
Christian Wolf

2.1	Multi	layer	models

5IF - Deep Learning and
Differentiable Programming

The problems of linear models
Lack of capacity, i.e. complexity of the decision to learn.
Example : XOR
Example : Visual Question Answering

Example: Visual Question
Answering

“What is the moustache
made of?”

Can the answer be predicted as a linear combination of
input pixels and question words ?

Reminder: linear models

Output
layer

Input
layer

Recognition of complex activities through unsupervised
learning of structured attribute models

April 30, 2015

Abstract

Complex human actions are modelled as graphs over basic attributes and their spatial

and temporal relationships. The attribute dictionary as well as the graphical structure

are learned automatically from training data.

y(x,w) =
DX

i=0

wixi

1 The activity model

A set C = {ci, c2, . . . , cC} of C complex activities is considered, where each activity ci is
modelled as a Graph Gi = (Vi, Ei), and both, nodes and edges of the graphs, are valued. For
convenience, in the following we will drop the index i and consider a single graph for a given
activity.

The set of nodes V of the graph G is indexed (here denoted by j) and corresponds to
occurrences of basic attributes. Each node j is assigned a vector of 4 values {aj, xj, yj, tj} :
the attribute type aj and a triplet of spatio-temporal coordinates xj, yj and tj. The edges
define pairwise logical spatial or temporal relationships: before, after, overlaps, is included,

near, . . .).
Examples of graphs for the three activities Leaving a baggage unattended, Telephone con-

versation, and Handshaking between two people are shown in figure 1. Note, that one node
of a model graph can be matched with several consecutive attribute occurrences in the test
video. For instance, when the model Telephone conversation (figure 1b) is matched, the node
Person will in general be matched to multiple occurrences of a person in the video — as
long as the conversation will last. Also, the graphs shown in the figure are only examples,
the actual graphs are learned automatically and will in general not correspond to a graph
designed by a human.

The attribute type variables aj = k may take values k in an alphabet ⇤ = {1, . . . , L}.
These values can correspond to fixed (manually designed types), as for instance Person, or
automatically learned attributes. Associated to each possible type k is a feature function
�k(v, x, y, t;⇥k) �! {0, 1} which evaluates whether in the spatio-temporal block centered on
(x, y, t) of the video v the attribute is found (= 1) or not (= 0). The parameters (to be
learned) of these functions are denoted by ⇥k.

Each edge ejk between two nodes j and k is assigned an edge label which may take values
in an alphabet ⌥ (before, after, overlaps, is included, near, . . .).). There may be multiple
edges between the same pair of nodes.

1

Multi-layer Perceptron (MLP)
« Fully-connected » layers

...

Hidden
layer

Output
layer

Input
layer

Elementwise activation
functions

Deep neural network

...

...
n

Linear activations
Consider a network with a single hidden layer and two activation
functions ⇣ and �:

yk(x) = �

0

@
X

j

w(2)
kj ⇣

X

i

w(1)
ji xi

!1

A

If the activation functions are linear, then we can rewrite the
equations in the following vectorial notation:

y = (�.W (2))(⇣.W (1)x)

= W (2)0(W (1)0x)

= W
00
x

Linear activation functions result in linear models!
! The activation functions between layers should be non-linear.

Common activation functions

Hyperbolic tangent
tanh

Rectified Linear Unit
ReLU

Universal approximation

A feed-forward network with a single hidden layer
containing a finite number of neurons can
approximate continuous functions on compact
subsets of Rn, under mild assumptions on the activation
function.

Single hidden layer require an exponential number of
hidden units (width).

Since 2017 we know that width bounded networks can
approximate any function (mild conditons) if depth can
grow.

Lu, Z., Pu, H., Wang, F., Hu, Z., & Wang, L. The Expressive Power of
Neural Networks: A View from the Width, NeurIPS, 2017.

We can approximate any 2 C([a, b],R) with a linear combination of

translated/scaled ReLU functions.

f (x) = �(w1x + b1) + �(w2x + b2) + �(w3x + b3) + . . .

This is true for other activation functions under mild assumptions.

François Fleuret EE-559 – Deep learning / 3.4. Multi-Layer Perceptrons 7 / 10

Slide: François Fleuret, IDIAP/EPFL
https://www.idiap.ch/~fleuret/

We can approximate any 2 C([a, b],R) with a linear combination of

translated/scaled ReLU functions.

f (x) = �(w1x + b1)

+ �(w2x + b2) + �(w3x + b3) + . . .

This is true for other activation functions under mild assumptions.

