5IF - Deep Learning and Differentiable Programming

2.2 (Generalized) Linear models

Example: Sand corn vs. Slope

Variable 1 : median diameter (mm) of granules of sand Variable 2 : gradient of beach slope in degrees

https://college.cengage.com/mathematics/brase/understandable_statistics/7e/students/datasets/slr/fr ames/frame.html

[Physical geography by A.M King, Oxford Press, England]

Data loading and conversion

```
import numpy as np
from numpy import genfromtxt
import torch

f Import the text file into a numpy array
n = genfromtxt('sand_slope.csv', delimiter=';')

f Convert to torch tensor
D = torch.tensor(n, dtype=torch.float32)

f Separate into two different vectors
X = D[:,0].view(-1,1)
Y = D[:,1].view(-1,1)
```

Data loading and conversion

```
1 print (X,Y)
```

1	tensor ([[0.1700] ,
2	[0.1900],
3	[0.2200],
4	[0.2350],
5	[0.2350],
6	[0.3000],
7	[0.3500],
8	[0.4200],
9	[0.8500]])
10	tensor([[0.6300],
11	[0.7000],
12	[0.8200],
13	[0.8800],
14	[1.1500],
15	[1.5000],
16	[4.4000],
17	[7.3000],
18	[11.3000]])

The perfect regression?

We suppose the following relationship for a single data pair (x, y):

y = x * w

with w a correlation coefficient.

For the full data:

$$Y = XW$$

If we the number of data points matches the problem, we can solve the linear problem perfectly with

$$W = X^{-1}Y$$

What happens if we have many more points (typical case?)

Solving the least squares problem

We want to solve the regression problem

$$\min_{W} ||XW - Y||_2$$

Solving the least squares problem

We want to solve the regression problem

$$\min_{W} ||XW - Y||_2$$

A solution with the Moore-Penrose can be given as:

$$X^+ = (X^T X)^{-1} X^T$$

The regression coefficients are given by $W = X^+Y$ In PyTorch:

1 PI = torch.mm(torch.inverse(torch.mm(torch.transpose(X ,0,1),X)), torch.transpose(X,0,1))
2 W = torch.mm(PI,Y)

Precision of the solution $(L_1 \text{ Norm})$

1	tensor([[11.6522]])
2	tensor ([[1.9809] ,
3	[2.2139],
4	[2.5635],
5	[2.7383],
6	[2.7383],
7	[3.4956],
8	[4.0783],
9	[4.8939],
10	[9.9043]])
11	tensor([[0.6300],
12	[0.7000],
13	[0.8200],
14	[0.8800],
15	[1.1500],
16	[1.5000],
17	[4.4000],
18	[7.3000],
19	[11.3000]])
20	tensor (14.1739)

Improvement: handle bias

The solution is bad! What happened? We forget the bias term. A single data point is regressed as y = x * W without constant bias.

Solution: Add bias term y = x * w + b.

This can be achieved by adding a constant row of "1" to the matrix X:

$$Xc = \begin{bmatrix} X & \mathbf{1} \end{bmatrix}$$

```
1 Xc = torch.cat((X, torch.ones((X.size(0),1))), 1)
2
3 # Same code as before:
4 PIc = torch.mm(torch.inverse(torch.mm(torch.transpose(
        Xc,0,1), Xc)), torch.transpose(Xc,0,1))
5 Wc = torch.mm(PIc,Y)
```

Precision of the solution $(L_1 \text{ Norm})$

1 print (torch.mm(Xc,Wc), Y, torch.dist(torch.mm(Xc,Wc), Y, 1))

1	tensor([[17.1594],
2	[-2.4759]])
3	tensor([[0.4412],
4	[0.7844],
5	[1.2991],
6	[1.5565],
7	[1.5565],
8	[2.6719],
9	[3.5299],
10	[4.7310],
11	[12.1095]])
12	tensor([[0.6300],
13	[0.7000],
14	[0.8200],
15	[0.8800],
16	[1.1500],
17	[1.5000],
18	[4.4000],
19	[7.3000],
20	[11.3000]])
21	tensor(7.2559)

Inhouse solution

PyTorch has a solution ready-to go:

```
1 G,_ = torch.gels (Y,X)
2 # The solution is in the first row
3 print ("By gesls(): W=",G[0])
4
5 G,_ = torch.gels (Y,Xc)
6 # The solution is in the first two rows
7 print ("By gesls(): W=",G[0:2])
```

1	By	gesls(): W = tensor([11.6522])
2	By	gesls(): ₩ tensor([[17.1594],
3		[-2.4759]])

Linear classification (2 classes)

A decision function ist modeled through a linear relationship

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0$$

 w_0 is the bias term which can be integrated by adding « 1 » to the input vector:

Linear classification(K classes)

