SIF - Deep Learning and
Differentiable Programming

2.2 (Generalized) Linear models

INSA Christian Wolf

—xample: Sand corn vs. Slope

Variable 1 : median diameter (mm) of granules of sand
Variable 2 : gradient of beach slope in degrees

Diameter
0,17
0,19
0,22
0,23
0,23
0,30
0,35
0,42
0,85

Slope
0,63
0,70
0,82
0,88
1,15
1,50
4,40
7,30

11,30

12,00

10,00

8,00

6,00

4,00

2,00

0,00
0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90

https://college.cengage.com/mathematics/brase/understandable statistics/7e/students/datasets/slr/fr

ames/frame.html

[Physical geography by A.M King, Oxford Press, England]

https://college.cengage.com/mathematics/brase/understandable_statistics/7e/students/datasets/slr/frames/frame.html

© 0O N o 6 A W NN =

e e
w N = O

Data loading and conversion

import numpy as np
from numpy import genfromtxt
import torch

Import the text file into a numpy array
n = genfromtxt(’sand_slope.csv’, delimiter=’;’)

Convert to torch tensor
D = torch.tensor(n, dtype=torch.float32)

+=*

Separate into two different vectors
= D[:,0].view(-1,1)
Y = D[:,1] .view(-1,1)

P<

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18

Data loading and conversion

print (X,Y)

tensor ([[0.1700],
[0.1900],
[0.2200],
[0.2350]
[0.2350]
[0.3000],
[0.3500]
[0.4200],
[0.8500]])
tensor ([[0.6300],
.7000],
.8200],
.8800]
.1500] ,
.5000] ,
.4000]
.3000] ,
.3000]])

RN ROOOO

=

The perfect regression?

We suppose the following relationship for a single data pair (x, y):
Y =X %W

with w a correlation coefficient.

For the full data:
Y =XW

If we the number of data points matches the problem, we can solve
the linear problem perfectly with

W =X"1ly

What happens if we have many more points (typical case?)

Solving the least squares problem

We want to solve the regression problem

min || XW —Y||2
%4

Solving the least squares problem

We want to solve the regression problem

min || XW — Y|
%%

A solution with the Moore-Penrose can be given as:

Xt =Xxx)"1xt

The regression coefficients are given by W = XY
In PyTorch:

PI

W

= torch.mm(torch.inverse(torch.mm(torch.transpose (X
,0,1) ,X)), torch.transpose(X,0,1))
torch.mm (PI,Y)

0 N o o B~ W NN =

I T = T T e e i o e
O O 00 N O 6 A W NN B O O

Precision of the solution (L; Norm)

print (torch.mm(X,W),

1))

Y,

torch.dist (torch . mm(X,W),

Y,

tensor ([[11.6522]])
tensor ([[1.9809],
[2.2139],
[2.5635],
[2.7383],
[2.7383],
[3.4956] ,
[4.0783],
[4.8939],
[9.9043]])
tensor ([[0.6300],
.7000],
.8200] ,
.8800] ,
.1500],
.5000] ,
.4000],
7.3000],
[11.3000]])
tensor (14.1739)

AR R OOOO

A WO N =

Improvement: handle bias

The solution is bad! What happened? We forget the bias term. A
single data point is regressed as y = x * W without constant bias.

Solution: Add bias term y = z x w + b.

This can be achieved by adding a constant row of “1" to the

matrix X:
Xe=[X 1]
Xc = torch.cat((X, torch.ones((X.size(0),1))), 1)
Same code as before:
PIc = torch.mm(torch.inverse(torch.mm(torch.transpose(
Xc,0,1), Xc)), torch.transpose(Xc,0,1))
Wec = torch.mm(PIc,Y)

0 N O o0~ WN =

N N HEH R R R R R R R R
H O O 0 N & 1 & W N B O ©

Precision of the solution (L; Norm)

print (torch.mm(Xc,Wc),
Y, 1))

Y,

torch.dist (torch.mm(Xc,Wc),

tensor ([[17.1594],

[—2.4759]])
44127,
.7844],
.2991],
.5565] ,
.5565] ,
.6719],
.5299],
.7310],

.1095]])
.6300],
.7000],
.8200] ,
.8800] ,
11500] ,
.5000] ,
.4000],
.3000],

tensor ([]

[y

tensor ([

l—‘\l-bl—ll—lOOOOl\J-hwl\)l—ll—ll—lOO

[

.3000]])

tensor (7.2559)

N o oA W ON R

w N =

Inhouse solution

PyTorch has a solution ready-to go:

G,_ =
The
print

G,_ =
The
print

torch.gels (Y,X)
solution is in the first row
("By gesls(): W=",G[0])

torch.gels (Y,ZXc)
solution is in the first two rows
("By gesls(): W=",G[0:2])

