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Example: Sand corn vs. Slope
Variable 1 : median diameter (mm) of granules of sand
Variable 2 : gradient of beach slope in degrees

Diameter Slope
0,17 0,63
0,19 0,70
0,22 0,82
0,23 0,88
0,23 1,15
0,30 1,50
0,35 4,40
0,42 7,30
0,85 11,30

https://college.cengage.com/mathematics/brase/understandable_statistics/7e/students/datasets/slr/fr
ames/frame.html
[Physical geography by A.M King, Oxford Press, England]

https://college.cengage.com/mathematics/brase/understandable_statistics/7e/students/datasets/slr/frames/frame.html


Data loading and conversion

1 import numpy as np
2 from numpy import genfromtxt
3 import torch
4

5 # Import the text file into a numpy array
6 n = genfromtxt(’sand_slope.csv’, delimiter=’;’)
7

8 # Convert to torch tensor
9 D = torch.tensor(n, dtype=torch.float32)

10

11 # Separate into two different vectors
12 X = D[:,0]. view(-1,1)
13 Y = D[:,1]. view(-1,1)



Data loading and conversion

1 print (X,Y)

1 t e n s o r ( [ [ 0 . 1 7 0 0 ] ,
2 [ 0 . 1 9 0 0 ] ,
3 [ 0 . 2 2 0 0 ] ,
4 [ 0 . 2 3 5 0 ] ,
5 [ 0 . 2 3 5 0 ] ,
6 [ 0 . 3 0 0 0 ] ,
7 [ 0 . 3 5 0 0 ] ,
8 [ 0 . 4 2 0 0 ] ,
9 [ 0 . 8 5 0 0 ] ] )

10 t e n s o r ( [ [ 0 . 6 3 00 ] ,
11 [ 0 . 7 0 00 ] ,
12 [ 0 . 8 2 00 ] ,
13 [ 0 . 8 8 00 ] ,
14 [ 1 . 1 5 00 ] ,
15 [ 1 . 5 0 00 ] ,
16 [ 4 . 4 0 00 ] ,
17 [ 7 . 3 0 00 ] ,
18 [ 1 1 . 3 0 0 0 ] ] )



The perfect regression?

We suppose the following relationship for a single data pair (x, y):

y = x ⇤ w

with w a correlation coe�cient.

For the full data:
Y = XW

If we the number of data points matches the problem, we can solve
the linear problem perfectly with

W = X�1Y

What happens if we have many more points (typical case?)



Solving the least squares problem

We want to solve the regression problem

min
W

||XW � Y ||2

A solution with the Moore-Penrose can be given as:

X+ = (XTX)�1XT

The regression coe�cients are given by W = X+Y
In PyTorch:

1 PI = torch.mm(torch.inverse(torch.mm(torch.transpose(X

,0,1),X)), torch.transpose(X,0,1))

2 W = torch.mm(PI ,Y)
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Precision of the solution (L1 Norm)
1 print (torch.mm(X,W), Y, torch.dist(torch.mm(X,W), Y,

1))

1 t e n s o r ( [ [ 1 1 . 6 5 2 2 ] ] )
2 t e n s o r ( [ [ 1 . 9 8 0 9 ] ,
3 [ 2 . 2 1 3 9 ] ,
4 [ 2 . 5 6 3 5 ] ,
5 [ 2 . 7 3 8 3 ] ,
6 [ 2 . 7 3 8 3 ] ,
7 [ 3 . 4 9 5 6 ] ,
8 [ 4 . 0 7 8 3 ] ,
9 [ 4 . 8 9 3 9 ] ,

10 [ 9 . 9 0 4 3 ] ] )
11 t e n s o r ( [ [ 0 . 6 3 00 ] ,
12 [ 0 . 7 0 00 ] ,
13 [ 0 . 8 2 00 ] ,
14 [ 0 . 8 8 00 ] ,
15 [ 1 . 1 5 00 ] ,
16 [ 1 . 5 0 00 ] ,
17 [ 4 . 4 0 00 ] ,
18 [ 7 . 3 0 00 ] ,
19 [ 1 1 . 3 0 0 0 ] ] )
20 t e n s o r ( 14 . 1739 )



Improvement: handle bias

The solution is bad! What happened? We forget the bias term. A
single data point is regressed as y = x ⇤W without constant bias.

