
Christian Wolf

Frameworks and tensors2.1

5IF - Deep Learning and
Differentiable Programming

We manipulate tensors

[Figure: Anima Anandkumar]

High dimensional tensors
2D

3D
(2D+t)

[Data: LAGEP]

Images as tensors

=

A color image has 3 color channels (red, green, blue) and
is therefore a 3D tensor.

3D 3D

(Multiple) 1D signals

...

• 1500 volunteers, 1500 Nexus 5 smartphones
• Several months of natural daily usage, 27.6 TB of data
• Multiple sensors: camera, touchscreen, GPS, bluetooth, wifi, cell

antenna, inertial, magnetometer
• This work: inertial sensors only, recorded at 200Hz

[Neverova, Wolf, Lacey, Fridmann, Chandra,
Barbello, Taylor, IEEE Access 2016]

Tensors: examples
- Example of a tensor of dim 2 (input data, 1D signal)

– Batch dimension (multipe samples)
– Signal dimension

- Example of a tensor of dim 2 (output data, classification)
– Batch dimension (multipe samples)
– Prediction for different classes

- Example of a tensor of dim 3 (layer activation, 1D signal)
– Batch dimension (multipe samples)
– Signal dimension
– Feature dimension

- Example of a tensor of dim 4 (layer activation, 2D image)
– Batch dimension (multipe samples)
– Spatial X dimension
– Spatial Y dimension
– Feature dimension

- Example of a tensor of dim 5 (input data, 2D+t video)
– Batch dimension (multipe samples)
– Spatial X dimension
– Spatial Y dimension
– Color channel dimension
– Time dimension

Functional mappings

input

Groundtruth

Output

Loss

How do we code all this?

input

Ground truth

Output / prediction

Loss / objective

Inputs, outputs, layer activations, weights are tensors of
different dimensions.

Deep Learning Frameworks
The wild west. Models are handcoded in Matlab, C++
by a small minority of people doing deep learning.

Before 2013

CAFFE introduced by University of California, Berkeley.
Interfaces: C++ and shell+text files.

2013

2010 Theano introduced by Montreal Institute for Learning
Algorithms (MILA), University of Montreal. Autograd.
[Discontinued]

2002 Initial release of Torch by IDIAP Research Institute, later
Facebook AI Research. Interfaces: Lua, C++. It uses Autograd
(automatic dynamic differentiation) [Replaced by PyTorch.]

Tensorflow introduced by Google, with immediate
success. Interaces: Python, C++ (less supported). Uses
a static calculation graph, not Autograd.

2015

2015 MXNet (Appache with researchers from CMU, NYU, NUS,
MIT)

Deep Learning Frameworks
Keras is a meta-language developed by Google
Engineer François Chollet, simplifying coding, initially
developed to run on top of Theano. Now also runs on
Tensorflow, CNTK. Part of Tensorflow now.

2015

CNTK by Microsoft2016

PyTorch introduced by Facebook, with immediate
success. Interaces: Python, C++ (less supported). Uses
a static calculation graph, not Autograd.

2016

Tensorflow introduces eager mode, a dynamic graph
calculation mode based on Autograd to respond to the
success of PyTorch & Co.

2017

Tensorflow makes the eager mode the default mode in
version 2.0.

2019

Main frameworks

Tensorflow PyTorch

• Both support execution and training on CPUs, GPUs, TPUs (google’s
machine learning hardware)

• Both use python.
• Tensorflow also supports C++, Swift.

Tensorflow (Google) : example

Automatic calculation of the gradients:

Definition of a symbolic graph:

PyTorch (Facebook) : example
Imperative calculations like in standard python. Easy debugging.

The gradients are
calculated by backtracking
through the dynamically
created execution graph.

PyTorch vs. Tensorflow

https://thegradient.pub/state-of-ml-frameworks-2019-pytorch-dominates-research-tensorflow-dominates-industry/

PyTorch
Tensor cheat sheet

PyTorch Live Install Party

https://pytorch.org/get-started/locally/

https://pytorch.org/get-started/locally/

Installing PyTorch

Create a virtual environment where we are ”safe”. Use Python 3.7.

