute is found (= 1) or not (= 0). The parameters (to be
learned) of these functions are denoted by ⇥k.

Each edge ejk between two nodes j and k is assigned an edge label which may take values
in an alphabet ⌥ (before, after, overlaps, is included, near, . . .).). There may be multiple
edges between the same pair of nodes.

1
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Gradient descent
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Figure 5.5 Geometrical view of the error function E(w) as
a surface sitting over weight space. Point wA is
a local minimum and wB is the global minimum.
At any point wC , the local gradient of the error
surface is given by the vector ∇E.
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w2

E(w)

wA wB wC
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Following the discussion of Section 4.3.4, we see that the output unit activation
function, which corresponds to the canonical link, is given by the softmax function

yk(x,w) =
exp(ak(x,w))∑

j

exp(aj(x,w))
(5.25)

which satisfies 0 ! yk ! 1 and
∑

k yk = 1. Note that the yk(x,w) are unchanged
if a constant is added to all of the ak(x,w), causing the error function to be constant
for some directions in weight space. This degeneracy is removed if an appropriate
regularization term (Section 5.5) is added to the error function.

Once again, the derivative of the error function with respect to the activation for
a particular output unit takes the familiar form (5.18).Exercise 5.7

In summary, there is a natural choice of both output unit activation function
and matching error function, according to the type of problem being solved. For re-
gression we use linear outputs and a sum-of-squares error, for (multiple independent)
binary classifications we use logistic sigmoid outputs and a cross-entropy error func-
tion, and for multiclass classification we use softmax outputs with the corresponding
multiclass cross-entropy error function. For classification problems involving two
classes, we can use a single logistic sigmoid output, or alternatively we can use a
network with two outputs having a softmax output activation function.

5.2.1 Parameter optimization
We turn next to the task of finding a weight vector w which minimizes the

chosen function E(w). At this point, it is useful to have a geometrical picture of the
error function, which we can view as a surface sitting over weight space as shown in
Figure 5.5. First note that if we make a small step in weight space from w to w+δw
then the change in the error function is δE " δwT∇E(w), where the vector ∇E(w)
points in the direction of greatest rate of increase of the error function. Because the
error E(w) is a smooth continuous function of w, its smallest value will occur at a

Minimize the error on known data
"Empirical Risk Minimization"

Can be blocked in a 
local minimum

[C. Bishop, Pattern recognition and Machine learning, 2006]

Learning rate
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Tensorflow Playground

https://playground.tensorflow.org