Solution: Add bias term y = x ⇤ w + b.

This can be achieved by adding a constant row of “1” to the
matrix X:

Xc = [ X 1 ]

1 Xc = torch.cat((X, torch.ones((X.size (0) ,1))), 1)
2

3 # Same code as before:
4 PIc = torch.mm(torch.inverse(torch.mm(torch.transpose(

Xc ,0,1), Xc)), torch.transpose(Xc ,0,1))
5 Wc = torch.mm(PIc ,Y)



Precision of the solution (L1 Norm)
1 print (torch.mm(Xc ,Wc), Y, torch.dist(torch.mm(Xc ,Wc),

Y, 1))

1 t e n s o r ( [ [ 1 7 . 1 5 9 4 ] ,
2 [ �2 . 4759 ] ] )
3 t e n s o r ( [ [ 0 . 4 4 12 ] ,
4 [ 0 . 7 8 44 ] ,
5 [ 1 . 2 9 91 ] ,
6 [ 1 . 5 5 65 ] ,
7 [ 1 . 5 5 65 ] ,
8 [ 2 . 6 7 19 ] ,
9 [ 3 . 5 2 99 ] ,

10 [ 4 . 7 3 10 ] ,
11 [ 1 2 . 1 0 9 5 ] ] )
12 t e n s o r ( [ [ 0 . 6 3 00 ] ,
13 [ 0 . 7 0 00 ] ,
14 [ 0 . 8 2 00 ] ,
15 [ 0 . 8 8 00 ] ,
16 [ 1 . 1 5 00 ] ,
17 [ 1 . 5 0 00 ] ,
18 [ 4 . 4 0 00 ] ,
19 [ 7 . 3 0 00 ] ,
20 [ 1 1 . 3 0 0 0 ] ] )
21 t e n s o r ( 7 . 2559 )



Inhouse solution

PyTorch has a solution ready-to go:

1 G,_ = torch.gels (Y,X)
2 # The solution is in the first row
3 print ("By gesls(): W=",G[0])
4

5 G,_ = torch.gels (Y,Xc)
6 # The solution is in the first two rows
7 print ("By gesls(): W=",G[0:2])

1 By g e s l s ( ) : W= t e n s o r ( [ 1 1 . 6 5 2 2 ] )
2 By g e s l s ( ) : W= t e n s o r ( [ [ 1 7 . 1 5 9 4 ] ,
3 [ �2 . 4759 ] ] )



Linear classification (2 classes)
A decision function ist modeled through a linear relationship

is the bias term which can be integrated by adding « 1 » to the input vector:
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(McCullagh and Nelder, 1989). Note, however, that in contrast to the models used
for regression, they are no longer linear in the parameters due to the presence of the
nonlinear function f(·). This will lead to more complex analytical and computa-
tional properties than for linear regression models. Nevertheless, these models are
still relatively simple compared to the more general nonlinear models that will be
studied in subsequent chapters.

The algorithms discussed in this chapter will be equally applicable if we first
make a fixed nonlinear transformation of the input variables using a vector of basis
functions φ(x) as we did for regression models in Chapter 3. We begin by consider-
ing classification directly in the original input space x, while in Section 4.3 we shall
find it convenient to switch to a notation involving basis functions for consistency
with later chapters.

4.1. Discriminant Functions

A discriminant is a function that takes an input vector x and assigns it to one of K
classes, denoted Ck. In this chapter, we shall restrict attention to linear discriminants,
namely those for which the decision surfaces are hyperplanes. To simplify the dis-
cussion, we consider first the case of two classes and then investigate the extension
to K > 2 classes.

