Lecture: Deep Learning and Differential Programming

3.1 Computer Vision

https://liris.cnrs.fr/christian.wolf/teaching

2 Object detection and recognition

3 Semantic segmentation

4 Instance segmentation

AlexNet

The model which made deep learning hugely popular by winning the Imagenet competition in 2012.

- 8 trainable layers (5 convolutions, 3 fully connected).
- Contribution: ReLU activation, dropout, multi-GPU training

VGG 16

ConvNet Configuration									
A	A-LRN	В	С	D	E				
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight				
layers	layers	layers	layers	layers	layers				
input (224×224 RGB image)									
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64				
	LRN	conv3-64	conv3-64	conv3-64	conv3-64				
	maxpool								
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128				
		conv3-128	conv3-128	conv3-128	conv3-128				
maxpool									
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
			conv1-256	conv3-256	conv3-256				
					conv3-256				
maxpool									
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512 conv3					
					conv3-512				
maxpool									
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
maxpool									
FC-4096									
FC-4096									
FC-1000									
soft-max									

- 16 layers

- Only 3x3 convolutions

Table 2: Number of parameters (in millions).

fuoro 2: f (unifori of parameters (in minicip))								
Network	A,A-LRN	В	С	D	E			
Number of parameters	133	133	134	138	144			

[Simonyan and Zissermann, ICLR 2015]

ResNet

Wins ImageNet 2015 competition.

Novelty: residual blocks – a block predicts the difference to its input.

[He, Zhang, Ren, Sun, CVPR 2016]

ResNet: variants

-		10.1		FO 1	1011	1.50.1		
layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer		
conv1	112×112	7×7, 64, stride 2						
		3×3 max pool, stride 2						
conv2_x	56×56	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$		
conv3_x	28×28	$\left[\begin{array}{c} 3\times3,128\\ 3\times3,128 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128\end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\left[\begin{array}{c}1\times1,128\\3\times3,128\\1\times1,512\end{array}\right]\times4$	$\left[\begin{array}{c}1\times1,128\\3\times3,128\\1\times1,512\end{array}\right]\times8$		
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256\end{array}\right]\times6$	$\left[\begin{array}{c} 1 \times 1, 256\\ 3 \times 3, 256\\ 1 \times 1, 1024 \end{array}\right] \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$		
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$		
	1×1	average pool, 1000-d fc, softmax						
FLOPs		1.8×10^{9}	3.6×10^9	3.8×10 ⁹	7.6×10^{9}	11.3×10^{9}		

[He, Zhang, Ren, Sun, CVPR 2016]

1 Image classification

2 Object detection and recognition

3 Semantic segmentation

4 Instance segmentation

Detection, localization, recognition

A more complex problem. We need to:

- Detect whether an object exists
- Localize it (regress its bounding box coordinates)
- Recognize its class

Multiple instances are possible

[Figure: Faster R-CNN, Ren, He, Girshick, Sun, NIPS 2015]

Before Deep Learning: Deformable Parts Models

- Model an object/human/activity as a collection of local parts
- Learn a filter for each part
- Learn an anchor position and deformation coefficeients for each part
- Test each image pixel whether it can be the center of the object (sliding window):
- For each possible center, optimize over (latent) local part positions

$$\sum_{i=0}^{n} F'_{i} \cdot \phi(H, p_{i}) - \sum_{i=1}^{n} d_{i} \cdot \phi_{d}(dx_{i}, dy_{i}) + b,$$

Local appearance Deformation

[Felzenszwalb et al., PAMI 2010]

Spatial feature maps

Most vision methods requiring localization exploit the fact that in convolutional neural networks (CNNs) intermediate layer activations have a spatial meaning: each cell corresponds to a rectangular area in the input image ("receptive field").

[Figure: Damien Fourure, PhD thesis, 2017]

R-CNN

- Detect a large number of candidate regions (« region proposals ») with some heuristic method
- Feed each candidate region into a convolutional neural network for recognition

Faster R-CNN

- The region proposals are now predicted by a neural network which is part of the full network
- For each proposal, features are collected from the bounding box of the proposal and fed to a classifier.

