Lecture: Deep Learning and Differential Programming

3.3 Transfer Learning

https://liris.cnrs.fr/christian.wolf/teaching

Invariances / symmetries

Common deep networks are not invariant to standard image changes (rotations, illumination changes, noise, deformations). But they can be trained to be.

Data augmentation

1. Randomly choose a batch of images+labels from the training set

3. Train the model on this data

4. Goto 1

Knowledge transfer

Goal: transfer knowledge learned from a source domain (e.g. a large dataset of labeled images) to a (often smaller) target domain

Example:

Source: ImageNet (public) 1 000 000 images + labels 1000 classes

Target:

Industrial application: Crop growth stage 3000 images + labels 16 classes

Pre-training

Pre-training

Pre-Training

Training

Training

If we have enough data: unfreeze and finetune

How transferable are features in deep neural networks?

- Split of the ImageNet (ILSVRC) dataset into two subsets:
 - Subset A of images with man made content (cars et.)
 - Subset B of images with natural content (trees etc.)
- Train networks on both subsets.
- Choose a layer i, a randomly reinitialize parameters from layer i to the end.
- Run experiments retraining these layers:
 - on the same subset (AiA, BiB)
 - On the other subset (BiA)
 - Variant +: finetune layers up to I (AiA+,BiB+,BiA+)
- Compare performance to the baseline

[Yosinski, Clune, Bengio, Lipson, ICML 2014]

How transferable are features in deep neural networks?

[Yosinski, Clune, Bengio, Lipson, ICML 2014]

[Yosinski, Clune, Bengio, Lipson, "How transferable are features in deep neural networks?", 2014]

Domain adaptation

Goal: transfer knowledge learned from a source domain (e.g. a large dataset of labeled images) to a target domain a where often data is more sparse, and sometimes not labeled.

« Domain adaptation »

Knowledge transfer gone wrong from source domain « street » to target domain « railroad »

Adversarial domain adaptation

Select a feature layer and train it to be invariant to the shift in distribution between source and domain.

[Ganin and Lempitsky, ICML 2015]

Adversarial domain adaptation

[Ganin and Lempitsky, ICML 2015]

Learning dexterity and grasping

https://openai.com/blog/solving-rubiks-cube/

[Open-Al et al., October 2019]

Sim2real transfer

How can we transfer knowledge (eg policies) from simulations to real physical environments / robots? **Domain randomizations!**

[Open-Al et al., October 2019]

Domain randomizations

Domain Randomizations

- Simulator physics
- Generique noise
- Custom randomization:
 - Cube and robot friction
 - Cube size
 - Joint and tendon limits, margins
 - Action delay, latency, noise, Motor backlash
 - Gravity
- Vision:
 - Camera position, Rotation, field of view
 - Lighting conditions: rig, intensity
 - Materials
 - Color post processing

Robustness to unseen perturbations

Unperturbed (for reference)

Rubber glove

Tied fingers

Blanket occlusion and perturbation

Plush giraffe perturbation

Pen perturbation