4.1.1 Two classes
The simplest representation of a linear discriminant function is obtained by tak-

ing a linear function of the input vector so that

y(x) = wTx + w0 (4.4)

where w is called a weight vector, and w0 is a bias (not to be confused with bias in
the statistical sense). The negative of the bias is sometimes called a threshold. An
input vector x is assigned to class C1 if y(x) ! 0 and to class C2 otherwise. The cor-
responding decision boundary is therefore defined by the relation y(x) = 0, which
corresponds to a (D − 1)-dimensional hyperplane within the D-dimensional input
space. Consider two points xA and xB both of which lie on the decision surface.
Because y(xA) = y(xB) = 0, we have wT(xA−xB) = 0 and hence the vector w is
orthogonal to every vector lying within the decision surface, and so w determines the
orientation of the decision surface. Similarly, if x is a point on the decision surface,
then y(x) = 0, and so the normal distance from the origin to the decision surface is
given by

wTx
‖w‖ = − w0

‖w‖ . (4.5)

We therefore see that the bias parameter w0 determines the location of the decision
surface. These properties are illustrated for the case of D = 2 in Figure 4.1.

Furthermore, we note that the value of y(x) gives a signed measure of the per-
pendicular distance r of the point x from the decision surface. To see this, consider
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Figure 4.1 Illustration of the geometry of a
linear discriminant function in two dimensions.
The decision surface, shown in red, is perpen-
dicular to w, and its displacement from the
origin is controlled by the bias parameter w0.
Also, the signed orthogonal distance of a gen-
eral point x from the decision surface is given
by y(x)/‖w‖.
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an arbitrary point x and let x⊥ be its orthogonal projection onto the decision surface,
so that

x = x⊥ + r
w

‖w‖ . (4.6)

Multiplying both sides of this result by wT and adding w0, and making use of y(x) =
wTx + w0 and y(x⊥) = wTx⊥ + w0 = 0, we have

r =
y(x)
‖w‖ . (4.7)

This result is illustrated in Figure 4.1.
As with the linear regression models in Chapter 3, it is sometimes convenient

to use a more compact notation in which we introduce an additional dummy ‘input’
value x0 = 1 and then define w̃ = (w0,w) and x̃ = (x0,x) so that

y(x) = w̃Tx̃. (4.8)

In this case, the decision surfaces are D-dimensional hyperplanes passing through
the origin of the D + 1-dimensional expanded input space.

4.1.2 Multiple classes
Now consider the extension of linear discriminants to K > 2 classes. We might

be tempted be to build a K-class discriminant by combining a number of two-class
discriminant functions. However, this leads to some serious difficulties (Duda and
Hart, 1973) as we now show.

Consider the use of K−1 classifiers each of which solves a two-class problem of
separating points in a particular class Ck from points not in that class. This is known
as a one-versus-the-rest classifier. The left-hand example in Figure 4.2 shows an
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The constant « 1 » adds
a « biais » to the model

Interpretation : 



Linear classification(K classes)
Multiple parametric functions

In vectorial notation with integrated bias:
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Figure 4.2 Attempting to construct a K class discriminant from a set of two class discriminants leads to am-
biguous regions, shown in green. On the left is an example involving the use of two discriminants designed to
distinguish points in class Ck from points not in class Ck. On the right is an example involving three discriminant
functions each of which is used to separate a pair of classes Ck and Cj .

example involving three classes where this approach leads to regions of input space
that are ambiguously classified.

An alternative is to introduce K(K − 1)/2 binary discriminant functions, one
for every possible pair of classes. This is known as a one-versus-one classifier. Each
point is then classified according to a majority vote amongst the discriminant func-
tions. However, this too runs into the problem of ambiguous regions, as illustrated
in the right-hand diagram of Figure 4.2.

