
Lecture: Deep Learning and
Differential Programming

3.2	Visualization of	learned
knowledge

Christian Wolfhttps://liris.cnrs.fr/christian.wolf/teaching

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

AlexNet

ResNet

Our models are getting more complex.
How can we visualize the knowledge acquired from data?

Conv-Deconv

Visualizing feature map activations

824 M.D. Zeiler and R. Fergus

Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.

[Zeiler and Fergus,
ECCV 2014]

Visualizing feature map activations

824 M.D. Zeiler and R. Fergus

Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.

[Zeiler and Fergus,
ECCV 2014]

Visualizing feature map activations

824 M.D. Zeiler and R. Fergus

Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.

[Zeiler and Fergus,
ECCV 2014]

Earlier layers train earlier

[Zeiler and Fergus,
ECCV 2014]

Evolution of features during training.

CAM
”Class activation mapping”

[Zhou, Khosla, Lapedriza, Oliva,
Torralba, CVPR 2016]

Global average pooling

CAM: examples

[Zhou, Khosla, Lapedriza, Oliva,
Torralba, CVPR 2016]

Guided Backpropagation

We can directly calculate the influence of each individual input
pixel to a given feature map layer by calculating the gradient of
this layer w.r.t. to the input signal:

@Ak
i,j

@xm,n

Ak
i,j . . . feature cell (i, j) of a given map k.

xm,n . . . input pixel (i, j).

[Springenberg, Dosovitskiy, Brox,
Riedmiller, ICLR-Workshop 2015]

Guided Backpropagation: e↵ects on class

We can derive the output for class k w.r.t. the input pixels:

@yc

@xm,n

uc . . . network output for class c given input image x
xm,n . . . input pixel (m,n).

[Springenberg, Dosovitskiy, Brox,
Riedmiller, ICLR-Workshop 2015]

Example: document analysis
Task: detection of text line bounding boxes.
Derivatives w.r.t. to the 4 outputs (left, right, top, bottom)

[Bastien Moysset, PhD Thesis, 2018]

Left Right

Example: document analysis

[Bastien Moysset, PhD Thesis, 2018]

Top Bottom

The network looks at the right side
to regress the top coordinate: it

figured out line slant!

Visualizing high-dimensional spaces
Problem: many tensors (input images or signals,
intermediate feature maps etc.) are embedded in high-
dimensional spaces.
Humans cannot imagine or visualize more than 3D easily.
Can we find a mapping to a lower dimensional space
which approximates the structure of the original space?
Close points should stay close.
Far points should stay far.

Example: MNIST images = 28x28
pixels = 784dim input space

t-SNE

[Van der Maaten and
Hinton, JMLR 2008]

t-distributed stochastic neighbor embedding.

t-SNE: model
Data points in input space: xi.
Data points in low-dim space: yi.

We assign a conditional probability to the (assymetric) pair of

high-dim datapoint (xi, xj): Given xi, will xj be selected as

neighbor if neighbors are selected according to distance (using a

Gaussian kernel with variance �i):

pj|i =
exp

⇣
�kxi � xjk2 /2�2

i

⌘

P
k 6=i exp

⇣
�kxi � xkk2 /2�2

i

⌘

A symmetric version is given as:

pij =
pj|i + pi|j

2n
.

Van der Maaten, Hinton, JMLR 2008

t-SNE: model

For points (xi, xj) in the lows-dim map, we use a Cauchy

distribution, which is heavier tailed:

qij =

⇣
1 + kyi � yjk2

⌘�1

P
k 6=l

⇣
1 + kyk � ylk2

⌘�1

Reason:

— high-dim spaces are less crowded (the volume of a sphere of

radius r and dim d grows with rd).

— Heaver tails better model datapoints which are not too close

away from each other.

Van der Maaten, Hinton, JMLR 2008

t-SNE: training

We solve for the points yi, 8i using SGD and optimizing

Kullback-Leibler divergence (KL):

C = KL(PkQ) =
X

i

X

j

pij log
pij
qij

Van der Maaten, Hinton, JMLR 2008

t-SNE: Hyper-parameter perplexity

We need to set the �i parameter for the distribution P (i) each
datapoint i.

A global hyper-parameter Perp (=Perplexity) is set by the user

(⇠ number of neighbors of each point).

Then se solve for

Perp (Pi) = 2H(Pi)

where

H (Pi) = �
X

j

pj|i log2 pj|i

Van der Maaten, Hinton, JMLR 2008

Example: the breakfast action data

[H.	Kuehne,	A.	B.	Arslan and	T.	Serre.	The	Language of	Actions:	Recovering the	
Syntax and	Semantics of	Goal-Directed Human Activities.	CVPR,	2014.]

4 labels per video clip:
- The recipe (e.g. cesar salade)
- The short term action (e.g. cut chicken)
- The person performing the action
- The camera viewpoint

t-SNE: activity recognition

Work of Tom Gillooly
Breakfast Dataset (train split), before fine-tuning

t-SNE: activity recognition

Work of Tom Gillooly
Breakfast Dataset (train split), after fine-tuning

