
5IF - Deep Learning et 
Programmation Différentielle

Christian Wolf

2.6	Stochastic Gradient	Descent



Learning by gradient descent
Iterative minimisation through gradient descent:

236 5. NEURAL NETWORKS

Figure 5.5 Geometrical view of the error function E(w) as
a surface sitting over weight space. Point wA is
a local minimum and wB is the global minimum.
At any point wC , the local gradient of the error
surface is given by the vector ∇E.

w1

w2

E(w)

wA wB wC

∇E

Following the discussion of Section 4.3.4, we see that the output unit activation
function, which corresponds to the canonical link, is given by the softmax function

yk(x,w) =
exp(ak(x,w))∑

j

exp(aj(x,w))
(5.25)

which satisfies 0! yk ! 1and
∑

k yk = 1. Note that the yk(x,w) are unchanged
if a constant is added to all of the ak(x,w), causing the error function to be constant
for some directions in weight space. This degeneracy is removed if an appropriate
regularization term (Section 5.5) is added to the error function.

Once again, the derivative of the error function with respect to the activation for
a particular output unit takes the familiar form (5.18).Exercise 5.7

In summary, there is a natural choice of both output unit activation function
and matching error function, according to the type of problem being solved. For re-
gression we use linear outputs and a sum-of-squares error, for (multiple independent)
binary classifications we use logistic sigmoid outputs and a cross-entropy error func-
tion, and for multiclass classification we use softmax outputs with the corresponding
multiclass cross-entropy error function. For classification problems involving two
classes, we can use a single logistic sigmoid output, or alternatively we can use a
network with two outputs having a softmax output activation function.

5.2.1 Parameter optimization
We turn next to the task of finding a weight vector w which minimizes the

chosen function E(w). At this point, it is useful to have a geometrical picture of the
error function, which we can view as a surface sitting over weight space as shown in
Figure 5.5. First note that if we make a small step in weight space from w to w+δw
then the change in the error function is δE ≃ δwT∇E(w), where the vector ∇E(w)
points in the direction of greatest rate of increase of the error function. Because the
error E(w) is a smooth continuous function of w, its smallest value will occur at a

Can be blocked in a local 
minimum (not that it matters
much …)

[Figure: C. Bishop, 2006]

Learning rate



Stochastic Gradient Descent
The vanilla version of SGD:

✓[t+1] = ✓[t] � ⌫r

where ⌫ is the learning rate (a hyper-parameter).

The learning rate has a big impact on convergence and

convergence speed:

— Low ⌫: slow convergence

— High ⌫: overshoot target

) decay learning rate during learning, e.g. divide by two every X
epochs.

The following slides are partially inspired by

http://cs231n.github.io/neural-networks-3/















Visualization

[Animations: Alex Radford, Open-AI]

http://cs231n.github.io/neural-networks-3/

http://cs231n.github.io/neural-networks-3/


Learning rates

If you are unsure, use ADAM but also try SGD.

Even the adaptive methods use global learning rates, which need

to be set.

Recall:

— Low ⌫: slow convergence

— High ⌫: overshoot target

) decay learning rate during learning, e.g. divide by two every X
epochs.



Experiments
We will reuse our 2 layer MLP with 2000 hidden units and ReLU

activation and optimize it with SGD and di↵erent learning rates on

MNIST:

1 class MLP(torch.nn.Module):
2 def __init__(self):
3 super(MLP , self).__init__ ()
4 self.fc1 = torch.nn.Linear (28*28 , 200)
5 self.fc2 = torch.nn.Linear (200, 10)
6

7 def forward(self , x):
8 x = x.view(-1, 28*28)
9 x = F.relu(self.fc1(x))

10 return self.fc2(x)
11

12 model = MLP()
13 crossentropy = torch.nn.CrossEntropyLoss ()
14 optimizer = torch.optim.SGD(model.parameters (),
15 lr =0.01)

Learning rate



The impact of learning rates
A well chosen learning rate of 0.01:

0.01



The impact of learning rates
We add the curves for a low learning rate 0.0001:
Slow convergence.

0.01

0.0001



The impact of learning rates
We add the curves for a high learning rate 0.1:
Convergence is fast at the beginning but fails to find a 
good optimum at the end.

0.01

0.0001

0.1



The impact of learning rates
We add the curves for a ridiculously high learning rate 1:
Oscillations start to appear (convergence problems).

0.01

0.0001

0.1

1