We can avoid these difficulties by considering a single K-class discriminant
comprising K linear functions of the form

yk(x) = wT
k x + wk0 (4.9)

and then assigning a point x to class Ck if yk(x) > yj(x) for all j "= k. The decision
boundary between class Ck and class Cj is therefore given by yk(x) = yj(x) and
hence corresponds to a (D − 1)-dimensional hyperplane defined by

(wk − wj)Tx + (wk0 − wj0) = 0. (4.10)

This has the same form as the decision boundary for the two-class case discussed in
Section 4.1.1, and so analogous geometrical properties apply.

The decision regions of such a discriminant are always singly connected and
convex. To see this, consider two points xA and xB both of which lie inside decision
region Rk, as illustrated in Figure 4.3. Any point x̂ that lies on the line connecting
xA and xB can be expressed in the form

x̂ = λxA + (1 − λ)xB (4.11)
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Figure 4.3 Illustration of the decision regions for a mul-
ticlass linear discriminant, with the decision
boundaries shown in red. If two points xA

and xB both lie inside the same decision re-
gion Rk, then any point bx that lies on the line
connecting these two points must also lie in
Rk, and hence the decision region must be
singly connected and convex.
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Rk
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where 0 ! λ ! 1. From the linearity of the discriminant functions, it follows that

yk(x̂) = λyk(xA) + (1 − λ)yk(xB). (4.12)

Because both xA and xB lie inside Rk, it follows that yk(xA) > yj(xA), and
yk(xB) > yj(xB), for all j "= k, and hence yk(x̂) > yj(x̂), and so x̂ also lies
inside Rk. Thus Rk is singly connected and convex.

Note that for two classes, we can either employ the formalism discussed here,
based on two discriminant functions y1(x) and y2(x), or else use the simpler but
equivalent formulation described in Section 4.1.1 based on a single discriminant
function y(x).

We now explore three approaches to learning the parameters of linear discrimi-
nant functions, based on least squares, Fisher’s linear discriminant, and the percep-
tron algorithm.

4.1.3 Least squares for classification
In Chapter 3, we considered models that were linear functions of the parame-

ters, and we saw that the minimization of a sum-of-squares error function led to a
simple closed-form solution for the parameter values. It is therefore tempting to see
if we can apply the same formalism to classification problems. Consider a general
classification problem with K classes, with a 1-of-K binary coding scheme for the
target vector t. One justification for using least squares in such a context is that it
approximates the conditional expectation E[t|x] of the target values given the input
vector. For the binary coding scheme, this conditional expectation is given by the
vector of posterior class probabilities. Unfortunately, however, these probabilities
are typically approximated rather poorly, indeed the approximations can have values
outside the range (0, 1), due to the limited flexibility of a linear model as we shall
see shortly.

Each class Ck is described by its own linear model so that

yk(x) = wT
k x + wk0 (4.13)

where k = 1, . . . , K. We can conveniently group these together using vector nota-
tion so that

y(x) = W̃Tx̃ (4.14)

Interpretation :

Class k if  

« The winner takes it all »



Visualization of a simple problem
Linear classifier: 1D input, 3 classes

Input : Parameters :

Output of one class:

Output of all classes:



Visualization of a simple problem

Real decision boundaries
Estimated decision boundaries

Training data



Decision functions
Decision functions of linear classifiers are linear, i.e. d-dimensional 
hyper-planes in input space.



The non-linear case
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Figure 4.12 Illustration of the role of nonlinear basis functions in linear classification models. The left plot
shows the original input space (x1, x2) together with data points from two classes labelled red and blue. Two
‘Gaussian’ basis functions φ1(x) and φ2(x) are defined in this space with centres shown by the green crosses
and with contours shown by the green circles. The right-hand plot shows the corresponding feature space
(φ1, φ2) together with the linear decision boundary obtained given by a logistic regression model of the form
discussed in Section 4.3.2. This corresponds to a nonlinear decision boundary in the original input space,
shown by the black curve in the left-hand plot.

