Lecture: Deep Learning and Differential Programming

4.2 Attention in Computer Vision

https://liris.cnrs.fr/christian.wolf/teaching

Previously at vision conferences: Deformable parts models

- Model an object/human/activity as a collection of local parts
- Optimize over (latent) local part positions

[Felzenszwalb et al., PAMI 2010]

?

Is it really necessary to calculate all possible position of parts of searched objects in order to recognize them?

How do humans perform these tasks?

Human attention: gaze patterns

[Johansson, Holsanova, Dewhurst, Holmqvist, 2012]

Gaze can be predicted

Gaze has a several functions:

- scene analysis
- social signals

Attention models can learn to predict gaze

HMM HSMM DBN

Attention in vision

[Durand, Mordan, Thome, Cord, CVPR 2017]

Attention based mechanisms

Can we jointly predict gaze ... and the scrutinzed object? Loss: recognitition performance

Soft attention: example

[Ben-Younes, Cadene, Thome, Cord, ICCV 2017]

Soft attention vs. hard attention

Articulated pose alone is not sufficient

Writing

1

Attention on relevant parts

Work of Fabien Baradel, Phd @ LIRIS

With Julien Mille (INSA Val de Loire)

[Baradel, Wolf, Mille, ICCV-W-Hands in Action, 2017]

${\cal S}$ Body motion of the full sub-sequence

Results: comparison w. state of the art

Methods	Pose	RGB	CS	CV	Avg
Lie Group [37]	Χ	-	50.1	52.8	51.5
Skeleton Quads [9]	Х	-	38.6	41.4	40.0
Dynamic Skeletons [13]	Х	-	60.2	65.2	62.7
HBRNN [8]	Х	-	59 .1	64.0	61.6
Deep LSTM [30]	Х	-	60.7	67.3	64.0
Part-aware LSTM [30]	Х	-	62.9	70.3	66.6
ST-LSTM + TrustG. [23]	Х	-	69.2	77.7	73.5
STA-LSTM [34]	Х	-	73.2	81.2	77.2
JTM [39]	Х	-	76.3	81.1	78.7
DSSCA - SSLM [31]	Х	Х	74.9	-	-
Ours (pose only)	Х	-	77.1	84.5	80.8
Ours (RGB only)	-	Х	75.6	80.5	78.1
Ours (pose +RGB)	Х	Х	84.8	90.6	87. 7

Transfer learning

Table 1: Results on the NTU RGB+D dataset with Cross-Subject (CS) and Cross-View (CV) settings (accuracies in %)

Methods	Pose	RGB	Depth	Acc.
Raw skeleton [45]	Х	-	-	49.7
Joint feature [45]	Х	-	-	80.3
Raw skeleton [46]	X	-	-	79.4
Joint feature [46]	Х	-	-	86.9
HBRNN [8]	X	-	-	80.35
Co-occurence RNN [47]	Х	-	-	90.4
STA-LSTM [34]	X	-	-	91.5
ST-LSTM + Trust Gate [23]	Х	-	-	93.3
DSPM [22]	-	Χ	Χ	93.4
Ours (Pose only)	Х	-	-	90.5
Ours (RGB only)	-	X	-	72.0
Ours (Pose + RGB)	Х	X	-	94.1

Table 2: Results on SBU Kinect Interaction dataset (accuracies in %)

Methods	Pose	RGB	Depth	Acc.
Action Ensemble [38]	Х	-	-	68.0
Efficient Pose-Based [10]	X	-	-	73.1
Moving Pose [47]	X	-	-	73.8
Moving Poselets [36]	Х	-	-	74.5
Depth Fusion [48]	-	-	Х	88.8
MMMP [32]	Χ	-	Х	91.3
DL-GSGC [24]	Х	-	Х	95.0
DSSCA - SSLM [31]	-	Χ	Χ	97.5
Ours (Pose only)	Х	-	-	74.6
Ours (RGB only)	-	X	-	75.3
Ours (Pose + RGB)	Х	Х	-	90.0