François Fleuret EE-559 – Deep learning / 3.4. Multi-Layer Perceptrons 7 / 10

Slide: François Fleuret, IDIAP/EPFL
https://www.idiap.ch/~fleuret/

We can approximate any 2 C([a, b],R) with a linear combination of

translated/scaled ReLU functions.

f (x) = �(w1x + b1) + �(w2x + b2)

+ �(w3x + b3) + . . .

This is true for other activation functions under mild assumptions.

François Fleuret EE-559 – Deep learning / 3.4. Multi-Layer Perceptrons 7 / 10

Slide: François Fleuret, IDIAP/EPFL
https://www.idiap.ch/~fleuret/

We can approximate any 2 C([a, b],R) with a linear combination of

translated/scaled ReLU functions.

f (x) = �(w1x + b1) + �(w2x + b2) + �(w3x + b3)

+ . . .

This is true for other activation functions under mild assumptions.

François Fleuret EE-559 – Deep learning / 3.4. Multi-Layer Perceptrons 7 / 10

Slide: François Fleuret, IDIAP/EPFL
https://www.idiap.ch/~fleuret/

We can approximate any 2 C([a, b],R) with a linear combination of

translated/scaled ReLU functions.

f (x) = �(w1x + b1) + �(w2x + b2) + �(w3x + b3) + . . .

This is true for other activation functions under mild assumptions.

François Fleuret EE-559 – Deep learning / 3.4. Multi-Layer Perceptrons 7 / 10

Slide: François Fleuret, IDIAP/EPFL
https://www.idiap.ch/~fleuret/

We can approximate any 2 C([a, b],R) with a linear combination of

translated/scaled ReLU functions.

f (x) = �(w1x + b1) + �(w2x + b2) + �(w3x + b3) + . . .

This is true for other activation functions under mild assumptions.

François Fleuret EE-559 – Deep learning / 3.4. Multi-Layer Perceptrons 7 / 10

Slide: François Fleuret, IDIAP/EPFL
https://www.idiap.ch/~fleuret/

We can approximate any 2 C([a, b],R) with a linear combination of

translated/scaled ReLU functions.

f (x) = �(w1x + b1) + �(w2x + b2) + �(w3x + b3) + . . .

This is true for other activation functions under mild assumptions.

François Fleuret EE-559 – Deep learning / 3.4. Multi-Layer Perceptrons 7 / 10

Slide: François Fleuret, IDIAP/EPFL
https://www.idiap.ch/~fleuret/

We can approximate any 2 C([a, b],R) with a linear combination of

translated/scaled ReLU functions.

f (x) = �(w1x + b1) + �(w2x + b2) + �(w3x + b3) + . . .

This is true for other activation functions under mild assumptions.

François Fleuret EE-559 – Deep learning / 3.4. Multi-Layer Perceptrons 7 / 10

Slide: François Fleuret, IDIAP/EPFL
https://www.idiap.ch/~fleuret/

We can approximate any 2 C([a, b],R) with a linear combination of

translated/scaled ReLU functions.

f (x) = �(w1x + b1) + �(w2x + b2) + �(w3x + b3) + . . .

This is true for other activation functions under mild assumptions.

François Fleuret EE-559 – Deep learning / 3.4. Multi-Layer Perceptrons 7 / 10

Slide: François Fleuret, IDIAP/EPFL
https://www.idiap.ch/~fleuret/

We can approximate any 2 C([a, b],R) with a linear combination of

translated/scaled ReLU functions.

f (x) = �(w1x + b1) + �(w2x + b2) + �(w3x + b3) + . . .

This is true for other activation functions under mild assumptions.

François Fleuret EE-559 – Deep learning / 3.4. Multi-Layer Perceptrons 7 / 10

Slide: François Fleuret, IDIAP/EPFL
https://www.idiap.ch/~fleuret/

We can approximate any 2 C([a, b],R) with a linear combination of

translated/scaled ReLU functions.

f (x) = �(w1x + b1) + �(w2x + b2) + �(w3x + b3) + . . .

This is true for other activation functions under mild assumptions.

François Fleuret EE-559 – Deep learning / 3.4. Multi-Layer Perceptrons 7 / 10

Slide: François Fleuret, IDIAP/EPFL
https://www.idiap.ch/~fleuret/

We can approximate any 2 C([a, b],R) with a linear combination of

translated/scaled ReLU functions.

f (x) = �(w1x + b1) + �(w2x + b2) + �(w3x + b3) + . . .

This is true for other activation functions under mild assumptions.

François Fleuret EE-559 – Deep learning / 3.4. Multi-Layer Perceptrons 7 / 10

Slide: François Fleuret, IDIAP/EPFL
https://www.idiap.ch/~fleuret/

Is adding layers enough?