Bayes’ theorem, represents an example of generative modelling, because we could
take such a model and generate synthetic data by drawing values of x from the
marginal distribution p(x). In the direct approach, we are maximizing a likelihood
function defined through the conditional distribution p(Ck|x), which represents a
form of discriminative training. One advantage of the discriminative approach is
that there will typically be fewer adaptive parameters to be determined, as we shall
see shortly. It may also lead to improved predictive performance, particularly when
the class-conditional density assumptions give a poor approximation to the true dis-
tributions.

4.3.1 Fixed basis functions
So far in this chapter, we have considered classification models that work di-

rectly with the original input vector x. However, all of the algorithms are equally
applicable if we first make a fixed nonlinear transformation of the inputs using a
vector of basis functions φ(x). The resulting decision boundaries will be linear in
the feature space φ, and these correspond to nonlinear decision boundaries in the
original x space, as illustrated in Figure 4.12. Classes that are linearly separable
in the feature space φ(x) need not be linearly separable in the original observation
space x. Note that as in our discussion of linear models for regression, one of the

Pre-processing : Non-linear transformation of the data, 
according to the application

Gaussian basis functions

[C. Bishop, Pattern recognition and Machine learning, 2006]



(Generalized) linear models
How do we train a linear model for classification? 

What is the loss function?

(A simple L1 or L2 norm is not optimal / justified on 
categorical data like class labels)

How do we train it?



Logistic regression (2 classes)
A linear model (eventually on transformed input) + a non-linearity at the 
output

is the logistic function (« sigmoid ») ensuring that the output is
between 0 and 1:
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basis functions is typically set to a constant, say φ0(x) = 1, so that the correspond-
ing parameter w0 plays the role of a bias. For the remainder of this chapter, we shall
include a fixed basis function transformation φ(x), as this will highlight some useful
similarities to the regression models discussed in Chapter 3.

For many problems of practical interest, there is significant overlap between
the class-conditional densities p(x|Ck). This corresponds to posterior probabilities
p(Ck|x), which, for at least some values of x, are not 0 or 1. In such cases, the opti-
mal solution is obtained by modelling the posterior probabilities accurately and then
applying standard decision theory, as discussed in Chapter 1. Note that nonlinear
transformations φ(x) cannot remove such class overlap. Indeed, they can increase
the level of overlap, or create overlap where none existed in the original observation
space. However, suitable choices of nonlinearity can make the process of modelling
the posterior probabilities easier.

Such fixed basis function models have important limitations, and these will beSection 3.6
resolved in later chapters by allowing the basis functions themselves to adapt to the
data. Notwithstanding these limitations, models with fixed nonlinear basis functions
play an important role in applications, and a discussion of such models will intro-
duce many of the key concepts needed for an understanding of their more complex
counterparts.

4.3.2 Logistic regression
We begin our treatment of generalized linear models by considering the problem

of two-class classification. In our discussion of generative approaches in Section 4.2,
we saw that under rather general assumptions, the posterior probability of class C1

can be written as a logistic sigmoid acting on a linear function of the feature vector
φ so that

p(C1|φ) = y(φ) = σ
(
wTφ

)
(4.87)

with p(C2|φ) = 1 − p(C1|φ). Here σ(·) is the logistic sigmoid function defined by
(4.59). In the terminology of statistics, this model is known as logistic regression,
although it should be emphasized that this is a model for classification rather than
regression.

For an M -dimensional feature space φ, this model has M adjustable parameters.
By contrast, if we had fitted Gaussian class conditional densities using maximum
likelihood, we would have used 2M parameters for the means and M(M + 1)/2
parameters for the (shared) covariance matrix. Together with the class prior p(C1),
this gives a total of M(M +5)/2+1 parameters, which grows quadratically with M ,
in contrast to the linear dependence on M of the number of parameters in logistic
regression. For large values of M , there is a clear advantage in working with the
logistic regression model directly.

