
Lecture: Deep Learning and
Differential Programming

4.1	Recurrent Neural	Networks

Christian Wolfhttps://liris.cnrs.fr/christian.wolf/teaching

The Deep Toolbox

MLP

Nothing
(vector space)

Transformers /
Self-attention

Permutation
equivariance

CNN /
Convolutions

Translation
equivariance

RNN /
Recurrence

Sequential data,
Markov property

GN, GCN /
Graphs, geometry

Graph structured
data

What do I know about the data and the task?

Problem: dealing with sequences

Happy families are all alike. Every unhappy
family is unhappy in its own way.

Toutes les familles heureuses se
ressemblent. Chaque famille malheureuse,
au contraire, l'est à sa façon.

RGB input video

Time

Feature space

3D
Global
model:

Inflated
Resnet

50

Time

Input

Feed Forward Networks

Prediction: feed-forward computation in a DAG (directed
asyclic graph).

...
Hidden
layer

Output
layer

Input
layer

Recurrent neural networks

output, t-2

Input, t-2

output, t-1 output, t

input, t-1 input, t

A shout-out ...

... to Chris Olah’s excellent blog post on RNN and LSTM
networks, which completely dominates lectures on this topic. The
following couple of slides are based on his excellent drawings.

Chris Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent Neural Networks (RNNs)
As feed-forward networks, Recurrent Neural Networks (RNNs)
predict some output from a given input.
However, they also pass information over time, from instant (t�1)
to (t):

Here, we write ht for the output, since these networks can be
stacked into multiple layers, i.e. ht is input into a new layer.

Chris Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent Neural Networks (RNNs)
A more intuitive view of an RNN is to unroll it over time:

The update equations are:

ht = � (ht�1 ·Wh + xt ·Wx)

) two weight matrices: one for the recurrent connections over
time, one for the input connections.
� is an activation function.

Chris Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/

· + ·=

h(t) h(t�1)
x(t)

WU

·=

h(t)

From state h to output y

Toy example with handcrafted
parameters

In a sequential problem, we surveil a farm and watch for
the appearance of objects. At each instant t we oberve a
vector which can indicate the apparence of

• a wolf
• a farmer

The objective is to output an estimate of danger, i.e.
• presence of the wolf w/o the farmer, or
• presence of both, arrival of the wolf before the farmer.

Toy example with handcrafted
parameters

Wolf arrived *

Farmer arrived *

Time since wolf arrived
Time since farmer arrived

h(t)

0
0

0
0

0
0
·
x(t)

W

1
0
1
0

0
1
0
1

0
0
1
0

0
0
0
1
·

+

U

Appearance template “wolf”
Appearance template “farmer”

*Appropriate activation functions required to normalize state values

+=

h(t�1)

1 ·=

h(t)

Toy example with handcrafted
parameters

Wolf arrived *

Farmer arrived *

Time since wolf arrived
Time since farmer arrived

-1 1 -1

Output: danger!

RNN training & problems

RNNs are trained with backpropagation through time (BPTT): the
graph is unrolled, and the loss derived w.r.t. the parameters of all
di↵erent time instants.
Standard vanilla RNNs are di�cult to train and su↵er from
shortcomings:

— Vanishing gradients: small gradients vanish over long time
ranges.

— Exploding gradients: high gradients explode over long ranges.

— Lack of long-term dependency handling: short-term updates
between individual time instances dominate.

Solution: gating mechanisms (LSTM and GRU networks).

Gating
Problem: hidden state is updated at each time step
Solution: at each instant, for each state value, decide how
much to

– input
– forget
– output

- These decisions are also learned

LSTM Networks: walk through
We start by illustrating a vanilla RNN in a new way:

where:

Chris Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM Networks
LSTM (=Long-short term Memory) networks use gating
mechanisms, which handle information flow in a fully trainable way.

ft = � (Wf · [ht�1, xt] + bf)
it = � (Wi · [ht�1, xt] + bi)
C̃t = tanh (WC · [ht�1, xt] + bC)
Ct = ft ⇤ Ct�1 + it ⇤ C̃t

ot = � (Wo [ht�1, xt] + bo)
ht = ot ⇤ tanh (Ct)

Chris Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM Networks
LSTM (=Long-short term Memory) networks use gating
mechanisms, which handle information flow in a fully trainable way.

ft = � (Wf · [ht�1, xt] + bf)
it = � (Wi · [ht�1, xt] + bi)
C̃t = tanh (WC · [ht�1, xt] + bC)
Ct = ft ⇤ Ct�1 + it ⇤ C̃t

ot = � (Wo [ht�1, xt] + bo)
ht = ot ⇤ tanh (Ct)

Chris Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM Networks: walk through
An LSTM has two di↵erent memory representations:

— A cell state C,

— the hidden state h.