By gesls(): W= tensor ([11.6522])
By gesls(): W= tensor ([[17.1594],

[—2.4759]])

Linear classification (2 classes)

A decision function ist modeled through a linear relationship

y(x) = wix + wg
Wy is the bias term which can be integrated by adding « 1 » to the input vector:

y(x) = W'X.
Interpretation :

y(x) > 0 — Classe 1
y(x) < 0 — Classe 2

Y1 (x)
The constant « 1 » adds
a « biais » to the model

s W

> 1

Linear classification(K classes)

Multiple parametric functions
yr(X) = Wj X + wio
In vectorial notation with integrated bias:

y(x) = W'X

Interpretation :

Class kif yk(z)>yj(z) Yj#k

« [he winner takes it all »

Visualization of a simple problem

Linear classifier: 1D input, 3 classes

Input : Parameters :
Yy x [1] [.]
@
Output of one class:

Y — W%CB

Output of all classes:

y=Wge

Visualization of a simple problem

T

/7

V' V' = @ < <

@ @ A Training data
Real decision boundaries

Estimated decision boundaries

Decision functions

Decision functions of linear classifiers are linear, i.e. d-dimensional
hyper-planes in input space.

A A

'\

A AA

A
'\ AA
@) © PN <
O o)
° '\
Q
@
(@)

The non-linear case

Pre-processing : Non-linear transformation of the data,
according to the application

1 0

(Gaussian basis functions

[C. Bishop, Pattern recognition and Machine learning, 2006]

(Generalized) linear models

How do we train a linear model for classification?
What is the loss function?

(A simple Ly or L, norm is not optimal / justified on
categorical data like class labels)

How do we train it?

| ogistic regression (2 classes)

A linear model (eventually on transformed input) + a non-linearity at the
output

p(Ci]) = y(¢) = o (W' @)
e

Direct model of the posterior
probability

O is the logistic function (« sigmoid ») ensuring that the output is

between O and 1: -
1 ﬁ
7 =13 exp(—1) J
b1 | C

y1(9)

®16

Logistic regression (K classes)

The extension is similar to the linear case

exp(ak) « Softmax » to ensure that
Zj eXp(aj) the output sums to 1

p(Crl|®) = yr(@) =

ap = W};gb Linearities

Logistic regression: motivation

Allows a probabilistic view of classification and training.

The objective (loss) is convex: the global minimum can be
attained.

The decision functions are still linear
(« Generalized linear model »).

Logistic regression: training

Training dataset:

Inputs ZTn transformed by basis functions ¢(zx)
Categorical outputs ¢, (« targets »), 1-a-K encoded (« Aot-

one-encoaded »):
0

tn=11

0

0

Real (ground-truth) class of sample n

Objective : learn parameters W according to a criterion

Training

To estimate the parameters w we minimise the following error
function (the negative log likelihood of the data):

N K
E(wy,...,wg)=—Inp(T|wy,...,w ZZ nk 1N Ynk
n=1 k=1

« Cross-entropy loss »

It can be minimized by gradient descent:

E

ijE(Wl,...,WK) — (ynj_tnj>¢n

n=1

[C. Bishop, Pattern recognition and Machine learning, 2006]

Learning by gradient descent

lterative minimisation through gradient descent:

glt+1] _ glt] +%|v£(h(x,9),y*)

Learning rate

Can be blocked in a local
minimum (not that it matters
much ...)

[}

[}

| [}

[}

[}

[}

[}

i "

wa wpl |y,

Wa VE

[Figure: C. Bishop, 2006]

Linear separation fails on XOR

DATA

Which dataset
do you want to

FEATURES

Which
properties do

+

0 HIDDEN LAYERS

OUTPUT

Test loss 0.516
Training loss 0.496

use? you want to
feed in?

X,

3
- B :?:: '1'. ,'

(J
0. %
Ratio of training ¢ ‘ \S ;)
to test X, LY
data: 50% LY ¥
3 o
— $55.8
& AR
MNoise: 0 L ’.'.. |
™ 5
® 00e®?®
Batch size: 10
SIN(A
Colors shows
REGENERATE data, neuron and !
1 0 1

sin(X,) weight values.

Show test data Discretize output

https://playground.tensorflow.org

Unless we calcuate features

DATA FEATURES + — 0 HIDDEN LAYERS OUTPUT
Which dataset Which Test loss 0.007
do you want to properties do Training loss 0.001
use? you want to
feed in?
i |
ol

Ratio of training
to test

data: 50%
—e

Noise: 0

o

Batch size: 10
—o

Colors shows
REGENERATE data, neuron and !

sin(X,) weight values.