We now use maximum likelihood to determine the parameters of the logistic
regression model. To do this, we shall make use of the derivative of the logistic sig-
moid function, which can conveniently be expressed in terms of the sigmoid function
itselfExercise 4.12

dσ

da
= σ(1 − σ). (4.88)
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which we can solve for µ to give µ = σ(η), where

σ(η) =
1

1 + exp(−η)
(2.199)

is called the logistic sigmoid function. Thus we can write the Bernoulli distribution
using the standard representation (2.194) in the form

p(x|η) = σ(−η) exp(ηx) (2.200)

where we have used 1 − σ(η) = σ(−η), which is easily proved from (2.199). Com-
parison with (2.194) shows that

u(x) = x (2.201)
h(x) = 1 (2.202)
g(η) = σ(−η). (2.203)

Next consider the multinomial distribution that, for a single observation x, takes
the form

p(x|µ) =
M∏

k=1

µxk
k = exp

{
M∑

k=1

xk ln µk

}
(2.204)

where x = (x1, . . . , xN )T. Again, we can write this in the standard representation
(2.194) so that

p(x|η) = exp(ηTx) (2.205)

where ηk = lnµk, and we have defined η = (η1, . . . , ηM )T. Again, comparing with
(2.194) we have

u(x) = x (2.206)
h(x) = 1 (2.207)
g(η) = 1. (2.208)

Note that the parameters ηk are not independent because the parameters µk are sub-
ject to the constraint

M∑

k=1

µk = 1 (2.209)

so that, given any M − 1 of the parameters µk, the value of the remaining parameter
is fixed. In some circumstances, it will be convenient to remove this constraint by
expressing the distribution in terms of only M − 1 parameters. This can be achieved
by using the relationship (2.209) to eliminate µM by expressing it in terms of the
remaining {µk} where k = 1, . . . , M − 1, thereby leaving M − 1 parameters. Note
that these remaining parameters are still subject to the constraints

0 ! µk ! 1,
M−1∑

k=1

µk ! 1. (2.210)

Direct model of the posterior
probability



Logistic regression (K classes)
The extension is similar to the linear case
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4.3.4 Multiclass logistic regression
In our discussion of generative models for multiclass classification, we haveSection 4.2

seen that for a large class of distributions, the posterior probabilities are given by a
softmax transformation of linear functions of the feature variables, so that

p(Ck|φ) = yk(φ) =
exp(ak)∑
j exp(aj)

(4.104)

where the ‘activations’ ak are given by

ak = wT
k φ. (4.105)

There we used maximum likelihood to determine separately the class-conditional
densities and the class priors and then found the corresponding posterior probabilities
using Bayes’ theorem, thereby implicitly determining the parameters {wk}. Here we
consider the use of maximum likelihood to determine the parameters {wk} of this
model directly. To do this, we will require the derivatives of yk with respect to all of
the activations aj . These are given byExercise 4.17

∂yk

∂aj
= yk(Ikj − yj) (4.106)

where Ikj are the elements of the identity matrix.
Next we write down the likelihood function. This is most easily done using

the 1-of-K coding scheme in which the target vector tn for a feature vector φn
belonging to class Ck is a binary vector with all elements zero except for element k,
which equals one. The likelihood function is then given by

p(T|w1, . . . ,wK) =
N∏

n=1

K∏

k=1

p(Ck|φn)tnk =
N∏

n=1

K∏

k=1

ytnk
nk (4.107)

where ynk = yk(φn), and T is an N × K matrix of target variables with elements
tnk. Taking the negative logarithm then gives

E(w1, . . . ,wK) = − ln p(T|w1, . . . ,wK) = −
N∑

n=1

K∑

k=1

tnk ln ynk (4.108)

which is known as the cross-entropy error function for the multiclass classification
problem.