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

Going deeper
2012 : AlexNet, 8 layers. New techniques: dropout, ReLU

2014 : GoogLEnet, 20 layers. New technique: intermediate supervision

2015 : Microsoft research, 150 layers. New technique: residual learning

Example: the MNIST dataset
A dataset of handwritten digits introduced by Yann LeCun in
1999 with 60 000 training images and 10 000 test images.
One image is of size 28x28 pixels.

http://yann.lecun.com/exdb/mnist/

MNIST : MLP performance

http://yann.lecun.com/exdb/mnist/

(Validation performance)

Writing Data Access
We subclass the Dataset class and implement the methods
__getitem__, __len__() (and __init__)!). This class will be
used by actual PyTorch Dataloader, DataLoader.

1 impor t t o r ch
2 from to r ch . u t i l s . data impor t Dataset , DataLoader
3 from t o r c h v i s i o n impor t t r a n s f o rms
4

5 c l a s s MNISTDataset (Datase t) :
6 d e f i n i t (s e l f , d i r , t r an s f o rm=None) :
7 # Read i n the f i l e s from the d i r e c t o r y and
8 # s t o r e them i n s e l f . images and s e l f . l a b e l s
9 # See MOODLE f o r the f u l l code o f t h i s method

10 (. . .)
11

12 # The a c c e s s i s NOT s h u f f l e d . The PyTorch
13 # Data l oade r w i l l need to do t h i s .
14 d e f g e t i t em (s e l f , i n d e x) :
15 r e t u r n s e l f . images [i nd e x] , s e l f . l a b e l s [i n d e x]
16 # Return the d a t a s e t s i z e
17 d e f l e n (s e l f) :
18 r e t u r n s e l f . no images

Writing Data Access

The MNIST dataset is actually already supported by PyTorch,
which includes are ready to use Dataset class, which can even
download the data from Yann Lecun’s website.

1 d a t a s e t = d a t a s e t s .MNIST(d i r , t r a i n , download=True ,
2 t r an s f o rm=t r an s f o rms . ToTensor ())

We use our own dataloader in this lecture to learn how to write
them.

Writing Data Access
Let’s recall training through gradient descent:

✓[t+1] = ✓[t] + ⌫rL(h(x, ✓), y⇤)

The gradient is rarely (never?) taken over the whole dataset, but
over a single sample, or batches (mini-batches) of a certain size.
These batches are sample randomly from the dataset.

The actual shu✏ing and batching is performed by a built-in
PyTorch DataLoader class, which uses an instance of our
Dataset subclass:

1 d a t a s e t = MNISTDataset (”MNIST�png/ t e s t i n g ” ,
2 t r a n s f o rms . Compose ([
3 t r a n s f o rms . ToTensor () ,
4 t r a n s f o rms . Norma l i z e ((0 . 1 3 0 7 ,) , (0 . 3 081 ,))]))
5

6 l o a d e r = to r ch . u t i l s . data . DataLoader (da ta s e t ,
7 b a t c h s i z e =50, s h u f f l e=True)

We passed a set of image transforms to the Dataset class, which
applies them to each image.

Tensor dimension conventions

PyTorch functions operate on multi-dimensional tensors and follow
conventions on the order of dimensions.

— The first dimension is the batch dimension
I Use 1 if you don’t use batches (= batches of size 1).
I Losses are reduced (sum or mean) over samples in a batch

— the second dimension is the channel dimension
I Use 1 if you don’t use channels (= single channels).
I Channel arithmetics will be explained in detail in the section on

convolutions.

— the following dimensions are application dependant, e.g. rows,
columns in images.

The 2 layer model
The model is similar to our linear example. Di↵erences:

— A hidden layer with 300 units and relu activation.

— A forward pass deals with a full batch.

1 class MLP(torch.nn.Module):
2 def __init__(self):
3 super(MLP , self).__init__ ()
4 # input size to 300 units
5 self.fc1 = torch.nn.Linear (28*28 , 300)
6 # 300 units to 10 output classes
7 self.fc2 = torch.nn.Linear (300, 10)
8

9 def forward(self , x):
10 # Reshape from a 3D tensor (batchsize , 28, 28)
11 # to a flattened (batchsize , 28*28)
12 # 1 sample = 1 vector
13 x = x.view(-1, 28*28)
14 x = F.relu(self.fc1(x))
15 return self.fc2(x)

Setup model, loss, optimizer
This time we have more than 2 classes, we use the Cross-entropy
loss.

