[ ecture: Deep Learning and
Differential Programming

4.3 Graphs and
relational reasoning

https://liris.cnrs.fr/christian.wolf/teaching INSA Christian Wolf



Structured Input and/or structured Output

Predicting for multiple inter-dependent variables
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Example : meshes

3D triangular meshes are approximations of 3D surfaces /
manifolds: a graph with vertices embedded n 3D Euclidean
space.
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point clouds

Example

[Figure: Inria Chroma, 2018]



Example : scene graphs

Example image and graph from the GQA dataset

[Hudson, Manning, 2019]



Graphs: definition

A graph G = (V, £) consists of:
— a set V) of nodes, and
— aset £ € VXV of edges




Attributed Graphs

Attributed graphs also have values for each node: G=(V, &, X):
— a set V of nodes, and
— aset £ € VXV of edges

— aset X ={xp,...,xn} of values, each value being associated
to a node. In our case we find embeddings x; € R? for each

i




rivial solutions (don’t do this at home)

Stacking /

I ? Concatenating




Relational Reasoning

g(x1, 3, .. o) = max(h(zy), h(zs), ...

“PointNet” = [Qi, Su, Mo, Guibas, CVPR 2017]

Defined over points of a point cloud
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“Relational Reasoning”  [Santoro et al., NIPS 2017]

Defined over feature map cells
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PointNet



Relational Reasoning: pairwise terms
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Relational Reasoning: deep learning



A toy problem: will somebody get eaten”
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Representation by PointNet

Presence of Wolf

- Presence of Cabbage
(331 ) h  Ba Presence of Goat
-
v — Presence of Farmer

Visual embedding of object 1



Representation by PointNet

Presence of Wolf

Presence of Cabbage

Presence of Goat

— Presence of Farmer



Representation by PointNet

o f—r—f
NG 3

Max Pooling will cumulate the
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Representation by PointNet
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Representation with pairwise terms

E\ - z1: Presence of Farmer
B —l z2: Presence of Cabbage+Goat

v, T /3 Presence of Wolf+Goat

(x%wj)

Visual embeddings of objects i,



Representation with pairwise terms
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Representation with pairwise terms
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Comparison

- Increasing the complexity of h may allow to decrease
the complexity of f.

- There is no known rule which determines the best trad-
off between h and f for a given problem.

- Example: there are problems dominated by pairwies
relationships in the data where models without pairwise
terms work better.
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Graph networks

Graph networks describe graphs with sets of embeddings:
— {0, ..., %y} are node embeddings.
— {eo,- .-, €|} are edge embeddings.
— u is an embedding of global graph information.

Graph networks update these embeddings by iteratively passing
messages:

(z,e,u) < ¢(z,e,u)



Graph networks

A large class of graph networks (GN) exist. In a paper by
Deepmind, a general class of models has been proposed, which
generalizes a majority of known models:

Battaglia et al., ‘‘Relational inductive biases,
deep learning, and graph network’’, ICLR 2019

The different models differ in the way in which the function ¢
factorizes:
(z,e,u) < ¢(z,e,u)



Relational reasoning as GN

Relational reasoning can be expressed as graph networks:
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Battaglia et al., ICLR 2019



GN: the general case
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Visualization




Visualization

All messages are influenced by the
global (context) embedding

g/ ~— Update edge embeddings
Uu
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Visualization

Integrate update edge embeddings

e
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Visualization

Update node ./ _ _1x (=/ .
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Visualization

Aggregate edge
embeddings globally

é/ — pe—>u (E/)



Visualization
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Visualization

% Update global embedding
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-xample applications




PointNet

' PointNet
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[Qi, Su, Mo, Guibas, CVPR 2017]



Example: Object level Visual Reasoning
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Object level Visual Reasoning

activity features
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[Baradel, Neverova, Wolf, Mille, Mori, ECCV 2018]



| earned Interactions

keyboard

diningtable remote

Class: person-book interaction



Results

Methods TOpl RS0 [45] 40.5 Methods Topl
R18 [44]* | 32.05
. I3D [5] 2763 Ours 41.7 Ours 40.89
MultiScale TRN [39][33.60
Ours 34.32
Something-something dataset VLOG dataset EPIC Kitchen dataset
Nb. head Object type f _ : Results
I 2 [Pixel COCO|[RNN MLp|Pairwise relations|y o~ Something
Baseline|- - | - - - - - 29.92 3343
Variant 1|v - - v v - v 32.01 35.09
Variant 2| - Vv v - v - v 31.36  35.15
Variant 3| - V - v - v v 3238  34.15
Variant4|- v v | v oo- - 31.82  34.65
Ours v v | v - v 33.75  36.12

[Baradel, Neverova, Wolf, Mille, Mori, ECCV 2018]