We now take the gradient of the error function with respect to one of the param-
eter vectors wj . Making use of the result (4.106) for the derivatives of the softmax
function, we obtainExercise 4.18

∇wjE(w1, . . . ,wK) =
N∑

n=1

(ynj − tnj)φn (4.109)
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« Softmax » to ensure that
the output sums to 1 

Linearities



Logistic regression: motivation
Allows a probabilistic view of classification and training.

The objective (loss) is convex: the global minimum can be 
attained.

The decision functions are still linear
(« Generalized linear model »). 



Logistic regression: training
Training dataset:
Inputs       transformed by basis functions
Categorical outputs « (« targets »), 1-à-K encoded (« hot-
one-encoded »):

Objective : learn parameters     according to a criterion

Real (ground-truth) class of sample n



Training
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To estimate the parameters we minimise the following error
function (the negative log likelihood of the data):

« Cross-entropy loss »

It can be minimized by gradient descent:

[C. Bishop, Pattern recognition and Machine learning, 2006]



Learning by gradient descent
Iterative minimisation through gradient descent:
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Figure 5.5 Geometrical view of the error function E(w) as
a surface sitting over weight space. Point wA is
a local minimum and wB is the global minimum.
At any point wC , the local gradient of the error
surface is given by the vector ∇E.

w1

w2

E(w)

wA wB wC

∇E

Following the discussion of Section 4.3.4, we see that the output unit activation
function, which corresponds to the canonical link, is given by the softmax function

yk(x,w) =
exp(ak(x,w))∑

j

exp(aj(x,w))
(5.25)

which satisfies 0 ! yk ! 1 and
∑

k yk = 1. Note that the yk(x,w) are unchanged
if a constant is added to all of the ak(x,w), causing the error function to be constant
for some directions in weight space. This degeneracy is removed if an appropriate
regularization term (Section 5.5) is added to the error function.

Once again, the derivative of the error function with respect to the activation for
a particular output unit takes the familiar form (5.18).Exercise 5.7

In summary, there is a natural choice of both output unit activation function
and matching error function, according to the type of problem being solved. For re-
gression we use linear outputs and a sum-of-squares error, for (multiple independent)
binary classifications we use logistic sigmoid outputs and a cross-entropy error func-
tion, and for multiclass classification we use softmax outputs with the corresponding
multiclass cross-entropy error function. For classification problems involving two
classes, we can use a single logistic sigmoid output, or alternatively we can use a
network with two outputs having a softmax output activation function.

5.2.1 Parameter optimization
We turn next to the task of finding a weight vector w which minimizes the

chosen function E(w). At this point, it is useful to have a geometrical picture of the
error function, which we can view as a surface sitting over weight space as shown in
Figure 5.5. First note that if we make a small step in weight space from w to w+δw
then the change in the error function is δE " δwT∇E(w), where the vector ∇E(w)
points in the direction of greatest rate of increase of the error function. Because the
error E(w) is a smooth continuous function of w, its smallest value will occur at a

Can be blocked in a local 
minimum (not that it matters
much …)

[Figure: C. Bishop, 2006]

Learning rate



Linear separation fails on XOR

https://playground.tensorflow.org



Unless we calcuate features

https://playground.tensorflow.org



Example: Wisconsin breast-cancer

https://www.machinelearningplus.com/machine-learning/logistic-regression-tutorial-examples-r/

https://www.machinelearningplus.com/machine-learning/logistic-regression-tutorial-examples-r/


Data loading and conversion
1 import numpy as np

2 from numpy import genfromtxt

3 import torch

4 from torch.nn import functional as F

5

6 # Import the text file into a numpy array

7 n = genfromtxt(’breast -cancer -wisconsin -cleaned.csv’,

delimiter=’,’)

8 D = torch.tensor(n, dtype=torch.float32)

9 N_samples = D.size (0)

10

11 # The input is the full matrix without first and

12 # last column , plus the 1 column for the bias

13 X=D[:,1:-1]

14 X = torch.cat ((X, torch.ones((X.size (0) ,1))) ,1)

15

16 # The targets. Change all 2->0 and 4->1

17 T=D[:,-1:]

18 T[T==2]=0

19 T[T==4]=1



The model

1 class LogisticRegression(torch.nn.Module):

