Lecture: Deep Learning and Differential Programming

4.3 Graphs and relational reasoning

https://liris.cnrs.fr/christian.wolf/teaching

Structured Input and/or structured Output

Predicting for multiple inter-dependent variables

Example : meshes

3D triangular meshes are approximations of 3D surfaces / manifolds: a graph with vertices embedded n 3D Euclidean space.

Example: point clouds

[Figure: Inria Chroma, 2018]

Example : scene graphs

Example image and graph from the GQA dataset

Graphs: definition

A graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ consists of:

- a set ${\mathcal V}$ of nodes, and
- a set $\mathcal{E} \in \mathcal{V} {\times} \mathcal{V}$ of edges

Attributed Graphs

Attributed graphs also have values for each node: $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{X})$:

- a set ${\mathcal V}$ of nodes, and
- a set $\mathcal{E} \in \mathcal{V} {\times} \mathcal{V}$ of edges
- a set $\mathcal{X} = \{x_0, \ldots, x_N\}$ of values, each value being associated to a node. In our case we find **embeddings** $x_i \in \mathbb{R}^d$ for each node.

Trivial solutions (don't do this at home)

Relational Reasoning

$$g(x_1, x_2, \dots, x_N) = \max(h(x_1), h(x_2), \dots, h(x_N))$$

"PointNet" [Qi, Su, Mo, Guibas, CVPR 2017]

Defined over points of a point cloud

$$g(x_1, x_2, \dots, x_N) = \sum_{i,j} h(x_i, x_j)$$

"Relational Reasoning" [Santoro et al., NIPS 2017]

Defined over feature map cells

PointNet

[Qi, Su, Mo, Guibas, CVPR 2017]

Relational Reasoning: pairwise terms

[Santoro et al., NIPS 2017]

Relational Reasoning: deep learning

$$y = f(x,\theta) = \phi \left(W_y \sum_{ij} \phi \left(W_v \left[\begin{array}{c} \phi(W_u x)_i \\ \phi(W_u x)_j \end{array} \right] \right) \right)$$

 $\theta = \{W_y, W_v, W_u\}$

$$\hat{\theta} = \min_{\theta} \quad \mathcal{L}(y^*, y) \\ = \min_{\theta} \quad \mathcal{L}(y^*, f(x, \theta))$$

A toy problem: will somebody get eaten?

Visual embedding of object 1

Representation with pairwise terms

Representation with pairwise terms

Representation with pairwise terms

•

Comparison

- Increasing the complexity of h may allow to decrease the complexity of f.
- There is no known rule which determines the best tradoff between h and f for a given problem.
- Example: there are problems dominated by pairwies relationships in the data where models without pairwise terms work better.

Graph networks

Graph networks describe graphs with sets of embeddings:

- $\{x_0, \ldots, x_{|\mathcal{V}|}\}$ are node embeddings.
- $\{e_0, \ldots, e_{|\mathcal{E}|}\}$ are edge embeddings.
- u is an embedding of global graph information.

Graph networks update these embeddings by iteratively passing messages:

$$(x, e, \boldsymbol{u})' \leftarrow \phi(x, e, \boldsymbol{u})$$

Graph networks

A large class of **graph networks** (GN) exist. In a paper by Deepmind, a general class of models has been proposed, which generalizes a majority of known models:

Battaglia et al., 'Relational inductive biases, deep learning, and graph network'', ICLR 2019

The different models differ in the way in which the function ϕ factorizes:

 $(x, e, \boldsymbol{u})' \leftarrow \phi(x, e, \boldsymbol{u})$

Relational reasoning as GN

Relational reasoning can be expressed as graph networks:

 $d\!f$

Battaglia et al., ICLR 2019

GN: the general case

$$\mathbf{e}'_{k} = \phi^{e} \left(\mathbf{e}_{k}, \mathbf{x}_{r_{k}}, \mathbf{x}_{s_{k}}, \mathbf{u}\right) \qquad \overline{\mathbf{e}}'_{i} = \rho^{e \to x} \left(E'_{i}\right)$$
$$\mathbf{x}'_{i} = \phi^{x} \left(\overline{\mathbf{e}}'_{i}, \mathbf{x}_{i}, \mathbf{u}\right) \qquad \overline{\mathbf{e}}' = \rho^{e \to u} \left(E'\right)$$
$$\mathbf{u}' = \phi^{u} \left(\overline{\mathbf{e}}', \overline{\mathbf{x}}', \mathbf{u}\right) \qquad \overline{\mathbf{x}}' = \rho^{x \to u} \left(X'\right)$$
$$E'_{i} = \left\{\left(\mathbf{e}'_{k}, r_{k}, s_{k}\right)\right\}_{r_{k}=i, k=1:Ne}, \qquad X' = \left\{\mathbf{x}'_{i}\right\}_{i=1:N^{x}}$$
$$E' = \bigcup_{i} E'_{i} = \left\{\left(\mathbf{e}'_{k}, r_{k}, s_{k}\right)\right\}_{k=1:N^{e}}$$

Battaglia et al., ICLR 2019

u

Example applications

PointNet

Example: Object level Visual Reasoning

[Baradel, Neverova, Wolf, Mille, Mori, ECCV 2018]

Fabien Baradel Phd @ LIRIS, INSA-Lyon

Natalia Neverova Facebook Al Research, Paris

Christian Wolf Insa-Lyon, LIRIS INRIA Chroma

Julien Mille LIFAT, INSA VdL Greg Mori Simon Fraser University, Canada

Object level Visual Reasoning

[Baradel, Neverova, Wolf, Mille, Mori, ECCV 2018]

Learned interactions

Class: person-book interaction

[Baradel, Neverova, Wolf, Mille, Mori, ECCV 2018]

Results

Methods	Top1	R50 [45]	40.5	Methods	Top1
C3D + Avg [5]	21.50	I3D [3]	39.7	R18 [44]* I3D-18 [3]*	$32.05 \\ 34.20$
I3D [5] MultiScale TRN [39]	27.63 33.60	Ours	41.7	Ours	40.89
Ours	34.32				

Something-something dataset VLOG dataset EPIC Kitchen dataset

	Nb. head Objec			ct type	ype f_{ϕ}		Deinvice relations	Results	
	1	2	Pixel	COCO	RNN	MLP	Pairwise relations	VLOG	Something
Baseline	-	-	-	-	-	-	-	29.92	33.43
Variant 1	\checkmark	-	-	\checkmark	\checkmark	-	\checkmark	32.01	35.09
Variant 2	-	\checkmark	\checkmark	-	\checkmark	-	\checkmark	31.36	35.15
Variant 3	-	\checkmark	-	\checkmark	-	\checkmark	\checkmark	32.38	34.15
Variant 4	-	\checkmark	-	\checkmark	\checkmark	-	-	31.82	34.65
Ours	-	\checkmark	-	\checkmark	\checkmark	-	\checkmark	33.75	36.12

[Baradel, Neverova, Wolf, Mille, Mori, ECCV 2018]