Chris Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM Networks: walk through
The new cell state Ct is a linear combination of the old cell state
Ct�1 and some new updated information C̃t (described later):

Ct = ft ⇤ Ct�1 + it ⇤ C̃t

ft and it are “gates” (trainable functions), which govern the
information flow (based on the hidden state ht).

Chris Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM Networks: walk through
The forget gate controls how much of the old cell state is forgotten
or passed through:

ft = � (Wf · [ht�1, xt] + bf)

Chris Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM Networks: walk through
The input gate controls how much new information is passed over
to the cell state.
The new information is predicted from the hidden state h:

it = � (Wi · [ht�1, xt] + bi)
C̃t = tanh (WC · [ht�1, xt] + bC)

Chris Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM Networks: walk through
The output gate controls, how the information from the cell state
is translated into the hidden state h:

ot = � (Wo [ht�1, xt] + bo)
ht = ot ⇤ tanh (Ct)

Chris Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM Networks
The full model, again:

ft = � (Wf · [ht�1, xt] + bf)
it = � (Wi · [ht�1, xt] + bi)
C̃t = tanh (WC · [ht�1, xt] + bC)
Ct = ft ⇤ Ct�1 + it ⇤ C̃t

ot = � (Wo [ht�1, xt] + bo)
ht = ot ⇤ tanh (Ct)

Chris Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Example applictions:
Motion

[Figure: Scott Eaton]

Example application: activity recognition

Reading Writing
RGB input video

Time

Feature space

3D
Global
model:

Inflated
Resnet

50

Time

Example application: activity recognition

t t+1 t+2

Entering PINs on smartphones is
painful

Automatically authenticate smartphone users given their behavior
(=interaction style). Shut off phone when theft is detected.

© 2005 Scott Adams, Inc. / Dist. by UFS, Inc.

Project "Abacus » (Google)
• 1500 volunteers, 1500 Nexus 5 smartphones
• Several months of natural daily usage, 27.6 TB of data
• Multiple sensors: camera, touchscreen, GPS, bluetooth, wifi, cell

antenna, inertial, magnetometer
• This work: inertial sensors only, recorded at 200Hz

With Graham W. Taylor,
University of Guelph, Canada

Work of Natalia Neverova
Phd student at LIRIS

[Neverova, Wolf, Lacey, Fridmann, Chandra, Barbello, Taylor,
IEEE Access 2016]

Biometric framework (GMM)Feature extraction
Experimental results

[Neverova, Wolf, Lacey, Fridmann, Chandra, Barbello, Taylor, IEEE Access 2016]

Appendix:
Other RNN	Variants

Variant: GRU (Gated Recurrent Unit)
GRUs are simpler: they merge cell state and h, and merge gates:

zt = � (Wz · [ht�1, xt])
rt = � (Wr · [ht�1, xt])
h̃t = tanh (W · [rt ⇤ ht�1, xt])
ht = (1� zt) ⇤ ht�1 + zt ⇤ h̃t

Chris Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/

What’s the Frequency Kenneth?
All presented variants model a single time frame (update
from one time step to the next).

In signal processing, we like to decompose a signal into
frequency components.

Can we create RNNs with multiple frequency bands?

Clock Work RNNs do this.
J. Koutnik, K. Greff, F. Gomez, and

J. Schmidhuber, ICML 2014.

Vanilla RNN vs. Clockwork RNN

J. Koutnik, K. Greff, F. Gomez, and
J. Schmidhuber, ICML 2014.

CWRNN problems
CWRNNs suffer from a couple of problems

- They are not shift-invariant (output depends on time t).
- Lower frequency weights tend to overfit since they are

updated slower.

Dense CWRNNs solve this problem.
[Neverova, Wolf, Lacey, Fridmann,
Chandra, Barbello, Taylor, 2016]

J. Koutnik, K. Greff, F. Gomez, and
J. Schmidhuber, ICML 2014.

Vanilla RNN vs. Clockwork RNN

[Neverova, Wolf, Lacey, Fridmann,
Chandra, Barbello, Taylor, 2016]

· + ·=

h(t) h(t�1)
x(t)

WU

RNN

· + ·=

h(t) h(t�1)
x(t)

WU

1

2

4

8

16

CWRNN

· + · �=
x(t)

h(t) WU H

1

2

4

8

16

DCWRNN

[Neverova, Wolf, Lacey, Fridmann,
Chandra, Barbello, Taylor, 2016]

DCWRNNCWRNNRNNInput

On shift-invariance

[Neverova, Wolf, Lacey, Fridmann,
Chandra, Barbello, Taylor, 2016]

