[ ecture: Deep Learning and
Differential Programming

3.3 Transfer Learning

https://liris.cnrs.fr/christian.wolf/teaching INSA Christian Wolf



Invariances / symmetries

Common deep networks are not invariant to
standard image changes (rotations,
ilumination changes, noise, deformations).

But they can be trained to be.




Data augmentation

1. Randomly choose a batch of images+labels from the training set

4. Goto 1



Knowledge transfer

Goal: transfer knowledge learned from a source domain

(e.g. a large dataset of labeled images) to a (often smaller)
target domain

Example:
p For each image:
Label
(e.g. which class
among 1000)
Source:

ImageNet (public)
1 000 000 images + labels
1000 classes

Vg 1‘ For each image:

| - / Label
. among 16)
Target: S
Industrial application: Crop A
growth stage
3000 images + labels
16 classes



Pre-training

Training
Labels

Training
Images

Model, e.g ResNet-134
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Training
Images

Pre-training

Model, e.g ResNet-134
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Pre-train all weights (all layers)

Training
Labels



Training
Images

°re-Training

Training
Labels

Model, e.g ResNet-134
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Layers 1...L are frozen
(pre-trained on souce data)



Training

Training
Labels

Training
Images

Model, e.g ResNet-134
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Layers 1...L are frozen Layers L...N are trained on
(pre-trained on souce data) the target dataset



Training
Labels

Training
Images

Finetune all layers 1...N

If we have enough data: unfreeze and finetune



How transferable are features
In deep neural networks?

- Split of the ImageNet (ILSVRC) dataset into two subsets:
— Subset A of images with man made content (cars et.)
— Subset B of images with natural content (trees etc.)

— Train networks on both subsets.

- Choose a layer i, a randomly reinitialize parameters from
layer | to the end.

- Run experiments retraining these layers:
— on the same subset (AIA, BiB)
— On the other subset (BiA)
— Variant +: finetune layers up to | (AiA+,BiB+,BiA+)

— Compare performance to the baseline

[Yosinski, Clune, Bengio,
Lipson, ICML 2014]



How transferable are features
in deep neural networks”

input

input
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[Yosinski, Clune, Bengio,
Lipson, ICML 2014]
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5: Transfer + fine-tuning improves generalization

t

3: Fine-tuning recovers co-adapted interactions

2: Performance drops
due to fragile
co-adaptation

4: Perfdrmance

drops due to
representation
specificity

2 3 4 5 7
Layer n at which network is chopped and retrained

Numerical/optimization issues
(Positive or negative)

[Yosinski, Clune, Bengio, Lipson, "How transferable
are features in deep neural networks?", 2014]




Domain adaptation

Goal: transfer knowledge learned from a source domain
(e.g. a large dataset of labeled images) to a target domain
a where often data is more sparse, and sometimes not
labeled.

« Domain adaptation »

Knowledge transfer gone wrong
from source domain « street »
to target domain « railroad »




Adversarial domain adaptation

Select a feature layer and train it to be invariant to the shift
In distribution between source and domain.
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[Ganin and Lempitsky, ICML 2015]



Adversarial domain adaptation
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[Ganin and Lempitsky, ICML 2015]



Learning dexterity and grasping

https://openai.com/blog/solving-rubiks-cube/

[Open-Al et al., October 2019]



Sim2real transfer

How can we transfer knowledge (eg policies) from
simulations to real physical environments / robots?
Domain randomizations!

[Open-Al et al., October 2019]



Domain randomizations

5.48-6.05cm
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Days of Training Time

[Open-Al et al., October 2019]



Domain Randomizations

- Simulator physics
- Generigue noise

- Custom randomization:
— Cube and robot friction
— Cube size
— Joint and tendon limits, margins
— Action delay, latency, noise, Motor backlash
— Gravity
- Vision:
— Camera position, Rotation, field of view
— Lighting conditions: rig, intensity
— Materials
— Color post processing

[Open-Al et al., October 2019]



Robustness to unseen
perturbations

Blanket occlusion and perturbation Plush giraffe perturbation Pen perturbation

[Open-Al et al., October 2019]