2 def __init__(self):

3 super(LogisticRegression , self).__init__ ()

4

5 # The linear layer (input dim , output dim)

6 # It also contains a weight matrix

7 # (here single output -> vector)

8 self.fc1 = torch.nn.Linear (10, 1)

9

10 # The forward pass of the network. x is the input

11 def forward(self , x):

12 return F.sigmoid(self.fc1(x))



Set up the environment

1 # Instantiate the model

2 model = LogisticRegression ()

3

4 # The loss function: binary cross -entropy

5 criterion = torch.nn.BCELoss ()

6

7 # Set up the optimizer: stochastic gradient descent

8 # with a learning rate of 0.01

9 optimizer = torch.optim.SGD(model.parameters (), lr

=0.01)



Iterative training
1 # 1 epoch = 1 pass over the full dataset

2 for epoch in range (200):

3 print ("Starting epoch", epoch , " ",end=’’)

4 calcAccuracy ()

5

6 for sample in range(N_samples):

7 # model -> train mode , clear gradients

8 model.train ()

9 optimizer.zero_grad ()

10

11 # Forward pass (stimulate model with inputs)

12 y = model(X[sample ,:])

13

14 # Compute Loss

15 loss = criterion(y, T[sample ])

16

17 # Backward pass: calculate the gradients

18 loss.backward ()

19

20 # One step of stochastic gradient descent

21 optimizer.step()



Evaluation

Calculate the accuracy (in percent) at each epoch:
Proportion of correctly classified samples.
Random performance = 50% on a binary task.

1 def calcAccuracy ():

2

3 # model -> eval mode

4 model.eval()

5 correct = 0.0

6 for sample in range(N_samples):

7

8 # threshold the output probability

9 y = 1 if model(X[sample ,:]) > 0.5 else 0

10 correct += (y == T[sample ]).numpy()

11

12 print ("Accuracy = ", 100.0* correct/N_samples)



Results

1 S t a r t i n g epoch 0 Accuracy = [34 . 69985359 ]
2 S t a r t i n g epoch 1 Accuracy = [91 . 21522694 ]
3 S t a r t i n g epoch 2 Accuracy = [93 . 99707174 ]
4 S t a r t i n g epoch 3 Accuracy = [95 . 16837482 ]
5 S t a r t i n g epoch 4 Accuracy = [95 . 75402635 ]
6 S t a r t i n g epoch 5 Accuracy = [95 . 60761347 ]
7 S t a r t i n g epoch 6 Accuracy = [95 . 75402635 ]
8 S t a r t i n g epoch 7 Accuracy = [95 . 75402635 ]
9 S t a r t i n g epoch 8 Accuracy = [96 . 33967789 ]

10 S t a r t i n g epoch 9 Accuracy = [96 . 48609078 ]
11 S t a r t i n g epoch 10 Accuracy = [96 . 63250366 ]
12 S t a r t i n g epoch 11 Accuracy = [96 . 63250366 ]
13 S t a r t i n g epoch 12 Accuracy = [96 . 63250366 ]
14 S t a r t i n g epoch 13 Accuracy = [96 . 63250366 ]
15 S t a r t i n g epoch 14 Accuracy = [96 . 63250366 ]

(...)

1 S t a r t i n g epoch 197 Accuracy = [97 . 07174231 ]
2 S t a r t i n g epoch 198 Accuracy = [97 . 07174231 ]
3 S t a r t i n g epoch 199 Accuracy = [97 . 07174231 ]



What is missing?

— The model is simpler than deep neural networks, but su�cient
for the task.

— We did not use batch processing, i.e. using more than one
sample for a given gradient update

— We calculated performance on the training set. We might
overfit.


