SIF - Deep Learning et
Programmation Differentielle

2.6 Stochastic Gradient Descent

Christian Wolf

L earning by gradient descent

lterative minimisation through gradient descent:

o+ = ol LV £(h(z,), y*)

L Learning rate

Can be blocked in a local
minimum (not that it matters
much ...)

] “
wa wpl |y,

(105} VE

[Figure: C. Bishop, 2006]

Stochastic Gradient Descent

The vanilla version of SGD:
plittl — gl — pv
where v is the learning rate (a hyper-parameter).

The learning rate has a big impact on convergence and
convergence speed:

— Low v: slow convergence
— High v: overshoot target

= decay learning rate during learning, e.g. divide by two every X
epochs.

The following slides are partially inspired by

(http://cs231n.github.io/neural-networks-3/

SGD with Momentum

Momentum tends to maintains gradient direction between

updates:
Vv [t+]‘] — ,LLV [t] — VV

i+l — gl 4 ylt+1]

where 1 is a new hyper-parameter.
Typical values: 1 = 0.5,0.9,0.95, 0.99.

Nesterov's Accelerated Momentum

Nesterov’'s Accelerated Momentum calculates the gradient V
at the position Al*1] at which momentum alone would have

brought it:

é[t+1] — 9[t+1] -+ uv[t]
v+l — ,LLV[t] Vv elt+1]
o+l — glt] 4 lt+1]

Y. Nesterov. A method of solving a convex programming problem with
convergence rate 0(1/sqr(k)). Soviet Mathematics Doklady, 1983

)

Adaptive learning rates: Adagrad

Adagrad keeps a variable vector ¢ holding sums of squared
derivatives, per gradient element:

cttll = cltl 4 y2
t+1] _ plt] _ \%
gle+1] — plt] VT

where € is small and ensures numerical stability.

Effect: a large gradient value will lead to lower effective learning
rate for a given parameter.

J. Duchi, E. Hazan, Y. Singer, Adaptive Subgradient Methods
for Online Learning and Stochastic Optimization, JMLR, 2011.

]

Adaptive learning rates: RMSProp

RMSProp keeps a running average instead of accumulated

gradients:
cdttll = gt + (1 - pg)v?

t+11 _ plt] _ \Y%
i+l — pgltl _ T

¢ G. Hinton, unpublished.

Adaptive learning rates: ADAM

The ADAM update rule is similar to RMSProp, but smoothes
the momentum term:

mtl = Bremll 4+ (1 -6V

vt = By sl 4 (1 — By) V2
t+1 . t mylt+1]

gli+l] — plt] _ VT

Typical values of the hyper-parameters:
b1 =0.9,85 =0.999,¢ = 1e — 08

D.P. Kingma, J. Ba, Adam: A method for
stochastic optimization. Machine Learning, 2014

Adaptive learning rates: ADAM

The ADAM update rule with bias correction decreases the effect
of initialization to zero (bias):

mttl = gamll+ (1 -6V
] T?Lﬁﬁ_l]
1— Bt
ot = Byxoll 4 (1 — By)V?2
vﬁ+1] B 6ﬁ+ﬂ
1— 3%
t+1 _ t mylt+1]
gli+1] — glt] _ T

Remark: z[!l indexes iteration t; 2 denotes z to the power of t.

D.P. Kingma, J. Ba, Adam: A method for
stochastic optimization. Machine Learning, 2014

Isualization

—— SGD SGD -
— Momentum Momentum F
— NAG NAG g
— Adagrad Adagrad |
Adadelta Adadelta
7 Rmsprop Rmsprop

7,
et
et

http://cs231n.github.io/neural-networks-3/

http://cs231n.github.io/neural-networks-3/

Learning rates

If you are unsure, use ADAM but also try SGD.

Even the adaptive methods use global learning rates, which need
to be set.

Recall:
— Low v: slow convergence
— High v: overshoot target

= decay learning rate during learning, e.g. divide by two every X
epochs.

Experiments

We will reuse our 2 layer MLP with 2000 hidden units and RelL U
activation and optimize it with SGD and different learning rates on

© o0 ~N o 0o A W NN =

L e
cn A WO N = O

MNIST:

class MLP(torch.nn.Module):
def __init__(self):
super (MLP, self).__init__()
self.fcl = torch.nn.Linear (28*x28, 200)

self.fc2 = torch.nn.Linear (200, 10)

def forward(self, x):
x = x.view(-1, 28x%28)
x = F.relu(self.fcl1(x))
return self.fc2(x)

model = MLP ()
crossentropy = torch.nn.CrossEntropyLoss ()
optimizer = torch.optim.SGD(model.parameters (),

1r=0.0f%
Learning rate

The impact of learning rates

A well chosen learning rate of 0.01:

[l
X

The impact of learning rates

We add the curves for a low learning rate 0.0001:
Slow convergence.

0.0001

I
&

The impact of learning rates

We add the curves for a high learning rate 0.1:

Convergence is fast at the beginning but fails to find a
good optimum at the end.

Error

\

(0.0001]

-~

foar |

The impact of learning rates

We add the curves for a ridiculously high learning rate 1:
Oscillations start to appear (convergence problems).

\\

1
X

