
Lecture: Deep Learning and 
Differential Programming

3.3	GPUs - Software

Christian Wolfhttps://liris.cnrs.fr/christian.wolf/teaching



APIs
GPUs can be programmed on multiple different levels of 
abstraction.
We will (very briefly) study two cases:

CUDA/C++: direct low-level GPU programming

PyTorch/Python: high-level of abstraction



CUDA – low level GPU programmng

GPUs & PyTorch

1
2



Example : matrix multiplication

x =

The classical sequential solution:



The parallel solution
Parallel execution of a function called for each individual result value of 
the result matrix, with arguments being the indices of the value.

Called in parallel for all c,r

In CUDA, this function is called a kernel.
Each tuple (c,r) corresponds to a thread.



Organisation into blocks
- Threads are organized into blocks
- Faster local memory can be shared by threads of the same block.



SM

A block will be sent to a SM (streaming multi-processor)



The classical CUDA sequence
- The CPU allocates memory on the GPU
- The CPU copies the data to GPU global memory
- The CPU launches the kernel on the GPU
- The GPU executes the kernel in parallel
- The CPU copies the result data back to CPU host memory



The CUDA syntax of the kernel

Index of the thread in the block

Index of the block in the grid

Key word declares the kernel



Calling the kernel

Call the kernel in parallel for a set of threads



Compilation

CUDA uses a specific compiler, which is based on a 
generic C++ compiler (gcc)

Classical C++ code CUDA code Linking



Debugging and profiling
The nvvp profiler is part of the CUDA toolkit.



CUDA – low level GPU programmng

GPUs & PyTorch

1
2



The PyTorch GPU interface
The model is transferred to GPU memory with .to(device)

Device can be ”cpu”, ”cuda:0”, ”cuda:1” etc.

1 model = LeNet()
2 model = model.to("cuda:0")

We also send the data to GPU memory.
We get data back to the CPU with the .cpu() method:

1 # Cycle through batches
2 for idx , (data ,labels) in enumerate(train_loader):
3 data = data.to("cuda:0")
4 optimizer.zero_grad ()
5 y = model(data)
6 loss = crossentropy(y, labels)
7 loss.backward ()
8 running_loss += loss.cpu().item()
9 optimizer.step()

10

11 _, predicted = torch.max(y.data.cpu(), 1)




