
1

Lecture: Deep Learning and 
Differential Programming

4.3	Graphs	and	
relational reasoning

Christian Wolfhttps://liris.cnrs.fr/christian.wolf/teaching
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Structured Input and/or structured Output

Predicting for multiple inter-dependent variables

Multi-label
Problems

Sequences

Images and 
other 2D grids

Kinematic trees
General graphs
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Example : meshes

[Ranjan, Bolkart, Sanyal, Black, 
ECCV 2018]

3D triangular meshes are approximations of 3D surfaces / 
manifolds: a graph with vertices embedded n 3D Euclidean
space.
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Example: point clouds

[Figure: Inria Chroma, 2018]
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Example : scene graphs

[Hudson, Manning, 2019]

Example image and graph from the GQA dataset
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Graphs: definition

A graph G = (V, E) consists of:
— a set V of nodes, and

— a set E 2 V⇥V of edges
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Attributed Graphs
Attributed graphs also have values for each node: G=(V, E ,X ):

— a set V of nodes, and
— a set E 2 V⇥V of edges
— a set X = {x0, . . . , xN} of values, each value being associated

to a node. In our case we find embeddings xi 2 Rd for each
node.



8

Trivial solutions (don’t do this at home)

Stacking / 
Concatenating

...
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Relational Reasoning

[Qi, Su, Mo, Guibas, CVPR 2017]“PointNet”

[Santoro et al., NIPS 2017]“Relational Reasoning”

Defined over points of a point cloud

Defined over feature map cells
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PointNet

[Qi, Su, Mo, Guibas, CVPR 2017]
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Relational Reasoning: pairwise terms

[Santoro et al., NIPS 2017]
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Relational Reasoning: deep learning

y = f(x, ✓) = �
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A toy problem: will somebody get eaten?
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h

Representation by PointNet

Visual embedding of object 1

Presence of Wolf
Presence of Cabbage
Presence of Goat
Presence of Farmer
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h

Representation by PointNet

Presence of Wolf
Presence of Cabbage
Presence of Goat
Presence of Farmer

h
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h

Representation by PointNet

h

max

Max Pooling will cumulate the 
presence information from the 
full graph into a single vector 
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h

Representation by PointNet

h

max

The second MLP “f” needs to 
learn a logical function with 
multiple AND and OR gates.

f
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h

Representation with pairwise terms

Visual embeddings of objects i,j

z1: Presence of Farmer
z2: Presence of Cabbage+Goat
z3: Presence of Wolf+Goat
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h

h

…

Representation with pairwise terms

+

Sum (or Max Pooling) will 
cumulate the logical 
information from the full graph 
into a single vector 
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h

h

…

Representation with pairwise terms

+

F needs to learn a simpler 
logical function:
Not z1 and (z2 or z3)

f
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Comparison
- Increasing the complexity of h may allow to decrease

the complexity of f.
- There is no known rule which determines the best trad-

off between h and f for a given problem.
- Example: there are problems dominated by pairwies

relationships in the data where models without pairwise
terms work better.

h

+ f
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Graph networks

Graph networks describe graphs with sets of embeddings:

— {x0, . . . , x|V|} are node embeddings.

— {e0, . . . , e|E|} are edge embeddings.

— u is an embedding of global graph information.

Graph networks update these embeddings by iteratively passing
messages:

(x, e,u)0  �(x, e,u)
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Graph networks

A large class of graph networks (GN) exist. In a paper by
Deepmind, a general class of models has been proposed, which
generalizes a majority of known models:

Battaglia et al., ‘‘Relational inductive biases,
deep learning, and graph network’’, ICLR 2019

The di↵erent models di↵er in the way in which the function �
factorizes:

(x, e,u)0  �(x, e,u)



24

Relational reasoning as GN

Relational reasoning can be expressed as graph networks:

df

Battaglia et al., ICLR 2019
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GN: the general case
e0k = �e (ek,xrk ,xsk ,u) e0i = ⇢e!x
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Visualization
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Visualization
Update edge embeddings

All messages are influenced by the 
global (context) embedding
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Visualization
Integrate update edge embeddings 
per node
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Visualization
Update node 
embeddings



30

Visualization

Aggregate edge 
embeddings globally
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Visualization

Aggregate node 
embeddings globally



32

Visualization
Update global embedding
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Example applications
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PointNet

[Qi, Su, Mo, Guibas, CVPR 2017]
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Example: Object level Visual Reasoning
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[Baradel, Neverova, Wolf, Mille, Mori, ECCV 2018]
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Object level Visual Reasoning

[Baradel, Neverova, Wolf, Mille, Mori, ECCV 2018]
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Learned interactions

Class: person-book interaction
[Baradel, Neverova, Wolf, Mille, Mori, ECCV 2018]
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Results

Something-something dataset VLOG dataset EPIC Kitchen dataset

[Baradel, Neverova, Wolf, Mille, Mori, ECCV 2018]