Real time detectors

1 Image classification

2 Object detection and recognition

3 Semantic segmentation

4 Instance segmentation

Recall: receptive Fields

Pooling layers reduce the spatial resolution of intermediate activations and output layers.

How can we create dense predictions while keeping the output resolution equal to the input resolution?

[Figure: Damien Fourure, PhD thesis, 2017]

Patchwise processing

A direct, simple and early method. Not used anymore Feed each pixel + neighborhood as input into a network. Slow!

[Figure: Damien Fourure, PhD thesis, 2017]

Conv-Deconv Networks

A classical "encoder network" produces a vectorial representation through convolutions and pooling. A second network ("decoder") decodes this into an output image with the initial resolution.

All information must pass through the bottleneck layer!

Conv-Deconv Networks

In the decoder:

- convolutions are replaced with "deconvolutions" or "transposed convolutions".
- Pooling is replaced with unpooling (switch variables keep the arg max location of the pooling layer)

U-Nets

Conv-Deconv: all information passes through the bottleneck layer.

U-Nets add additional skip connections for low level information, close to pixels.

Dilated Convolutions

Alternative: do not use any pooling, keep spatial resolution throughout the network.

To increase the receptive field, change the size of the filters ... w/o augmenting the number of parameters!

Grid Networks

Grid Networks generalize a large number of networks.

[Fourure, Emonet, Fromont, Muselet, Tremeau, Wolf, BMVC 2017]

Grid Networks

[Fourure, Emonet, Fromont, Muselet, Tremeau, Wolf, BMVC 2017]

[Fourure, Emonet, Fromont, Muselet, Tremeau, Wolf, BMVC 2017]

1 Image classification

2 Object detection and recognition

 $\mathbf{3}$ Semantic segmentation

4 Instance segmentation

Instance segmentation

Bridges the gap between semantic segmentation and object detection:

- One region = 1 object instance
- Pixelwise boundaries instead of bounding boxes

Semantic Segmentation

Instance Segmentation

[Figure: Arnab et al., IEEE Signal Processing, 2018]

Mask R-CNN

Region proposals as in object detection

Conv-Deconv network like in semantic segmentation ... but for each region proposal.

ResNet-101 Backbone.

Mask R-CNN

[Hen, Gkioxkari, Dollar, Girshick, ICCV 2017]

Dense Pose

Densepose estimates human articulated pose in a dense manner:

One estimate per image pixel, corresponding to two parameters (u,v) on the human body.

input

output

PoseTrack dataset: Visual results

[Güler, Neverova, Kokkinos, CVPR 2018]

The Densepose dataset

Annotation task 1: body part segmentation

TASK 1: Part Segmentation

[Güler, Neverova, Kokkinos, CVPR 2018]

The Densepose dataset

Annotation task 2: marking sparse correspondences

TASK 2: Marking Correspondences

Surface Correspondence

[Güler, Neverova, Kokkinos, CVPR 2018]

COCO DensePose: Collecting Data

Task - 1 Part Segmentation

[Güler, Neverova, Kokkinos, CVPR 2018]

The neural architecture

Densepose builds on the Marks R-CNN architecture.

Model Zoos

Different libraries propose « model zoos » containing wellknown network architectures, sometimes with pre-trained parameters learned from standard datasets.

For PyTorch: torchvison.models:

- AlexNet
- VGG
- ResNet
- SqueezeNet
- DenseNet
- Inception v3
- GoogLeNet
- ShuffleNet v2
- MobileNet v2
- ResNeXt
- Wide ResNet
- MNASNet

The torchvision model zoo

Construct models with random weights:

```
import torchvision.models as models
resnet18 = models.resnet18()
alexnet = models.alexnet()
vgg16 = models.vgg16()
```

Construct models with pre-trained weights (on ImageNet):

```
import torchvision.models as models
resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
vgg16 = models.vgg16(pretrained=True)
```

Facebook Detectron2

A single method capable of creating different predictions of different granularity using the same choice of "backbone" network (=network calculating features).

Detectron backbones

Detectron: proposals

[Figure: Facebook]

Detectron: heads

[Figure: Facebook]