Multiple parametric functions

$$y_k(\mathbf{x}) = \mathbf{w}_k^{\mathrm{T}} \mathbf{x} + w_{k0}$$

In vectorial notation with integrated bias:

$$\mathbf{y}(\mathbf{x}) = \widetilde{\mathbf{W}}^{\mathrm{T}}\widetilde{\mathbf{x}}$$

Interpretation :

Class k if $y_k(x) > y_j(x) \quad \forall j \neq k$

« The winner takes it all »

Visualization of a simple problem

Linear classifier: 1D input, 3 classes

x y

Output of one class:

$$y_k = \mathbf{w}_k^T x$$

Output of all classes:

$$y = Wx$$

Visualization of a simple problem

Decision functions

Decision functions of linear classifiers are linear, i.e. d-dimensional hyper-planes in input space.

The non-linear case

Pre-processing : Non-linear transformation of the data, according to the application

Gaussian basis functions

(Generalized) linear models

How do we train a linear model for classification?

What is the loss function?

(A simple L_1 or L_2 norm is not optimal / justified on categorical data like class labels)

How do we train it?

Logistic regression (2 classes)

A linear model (eventually on transformed input) + a non-linearity at the output

$$p(\mathcal{C}_1|\boldsymbol{\phi}) = y(\boldsymbol{\phi}) = \sigma\left(\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}\right)$$

Direct model of the posterior probability

 σ is the logistic function (« sigmoid ») ensuring that the output is between 0 and 1:

$$\sigma(\eta) = \frac{1}{1 + \exp(-\eta)}$$

Logistic regression (K classes)

The extension is similar to the linear case

$$p(\mathcal{C}_k|\boldsymbol{\phi}) = y_k(\boldsymbol{\phi}) = \frac{\exp(a_k)}{\sum_j \exp(a_j)}$$

« Softmax » to ensure that the output sums to 1

$$a_k = \mathbf{w}_k^{\mathrm{T}} \boldsymbol{\phi}.$$

Linearities

Logistic regression: motivation

Allows a probabilistic view of classification and training.

The objective (loss) is convex: the global minimum can be attained.

The decision functions are still linear (« Generalized linear model »).

Logistic regression: training

Training dataset:

Inputs x_n transformed by basis functions $\phi(x_n)$

Categorical outputs t_n (« targets »), 1-à-K encoded (« *hot*one-encoded »):

 $t_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$

Real (ground-truth) class of sample n

Objective : learn parameters \mathbf{w} according to a criterion

Training

To estimate the parameters \mathbf{w} we minimise the following error function (the negative log likelihood of the data):

$$E(\mathbf{w}_1,\ldots,\mathbf{w}_K) = -\ln p(\mathbf{T}|\mathbf{w}_1,\ldots,\mathbf{w}_K) = -\sum_{n=1}^N \sum_{k=1}^K t_{nk} \ln y_{nk}$$

« Cross-entropy loss »

It can be minimized by gradient descent:

$$\nabla_{\mathbf{w}_j} E(\mathbf{w}_1, \dots, \mathbf{w}_K) = \sum_{n=1}^N \left(y_{nj} - t_{nj} \right) \boldsymbol{\phi}_n$$

Learning by gradient descent

Iterative minimisation through gradient descent:

$$\theta^{[t+1]} = \theta^{[t]} + \nu \nabla \mathcal{L}(h(x,\theta), y^*)$$

Can be blocked in a local minimum (not that it matters much ...)

Linear separation fails on XOR

https://playground.tensorflow.org

Unless we calcuate features

https://playground.tensorflow.org

Example: Wisconsin breast-cancer

ld [‡]	Cl.thickness 🍦	Cell.size 🔅	Cell.shape 🔅	Marg.adhesion 🗦	Epith.c.size 🗧 🗧	Bare.nuclei 🔶	Bl.cromatin 🗘	Normal.nucleoli 🍦	Mitoses 🔅	Class 🍦
1000025	5	1	1	1	2	1	3	1	1	benign
1002945	5	4	4	5	7	10	3	2	1	benign
1015425	3	1	1	1	2	2	3	1	1	benign
1016277	6	8	8	1	3	4	3	7	1	benign
1017023	4	1	1	3	2	1	3	1	1	benign
1017122	8	10	10	8	7	10	9	7	1	malignant
1018099	1	1	1	1	2	10	3	1	1	benign
1018561	2	1	2	1	2	1	3	1	1	benign
1033078	2	1	1	1	2	1	1	1	5	benign
1033078	4	2	1	1	2	1	2	1	1	benign
1035283	1	1	1	1	1	1	3	1	1	benign
1036172	2	1	1	1	2	1	2	1	1	benign
1041801	5	3	3	3	2	3	4	4	1	malignant