1 # Instantiate the model
2 model = MLP()
3

4 # This criterion combines LogSoftMax and NLLLoss
5 # in one single class.
6 crossentropy = torch.nn.CrossEntropyLoss ()
7

8 # Set up the optimizer: stochastic gradient descent
9 # with a learning rate of 0.01

10 optimizer = torch.optim.SGD(model.parameters (), lr
=0.01)

11

12 # Init some statistics
13 running_loss = 0.0
14 running_correct = 0
15 running_count = 0

Cycling through batches and samples

1 # Cyc l e th rough epochs
2 f o r epoch i n range (100) :
3

4 # Cyc l e th rough ba t che s . One batch i s a s e t o f
5 # images and a s e t o f ground t r u t h l a b e l s
6 f o r ba t ch i d x , (data , l a b e l s) i n enumerate (l o a d e r) :
7

8 o p t im i z e r . z e r o g r a d ()
9

10 # We c a l c u l a t e a p r e d i c t i o n on the f u l l batch
11 y = model (data)
12

13 # Loss o f the f u l l batch , summed
14 l o s s = c r o s s e n t r o p y (y , l a b e l s)
15

16 # Ca l c u l a t e g r a d i e n t s o f the f u l l batch
17 l o s s . backward ()
18

19 # One g r a d i e n t update
20 o p t im i z e r . s t e p ()

Track training error

1 # Ca l c u l a t e the w inne r c l a s s
2 , p r e d i c t e d = to r ch . max(y . data , 1)
3

4 # How many c o r r e c t samp les ?
5 r u n n i n g c o r r e c t += (p r e d i c t e d == l a b e l s) . sum () . i tem ()
6 r unn i ng coun t += BATCHSIZE
7

8 # Every 100 batches , p r i n t s t a t i s t i c s
9 i f (b a t c h i d x % 100) == 0 :

10

11 t r a i n e r r = 100.0⇤(1.0� r u n n i n g c o r r e c t / r unn i ng coun t)
12 p r i n t (’ Epoch : %d batch : %5d ’ % (epoch + 1 , b a t c h i d x +

1) , end=””)
13 p r i n t (’ t r a i n� l o s s : %.3 f t r a i n�e r r : %.3 f ’ % (

r u n n i n g l o s s / 100 , t r a i n e r r))
14 r u n n i n g l o s s = 0 .0
15 r u n n i n g c o r r e c t = 0 .0
16 r unn i ng coun t =0.0

Example output
1 Epoch : 1 batch : 1 t r a i n� l o s s : 0 .024 t r a i n�e r r : 98 .000
2 Epoch : 1 batch : 101 t r a i n� l o s s : 1 .576 t r a i n�e r r : 36 .140
3 Epoch : 1 batch : 201 t r a i n� l o s s : 0 .747 t r a i n�e r r : 16 .320
4 Epoch : 1 batch : 301 t r a i n� l o s s : 0 .539 t r a i n�e r r : 12 .880
5 Epoch : 1 batch : 401 t r a i n� l o s s : 0 .481 t r a i n�e r r : 13 .000
6 Epoch : 1 batch : 501 t r a i n� l o s s : 0 .414 t r a i n�e r r : 11 .280
7 Epoch : 1 batch : 601 t r a i n� l o s s : 0 .386 t r a i n�e r r : 10 .380
8 Epoch : 1 batch : 701 t r a i n� l o s s : 0 .385 t r a i n�e r r : 10 .900
9 Epoch : 1 batch : 801 t r a i n� l o s s : 0 .363 t r a i n�e r r : 10 .540

10 Epoch : 1 batch : 901 t r a i n� l o s s : 0 .320 t r a i n�e r r : 9 .120
11 Epoch : 1 batch : 1001 t r a i n� l o s s : 0 .323 t r a i n�e r r : 8 .920
12 Epoch : 1 batch : 1101 t r a i n� l o s s : 0 .325 t r a i n�e r r : 9 .400
13 Epoch : 2 batch : 1 t r a i n� l o s s : 0 .304 t r a i n�e r r : 8 .880

(...)

1 Epoch : 75 batch : 801 t r a i n� l o s s : 0 .007 t r a i n�e r r : 0 .000
2 Epoch : 75 batch : 901 t r a i n� l o s s : 0 .007 t r a i n�e r r : 0 .020
3 Epoch : 75 batch : 1001 t r a i n� l o s s : 0 .008 t r a i n�e r r : 0 .000
4 Epoch : 75 batch : 1101 t r a i n� l o s s : 0 .009 t r a i n�e r r : 0 .040

This is training error, not validation error, i.e. NOT representative
of the performance of the model!