Show test data Discretize output

https://playground.tensorflow.org

-xample: Wisconsin breast-cancer

Id Cl.thickness Cell.size Cell.shape Marg.adhesion Epith.c.size Bare.nuclei Bl.cromatin Normal.nucleoli Mitoses Class
1000025 5 1 1 2 1 3 1 1 benign
1002945 5 3 4 5 7 10 3 2 1 benign
1015425 3 1 1 1 2 2 3 1 1 benign
1016277 6 8 8 1 3 4 3 7 1 benign
1017023 4 1 1 3 2 1 3 1 1 benign
1017122 8 10 10 8 7 10 9 7 1 malignant
1018099 1 1 1 1 2 10 3 1 1 benign
1018561 2 1 2 1 2 1 3 1 1 benign
1033078 2 1 1 1 2 1 1 1 5 benign
1033078 4 2 1 1 2 1 2 1 1 benign
1035283 1 1 1 1 1 1 3 1 1 benign
1036172 2 1 1 1 2 1 2 1 1 benign
1041801 5 3 3 3 2 3 4 4 1 malignant

https://www.machinelearningplus.com/machine-learning/logistic-regression-tutorial-examples-r/

https://www.machinelearningplus.com/machine-learning/logistic-regression-tutorial-examples-r/

~N OO o B W NN

()

10
11
12
13
14
15
16
17
18
19

Data loading and conversion

import numpy as np

from numpy import genfromtxt

import torch

from torch.nn import functional as F

Import the text file into a numpy array

n = genfromtxt(’breast-cancer-wisconsin-cleaned.csv’,
delimiter=’,)

D = torch.tensor(n, dtype=torch.float32)

N_samples = D.size (0)

The input is the full matrix without first and
last column, plus the 1 column for the bias
X=D[:,1:-1]

X = torch.cat ((X, torch.ones((X.size(0),1))),1)

The targets. Change all 2->0 and 4->1
T=D[:,-1:]
T[T==2]=0
T[T==4]=1

© o0 N O o A W N B

e e
N = O

The model

class LogisticRegression(torch.nn.Module):

def init__(self):

super (LogisticRegression, self).__init__ ()

The linear layer (input dim, output dim)
It also contains a weight matrix

(here single output-> vector)

self.fcl = torch.nn.Linear (10, 1)

The forward pass of the network. x is the 1input

def forward(self, x):
return F.sigmoid(self.fcl(x))

© 0O ~N o O A W N =

Set up the environment

Instantiate the model
model = LogisticRegression ()

The loss function: binary cross-entropy
criterion = torch.nn.BCELoss ()

Set up the optimizer: stochastic gradient descent

with a learning rate of 0.01

optimizer = torch.optim.SGD(model.parameters(),
=0.01)

1r

© 00 N o a0 b~ w N =

S T N T e R T = S S = S S S~ S S
= O © o0 ~N o o1 o W NN B O

lterative training

1 epoch = 1 pass over the full dataset

for epoch in range (200) :
print ("Starting epoch", epoch, " ",end=’’)
calcAccuracy ()

for sample in range(N_samples):
model -> train mode, clear gradients
model.train ()
optimizer.zero_grad ()

Forward pass (stimulate model with inputs)
y = model (X[sample,:])

Compute Loss
loss = criterion(y, T[samplel)

Backward pass: calculate the gradients
loss.backward ()

One step of stochastic gradient descent
optimizer.step ()

© o0 N o o0 A W N =

= = =
N = O

Evaluation

Calculate the accuracy (in percent) at each epoch:
Proportion of correctly classified samples.
Random performance = 50% on a binary task.

def calcAccuracy():

model -> eval mode

model .eval ()

correct = 0.0

for sample in range(N_samples):

threshold the output probability
y = 1 if model(X[sample,:]) > 0.5 else O
correct += (y == T[sample]) .numpy ()

print ("Accuracy = ", 100.0*xcorrect/N_samples)

© 00 ~N OO 61 & W N -

L e e
o0 A WO N = O

Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting
Starting

(...)

Starting
Starting
Starting

epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch

epoch
epoch
epoch

Oo~NO Ol A~ WDNHO

=== ©
A WODNREO

197
198
199

Results

Accuracy
Accuracy
Accuracy
Accuracy
Accuracy
Accuracy
Accuracy
Accuracy
Accuracy
Accuracy

Accuracy
Accuracy
Accuracy
Accuracy
Accuracy

Accurac
Accurac
Accurac

y
y
y

[34.69985350]
[91.21522694]
[93.99707174]
[95.16837482]
[95.75402635]
[95.60761347]
[95.75402635]
[95.75402635]
[96.33967789]
[96.48609078]
[96.63250366]
[96.63250366]
[96.63250366]
[96.63250366]
[96.63250366]

[97.07174231]
[97.07174231]
[97.07174231]

What is missing?

— The model is simpler than deep neural networks, but sufficient
for the task.

— We did not use batch processing, i.e. using more than one
sample for a given gradient update

— We calculated performance on the training set. We might
overfit.