<pre>chris pytorch \$ head breast-cancer-wisconsin.csv</pre>
1000025,5,1,1,1,2,1,3,1,1,2
1002945,5,4,4,5,7,10,3,2,1,2
1015425,3,1,1,1,2,2,3,1,1,2
1016277,6,8,8,1,3,4,3,7,1,2
1017023,4,1,1,3,2,1,3,1,1,2
1017122,8,10,10,8,7,10,9,7,1,4
1018099,1,1,1,1,2,10,3,1,1,2
1018561,2,1,2,1,2,1,3,1,1,2
1033078,2,1,1,1,2,1,1,1,5,2
1033078,4,2,1,1,2,1,2,1,1,2

https://www.machinelearningplus.com/machine-learning/logistic-regression-tutorial-examples-r/

Data loading and conversion

```
1 import numpy as np
2 from numpy import genfromtxt
3 import torch
4 from torch.nn import functional as F
5
6 # Import the text file into a numpy array
7 n = genfromtxt('breast-cancer-wisconsin-cleaned.csv',
      delimiter=',')
8 D = torch.tensor(n, dtype=torch.float32)
9 N_samples = D.size(0)
10
11 # The input is the full matrix without first and
12 # last column, plus the 1 column for the bias
13 X = D[:, 1:-1]
14 X = \text{torch.cat}((X, \text{torch.ones}((X.size(0), 1))), 1)
15
16 # The targets. Change all 2 \rightarrow 0 and 4 \rightarrow 1
17 T=D[:,-1:]
18 T[T==2]=0
19 T[T==4]=1
```

The model

```
class LogisticRegression(torch.nn.Module):
1
      def __init__(self):
2
          super(LogisticRegression, self).__init__()
3
4
          # The linear layer (input dim, output dim)
5
          # It also contains a weight matrix
6
          # (here single output-> vector)
7
          self.fc1 = torch.nn.Linear(10, 1)
8
9
      # The forward pass of the network. x is the input
10
      def forward(self, x):
11
          return F.sigmoid(self.fc1(x))
12
```

Set up the environment

```
# Instantiate the model
model = LogisticRegression()
# The loss function: binary cross-entropy
criterion = torch.nn.BCELoss()
# Set up the optimizer: stochastic gradient descent
# with a learning rate of 0.01
optimizer = torch.optim.SGD(model.parameters(), lr
= 0.01)
```

Iterative training

```
1 # 1 epoch = 1 pass over the full dataset
  for epoch in range(200):
2
      print ("Starting epoch", epoch, " ",end='')
3
      calcAccuracy()
4
5
      for sample in range(N_samples):
6
           # model -> train mode, clear gradients
7
          model.train()
8
           optimizer.zero_grad()
9
10
          # Forward pass (stimulate model with inputs)
11
           y = model(X[sample,:])
12
13
          # Compute Loss
14
           loss = criterion(y, T[sample])
15
16
          # Backward pass: calculate the gradients
17
          loss.backward()
18
19
           # One step of stochastic gradient descent
20
           optimizer.step()
21
```

Evaluation

Calculate the accuracy (in percent) at each epoch: Proportion of correctly classified samples. Random performance = 50% on a binary task.

```
def calcAccuracy():
1
2
      # model -> eval mode
3
      model.eval()
4
      correct = 0.0
5
      for sample in range(N_samples):
6
7
        # threshold the output probability
8
        y = 1 if model(X[sample,:]) > 0.5 else 0
9
        correct += (y == T[sample]).numpy()
10
11
      print ("Accuracy = ", 100.0*correct/N_samples)
12
```

Results

1	Starting	epoch	0	Accuracy =	[34.69985359]
2	Starting	epoch	1	Accuracy =	[91.21522694]
3	Starting	epoch	2	Accuracy =	[93.99707174]
4	Starting	epoch	3	Accuracy =	[95.16837482]
5	Starting	epoch	4	Accuracy =	[95.75402635]
6	Starting	epoch	5	Accuracy =	[95.60761347]
7	Starting	epoch	6	Accuracy =	[95.75402635]
8	Starting	epoch	7	Accuracy =	[95.75402635]
9	Starting	epoch	8	Accuracy =	[96.33967789]
10	Starting	epoch	9	Accuracy =	[96.48609078]
11	Starting	epoch	10	Accuracy =	[96.63250366]
12	Starting	epoch	11	Accuracy =	[96.63250366]
13	Starting	epoch	12	Accuracy =	[96.63250366]
14	Starting	epoch	13	Accuracy =	[96.63250366]
15	Starting	epoch	14	Accuracy =	[96.63250366]

(...)

1	Starting	epoch	197	Accuracy =	[97.07174231]
2	Starting	epoch	198	Accuracy =	[97.07174231]
3	Starting	epoch	199	Accuracy =	[97.07174231]

What is missing?

- The model is simpler than deep neural networks, but sufficient for the task.
- We did not use batch processing, i.e. using more than one sample for a given gradient update
- We calculated performance on the training set. We might overfit.