1 cd

2 virtualenv --system -site -packages -p /usr/local/bin/

python3 .7 pytorch1 .2

Activate the environment:

1 source ~/ pytorch1 .2/ bin/activate

Now all installs well be done in the virtual env.
Install PyTorch itself and the vision package

1 pip3 install torch torchvision

2 pip3 install scikit -image

Creating tensors

1 # loading PyTorch

2 import torch

3

4 # create with given shape

5 torch.full((shape), value)

6 torch.full_like(other_tensor ,value)

7

8 # create with given values

9 torch.tensor ((values))

10 torch.tensor ((values), dtype=torch.int16)

11

12 # create from numpy array

13 torch.from_numpy(numpyArray)

14

15 # Create zeros or ones

16 torch.zeros((shape))

17 torch.zeros_like(other_tensor)

18 torch.ones((shape))

19 torch.ones_like(other_tensor)

Creating tensors, tensor I/O

1 # Random tensors

2 torch.randn(3, 4)

3

4 # Tensor I/O

5 A = torch.load ("A.tensor")

6 torch.save (A, "A.tensor")

Tensor slicing

Slicing is similar to python (NumPy) Slicing or Matlab notation.
Example for a 2D tensor:

1 A[1,5] # access an element (row , col)

2 A[:,5] # column access

3 A[1,:] # row access

4

5 A[1:6 ,:] A[1:,:] # range access (1:6 = 1,2,3,4,5)

6 A[:,0:-1] # Negative index count backwards

7 # -1 = last col/row

8

9 A==3 # provides a tensor of logical

10 # results

11

12 A[4:17 ,3] = B # replace a slice

13

14 A[B==3]=4 # Set values in A to 4 at pos

15 # where there is a 3 in B

Manipulating tensors

1 # concatenate tensors

2 torch.cat((tensors), axis)

3

4 # split tensors into chunks of equal size

5 torch.split(tensor , splitSize , dim=0)

6

7 # reshape tensor w/o changing the data

8 torch.view(tensor , shape)

9

10 # Repeat along a given dimension

11 X.repeat (4,2)

12

13 # transpose tensor

14 torch.t(tensor) # 1D and 2D tensors

15 torch.transpose(tensor , dim0 , dim1)

16

17 # Sorting

18 torch.sort(input , dim=-1)

Tensor math

1 # Overloaded operators

2 x = A+Y*Z-B # * is elementwise mul

3

4 # Sum , product , min , max of all elements

5 torch.sum(tensor) torch.min(tensor)

6 torch.prod(tensor) torch.max(tensor)

7

8 # Linear algebra

9 torch.mm(A, B) # Matrix multiplication

10 torch.inverse(tensor) # Matrix inversion

11 torch.det(tensor) # Determinant

Elementwise operations

1 torch.exp(tensor) torch.log(tensor)

2 torch.cos(tensor) torch.cosh(tensor)

3 torch.sin(tensor) torch.sinh(tensor)

4 torch.tan(tensor) torch.tanh(tensor)

5

6 torch.add(tensor , tensor2) # or tensor+scalar

7 torch.div(tensor , tensor2) # or tensor/scalar

8 torch.mult(tensor ,tensor2) # or tensor*scalar

9 torch.sub(tensor , tensor2) # or tensor -scalar

Broadcasting

If a PyTorch operation supports broadcast, then its Tensor
arguments can be automatically expanded to be of equal sizes
(without making copies of the data).

1 x=torch.empty (5,1,4,1)

2 y=torch.empty(3,1,1)

3 (x+y).size()

1 t o r c h . S i z e ([5 , 3 , 4 , 1])

1 x=torch.empty (5,2,4,1)

2 y=torch.empty (3,1,1)

3 (x+y).size()

1 Runt imeEr ro r : The s i z e o f t e n s o r a (2) must match the s i z e
o f t e n s o r b (3) at non�s i n g l e t o n d imens ion 1

https://pytorch.org/docs/stable/notes/broadcasting.html

Broadcasting: rules

Two tensors are “broadcastable” if the following rules hold:

— Each tensor has at least one dimension.

— When iterating over the dimension sizes, starting at the
trailing dimension, the dimension sizes must either be equal,
one of them is 1, or one of them does not exist.

If two tensors x, y are “broadcastable”, the resulting tensor size is
calculated as follows:

— If the number of dimensions of x and y are not equal, prepend
1 to the dimensions of the tensor with fewer dimensions to
make them equal length.

— Then, for each dimension size, the resulting dimension size is
the max of the sizes of x and y along that dimension.

https://pytorch.org/docs/stable/notes/broadcasting.html

Images as tensors

1 pip install scikit -image

1 import torch

2 from skimage import io

3

4 image = io.imread("blue_tigrou.jpg")

5

6 io.imsave("tigre_saved.jpg", image)

7

8 G=image [:,:,0]

9 G=image [:,:,1]

10 B=image [:,:,2]

11 io.imsave("tigre_r.jpg", R)

12 io.imsave("tigre_g.jpg", G)

13 io.imsave("tigre_b.jpg", B)

Tensors from .csv files

1 from numpy import genfromtxt

2

3 # Import the text file into a numpy array

4 n = genfromtxt(’file.csv’, delimiter=’;’)

5

6 # Convert to torch tensor

7 D = torch.tensor(n, dtype=torch.float32)

