
Lecture: Deep Learning and 
Differential Programming

3.1	Computer	Vision

Christian Wolfhttps://liris.cnrs.fr/christian.wolf/teaching



Image classification

Object detection and recognition

Semantic segmentation

Instance segmentation

1
2
3
4



AlexNet
The model which made deep learning hugely popular by 
winning the Imagenet competition in 2012.
8 trainable layers (5 convolutions, 3 fully connected).
Contribution: ReLU activation, dropout, multi-GPU training

[Krizhevsky, Sutskever, 
Hinton, 2012]



VGG 16

[Simonyan and Zissermann, 
ICLR 2015]

- 16 layers
- Only 3x3 

convolutions



ResNet
Wins ImageNet 2015 competition.
Novelty: residual blocks – a block predicts the 
difference to its input.

[He, Zhang, Ren, Sun, 
CVPR 2016]

Resnet	34



ResNet: variants

[He, Zhang, Ren, Sun, 
CVPR 2016] Resnet	34 Resnet	50/101/152



Image classification

Object detection and recognition

Semantic segmentation

Instance segmentation

1
2
3
4



Detection, localization, recognition
A more complex problem. We need to:
- Detect whether an object exists
- Localize it (regress its bounding box coordinates)
- Recognize its class
Multiple instances are possible

[Figure: Faster R-CNN, Ren, He, Girshick, Sun, NIPS 2015]



Before Deep Learning: Deformable Parts Models
- Model an object/human/activity as a collection of local parts
- Learn a filter for each part
- Learn an anchor position and deformation coefficeients for each part
- Test each image pixel whether it can be the center of the object (sliding window):
- For each possible center, optimize over (latent) local part positions

[Felzenszwalb et al., 
PAMI 2010] Local appearance Deformation



Spatial feature maps
Most vision methods requiring localization exploit the fact 
that in convolutional neural networks (CNNs) intermediate 
layer activations have a spatial meaning: each cell 
corresponds to a rectangular area in the input image 
(“receptive field”).

[Figure: Damien Fourure, 
PhD thesis, 2017]



R-CNN
- Detect a large number of candidate regions (« region

proposals ») with some heuristic method
- Feed each candidate region into a convolutional neural 

network for recognition

[Girshick, Donahue, 
Darrel, Malik, 2014]



Faster R-CNN
- The region proposals are now predicted by a neural 

network which is part of the full network
- For each proposal, features are collected from the 

bounding box of the proposal and fed to a classifier. 

[Ren, He, Girshick, Sun, 
NIPS 2015]



[Erhan et al.,2014] « Multibox »

Real time detectors

[Redmon et al.,2016] « YOLO »

[Erhan et al.,2016] « SSD »



Image classification

Object detection and recognition

Semantic segmentation

Instance segmentation

1
2
3
4



[Fourure et al., BMVC 2017]



Recall: receptive Fields

[Figure: Damien Fourure, 
PhD thesis, 2017]

Pooling layers reduce the spatial resolution of intermediate 
activations and output layers.
How can we create dense predictions while keeping the 
output resolution equal to the input resolution?



Patchwise processing

[Figure: Damien Fourure, 
PhD thesis, 2017]

A direct, simple 
and early
method. 
Not used
anymore
Feed each pixel 
+ neighborhood
as input into a 
network. 
Slow!



Conv-Deconv Networks

[Noh et al., 2015]

A classical ”encoder network” produces a vectorial
representation through convolutions and pooling.
A second network (“decoder”) decodes this into an output 
image with the initial resolution.
All information must pass through the bottleneck layer!



Conv-Deconv Networks

[Noh et al., 2015]

In the decoder:
- convolutions are replaced with “deconvolutions” or 

“transposed convolutions”.
- Pooling is replaced with unpooling (switch variables 

keep the arg max location of the pooling layer)



U-Nets

[Ronneberger et al., MICCAI 2015]

Conv-Deconv: all information passes through the 
bottleneck layer.
U-Nets add additional skip connections for low level 
information, close to pixels.



Dilated Convolutions
Alternative: do not use any pooling, keep spatial resolution 
throughout the network.
To increase the receptive field, change the size of the 
filters … w/o augmenting the number of parameters!

[Yu and Koltun, ICLR 2016]



Grid Networks
Grid Networks generalize a large number of networks.

[Fourure, Emonet, Fromont, Muselet, Tremeau, Wolf, BMVC 2017]



Grid Networks

[Fourure, Emonet, Fromont, Muselet, Tremeau, Wolf, BMVC 2017]



[Fourure, Emonet, Fromont, Muselet, Tremeau, Wolf, BMVC 2017]



Image classification

Object detection and recognition

Semantic segmentation

Instance segmentation

1
2
3
4



Instance segmentation
Bridges the gap between semantic segmentation and 
object detection:
- One region = 1 object instance
- Pixelwise boundaries instead of bounding boxes

[Figure: Arnab et al., IEEE 
Signal Processing, 2018]



Mask R-CNN
Region proposals as in object detection
Conv-Deconv network like in semantic segmentation ... but 
for each region proposal.
ResNet-101 Backbone.

[Hen, Gkioxkari, Dollar, 
Girshick, ICCV 2017]



Mask R-CNN

[Hen, Gkioxkari, Dollar, 
Girshick, ICCV 2017]



Dense Pose

input output

[Güler, Neverova, 
Kokkinos, CVPR 2018] Slides: Natalia Neverova

Densepose estimates human articulated pose in a dense 
manner:
One estimate per image pixel, corresponding to two
parameters (u,v) on the human body.



30[Güler, Neverova, 
Kokkinos, CVPR 2018] Slides: Natalia Neverova



Annotation task 1: body part segmentation 

31[Güler, Neverova, 
Kokkinos, CVPR 2018] Slides: Natalia Neverova

The Densepose dataset



Annotation task 2: marking sparse correspondences

32[Güler, Neverova, 
Kokkinos, CVPR 2018] Slides: Natalia Neverova

The Densepose dataset



33[Güler, Neverova, 
Kokkinos, CVPR 2018] Slides: Natalia Neverova



34

The neural architecture
Densepose builds on the Marks R-CNN architecture.

[Güler, Neverova, 
Kokkinos, CVPR 2018]



Model Zoos
Different libraries propose « model zoos » containing well-
known network architectures, sometimes with pre-trained 
parameters learned from standard datasets.
For PyTorch: torchvison.models:



The torchvision model zoo

Construct models with random weights:

1 import torchvision.models as models
2 resnet18 = models.resnet18 ()
3 alexnet = models.alexnet ()
4 vgg16 = models.vgg16()

Construct models with pre-trained weights (on ImageNet):

1 import torchvision.models as models
2 resnet18 = models.resnet18(pretrained=True)
3 alexnet = models.alexnet(pretrained=True)
4 vgg16 = models.vgg16(pretrained=True)



Facebook Detectron2
A single method capable of creating different predictions 
of different granularity using the same choice of 
“backbone” network (=network calculating features).



Detectron backbones

[Figure: Facebook]



Detectron: proposals

[Figure: Facebook]



Detectron: heads

[Figure: Facebook]


