
Christian Wolf

2.4	Train/Validation/Test		
split	- Tensorboard

5IF - Deep Learning and
Differentiable Programming

Under- and Overfitting in Regression
1.1. Example: Polynomial Curve Fitting 7

x

t

M = 0

0 1

−1

0

1

x

t

M = 1

0 1

−1

0

1

x

t

M = 3

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

Figure 1.4 Plots of polynomials having various orders M , shown as red curves, fitted to the data set shown in
Figure 1.2.

(RMS) error defined by
ERMS =

√
2E(w!)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2πx). Values of M in the range 3 ! M ! 8
give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3, from
Figure 1.4.

[C. Bishop, Pattern recognition and Machine learning, 2006]

Underfitting

Overfitting

Underfitting

[Figure: Tim Hulsen]

Overfitting in
classification

We would like to learn to predict a value y from observed input x

Handcrafted from domain
knowledge (e.g. type of
model, number of layers,

number of units:
architecture)

Learned from training
data

We can overfit on what exactly?

Optimization over the training data

We optimize a loss function L taking ground-truth targets t and
predictions y of a model h over its parameters ✓:

✓ = argmin
✓

L(h(x, ✓), t)

Fitting is thus the result of the optimization process ... and every
optimization on data process can lead to potential overfitting.
We overfit on the data on which we optimize (here: training data).
The validation data provides a better estimate of the error of the
model.

Validation (hold-out) set
We remove parts of the data from training, and use it for
evaluation, to check whether we overfit.

Validation dataTraining data

Optimization over the validation data

Problem: while working on the problem, we select and optimize
network architectures, so a better notation for the function h
would be:

h(x, ✓; ⇣)

where ⇣ are the hyper-parameters of the network.
In practice, we really solve the following problem:

min
⇣

min
✓

L(h(x, ✓; ⇣), t)

Optimization loops

Design model architecture

Load next batch
Forward pass
Backward pass – calculate gradients
Weight updateSGD

Validation performance is NOT representative of the performance
of the model in the wild! We overfit on the validation data!

Calculate validation performance
Change model

Graduate student / Engineer / Meta-learning algorithm

Validation (hold-out) set
We remove parts of the data from training, and use it for
evaluation, to check whether we overfit.

Test dataTraining data Validation data

Visualization of the training
process

Running Tensorboard

Install:

1 pip3 install tensorboard

PyTorch code:

1 from torch.utils.tensorboard import SummaryWriter

2

3 # Setup a writer and configure a log file directory

4 writer = SummaryWriter(’runs/mnist_mlp_r0 .01’)

Start the tensorboard exectuable

1 tensorboard --logdir=runs

The executable sets up a web server on port 6006:

1 TensorBoard 2 . 0 . 0 at h t tp : // l o c a l h o s t :6006/ (P r e s s CTRL+C to
q u i t)

Running Tensorboard
We load two di↵erent datasets, a training and a validation set:

1 # Training set and loader

2 valid_dataset = MNISTDataset ("MNIST -png/testing",

3 transforms.Compose ([

4 transforms.ToTensor (),

5 transforms.Normalize ((0.1307 ,), (0.3081 ,))]))

6 valid_loader = torch.utils.data.DataLoader(

valid_dataset ,

7 batch_size=BATCHSIZE , shuffle=True)

8

9 # Validation set and loader ("hold out" set)

10 train_dataset = MNISTDataset ("MNIST -png/training",

11 transforms.Compose ([

12 transforms.ToTensor (),

13 transforms.Normalize ((0.1307 ,), (0.3081 ,))]))

14 train_loader = torch.utils.data.DataLoader(

train_dataset ,

15 batch_size=BATCHSIZE , shuffle=True)

Writing into Tensorboard
1 f o r epoch i n range (100) :
2 f o r ba t ch i d x , (data , l a b e l s) i n enumerate (t r a i n l o a d e r) :
3

4 (. . .)
5

6 # P r i n t s t a t i s t i c s
7 i f (b a t c h i d x % STATS INTERVAL) == 0 :
8 t r a i n e r r =100.0⇤(1.0� r u n n i n g c o r r e c t / count)
9

10 # Ca l l a second loop which i t e r a t e s ove r
11 # v a l i d a t i o n batches , c a l c u l a t i n g e r r o r
12 v l o s s , v e r r = c a l c E r r o r (model , v a l i d l o a d e r)
13

14 # Write s t a t i s t i c s to the l o g f i l e
15 w r i t e r . a d d s c a l a r s (’ Loss ’ , {
16 ’ t r a i n i n g : ’ : r u n n i n g l o s s / STATS INTERVAL ,
17 ’ v a l i d a t i o n : ’ : v l o s s } ,
18 epoch ⇤ l e n (t r a i n l o a d e r) + ba t c h i d x)
19

20 w r i t e r . a d d s c a l a r s (’ E r r o r ’ , {
21 ’ t r a i n i n g : ’ : t r a i n e r r ,
22 ’ v a l i d a t i o n : ’ : v e r r } ,
23 epoch ⇤ l e n (t r a i n l o a d e r) + ba t c h i d x)

Running Tensorboard

Install:

1 pip3 install tensorboard

PyTorch code:

1 from torch.utils.tensorboard import SummaryWriter

2

3 # Setup a writer and configure a log file directory

4 writer = SummaryWriter(’runs/mnist_mlp_r0 .01’)

Start the tensorboard exectuable

1 tensorboard --logdir=runs

The executable sets up a web server on port 6006:

1 TensorBoard 2 . 0 . 0 at h t tp : // l o c a l h o s t :6006/ (P r e s s CTRL+C to
q u i t)

Logistic Regression underfits