Table 3: Results on MSR Daily Activity 3D dataset (accuracies in %)

[Baradel, Wolf, Mille, BMVC 2018]

Context

We need to put attention to places which are not always determined by pose

Context

We need to put attention to places which are not always determined by pose

Dynamic spatio-temporal attention

Dynamic visual attention

- 1. Learn where to attend
- 2. Learn how to track attended glimpse points (assign glimpses to semantic entities)
- 3. Learn how to recognize activities from a collection of tracked semantic entities

Work of Fabien Baradel, Phd @ LIRIS

With Julien Mille (INSA VdL)

With Graham W. Taylor (Univ. of Guelph, Vector Institut)

Attention in feature space

Unconstrained differentiable attention

"Differentiable crop » (Spatial Transformer Network) Hidden state from recurrent recognizers (workers)

Frame context

Distributed recognition

Soft-assignment of glimpses to workers

Intermediate supervision

State-of-the-art comparaison

Methods	Pose	RGB	CS	CV	Avg
Lie Group [40]	\checkmark	-	50.1	52.8	51.5
Skeleton Quads [10]	\checkmark	-	38.6	41.4	40.0
Dynamic Skeletons [14]	\checkmark	-	60.2	65.2	62.7
HBRNN [9]	\checkmark	-	59.1	64.0	61.6
Deep LSTM [32]	\checkmark	-	60.7	67.3	64.0
Part-aware LSTM [32]	\checkmark	-	62.9	70.3	66.6
ST-LSTM + TrustG. [26]	\checkmark	-	69.2	77.7	73.5
STA-LSTM [35]	\checkmark	-	73.2	81.2	77.2
Ensemble TS-LSTM [24]	\checkmark	-	74.6	81.3	78.0
GCA-LSTM [27]	\checkmark	-	74.4	82.8	78.6
JTM [41]	\checkmark	-	76.3	81.1	78.7
MTLN [18]	\checkmark	-	79.6	84.8	82.2
VA-LSTM [47]	\checkmark	-	79.4	87.6	83.5
View-invariant [28]	\checkmark	-	80.0	87.2	83.6
DSSCA - SSLM [33]	\checkmark	\checkmark	74.9	-	-
Hands Attention [5]	\checkmark	\checkmark	84.8	90.6	87.7
C3D†	-	\checkmark	63.5	70.3	66.9
Resnet50+LSTM [†]	-	\checkmark	71.3	80.2	75.8
Glimpse Clouds	-	\checkmark	86.6	93.2	89.9

Figure 1. Results on Northwestern-UCLA Multiview Action 3D, Cross-View (accuracy in %). V=Visual(RGB), D=Depth, P=Pose.

Methods	Data	$V_{1,2}^{3}$	$V_{1,3}^2$	$V_{2,3}^{1}$	Avg
DVV [5]	D	58.5	55.2	39.3	51.0
CVP [11]	D	60.6	55.8	39.5	52.0
AOG [10]	D	45.2	-	-	-
HPM+TM [8]	D	91.9	75.2	71.9	79.7
Lie group [9]	Р	74.2	-	-	-
HBRNN-L [1]	Р	78.5	-	-	-
Enhanced viz. [6]	Р	86.1	-	-	-
Ensemble TS-LSTM [3]	Р	89.2	-	-	-
Hankelets [4]	V	45.2	-	-	-
nCTE [2]	V	68.6	68.3	52.1	63.0
NKTM [7]	V	75.8	73.3	59.1	69. 4
Global model	V	85.6	84.7	79.2	83.2
Glimpse Clouds	V	90.1	89.5	83.4	87.6

Table 1. Results on the NTU RGB+D dataset with Cross-Subject and Cross-View settings (accuracies in %); († indicates method has been re-implemented).

SOTA results on two datasets NTU and N-UCLA Larger difference between Glimpse clouds and global model on N-UCLA