
5IF - Deep Learning et
Programmation Différentielle

Christian Wolf

5.1	Reinforcement Learning

Learning to control

Reinforcement learning

Agent

Environment

ActionState	or	
observation

Reward

Literature

This presentation is largely inspired
by the open-IA Tutorial on RL:
https://spinningup.openai.com/en/latest/s
pinningup/rl_intro.html

A lengthier introduction into
Reinforcement learning:

Dimitri P. Bertsekas, "Reinforcement
Learning and Optimal Control »,
2019.

States

An environment is in a given state st at any instant t.

Fully observable problems — the state is observable to the

agent at any time, e.g. board games (chess, Go), 2D

computer games with visibe full screen (Pacman).

Partially observable problems — only an observation is returned

to the agent at each instant, not the full state.

Examples: robot navigation; 3D computer games

with ego-centric view.

Actions

At each time t, the agent takes an action at from an action space
A.

Discrete action spaces

— Chess: A = {a1,Qf3,Ra1,bf3,. . . }.
— Go: A = [1. . .19]⇥ [1. . .19].
— Dialogue: A = words or characters.

Continuous action spaces

— Robotic arm control: A =motor commands
— Drone (UAV) control: A = motor commands

Policies

The policy ⇡ of an agent is a function which

— chooses an action given that the agent is in a current state;

— or, in the stochastic case, it assigns a probability to an action:

⇡(at|st)

The reward function

After taking action at in state st, the agent is rewarded with a
scalar reward rt:

rt = R (st, at, st+1)

or, simpler:
rt = R (st, at)

We are most often interested in the accumulation of the reward
over time using a horizon T :

R(⌧) =
TX

t=0

�trt

We discount rewards which are further away in the future by a
factor �.

Markov Decision Processes

Mathematically, the situation we just presented is formalized as a
Markov Decision Process (MDP)

M = {S,A, P,R, p0}

where

— S is the set of states.

— A is the action space.

— P (st+1|st, at) is a probability distribution governing state
transitions.

— R (st, at, st+1) is the reward function.

— p0 is the distribution of the initial state s0.

MDPs, like Markov Chains, satisfy the Markov property: the
outcome depends only on the current state, and not on the full
history.

Trajectories

A trajectory ⌧ is a sequence of states st and actions at taken by an
agent following a policy. It can be a assigned a probability:

P (⌧ |⇡) = ⇢0 (s0)
T�1Y

t=0

P (st+1|st, at)⇡ (at|st)

Given a trajectory, this probability only depends on the
environment (P of the MDP).

What is the objective?

Our goal is to learn a policy ⇡✓ which optimizes the cumulative
reward:

J (⇡✓) = E
⌧⇠⇡✓

[R(⌧)]

= E
⌧⇠⇡✓

"
T�1X

t=0

rt+1|⌧
#

) we want to take actions, which are not only of high reward
immediately, but of long term value!

Types of reinforcement learning algorithms

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Value functions

The Value of state st, given a policy ⇡✓, is given as the expected
cumulative return when following the given policy from this state:

V ⇡(s) = E
⌧⇠⇡

[R(⌧)|s0 = s]

The optimal value function is obtained with the optimal policy:

V ⇤(s) = max
⇡

E
⌧⇠⇡

[R(⌧)|s0 = s]

The Action-value function:

Q⇡(s, a) = E
⌧⇠⇡

[R(⌧)|s0 = s, a0 = a]

And it’s optimal version:

Q⇤(s, a) = max
⇡

E
⌧⇠⇡

[R(⌧)|s0 = s, a0 = a]

Q-Learning

Q-Learning does not directly learn a policy ⇡, but attemps in
estimating the optimal Q-function Q⇤(s, a).

The optimal policy is then the one which selects the optimal action
a⇤ in state s as follows:

a⇤(s) = argmax
a

Q⇤(s, a)

) we need to estimate Q ⇤ (s, a).
We only have access to the immediate reward rt at each instant.

Q-Learning

For a given policy ⇡, we can estimate the Q-function with the
Bellman equation:

Q⇡(s, a) = E
s0⇠P


r(s, a) + � E

a0⇠⇡

⇥
Q⇡

�
s0, a0

�⇤�

But we are interested in the Bellmann equation for the optimal
Q-function:

Q⇤(s, a) = E
s0⇠P


r(s, a) + �max

a0
Q⇤ �s0, a0

��

Q-Learning: value iteration

We update the current estimate of Q⇤(s, a) at each time step:
The agent is in state st, performs an action a, gets a new state s0

and a reward r(s, a).

Discrete state and action spaces: we can keep the Q-function in
a table and update it:

Q(s, a)[t+1] = (1�⌫)Q⇤(s, a)[t] + ⌫


r(s, a) + �max

a0
Q
�
s0, a0

��

where ⌫ is a learning rate.

Q-Learning: value iteration

Continuous state spaces: we approximate the Q-function with a
neural network:

f(s, ✓) = q =

2

666664

Q(s, a0)
Q(s, a1)
Q(s, a2)

...
Q(s, aN)

3

777775

We minimize a loss between the old value and the new one:

L
✓
Q(s, a), r(s, a) + �max

a0
Q(s0, a0)

◆

and learn by gradient descent.

Exploration vs. exploitation

In order to learn a reliable and useful value function, the agent
needs to explore the state space and can’t always take the action
which is currently estimated as optimal)
Exploration/exploitation trade-o↵.

✏-greedy strategy:

1. Draw a random number r 2 [0, 1].

2. Choose action a as:

a =

8
><

>:

random if r < ✏

argmax
a

Q(s, a) if r � ✏

Higher ✏ chooses more exploration.

Deep Q Learning
Deepmind’s work on ATARI games in 2015 launched work
in Deep Reinforcement learning.

[Mnih et al., Human Level Control Through
Deep Reinforcement Learning, Nature, 2015]

20

[Mnih et al., Human Level Control
Through Deep Reinforcement

Learning, Nature, 2015]

https://theo-jaunet.github.io/MemoryReduction/

Appendix:
Policy	gradient

Types of reinforcement learning algorithms

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Policy Gradient

Policy gradient directly optimizes the expected cumulative reward
over a parametrized policy function ⇡✓:

J (⇡✓) = E
⌧⇠⇡✓

[R(⌧)]

= E
⌧⇠⇡✓

"
T�1X

t=0

rt+1|⌧
#

We would like to learn the policy network ⇡✓ with gradient descent:

✓k+1 = ✓k + ⌫r✓J (⇡✓)

How do we calculate the gradient r✓J (⇡✓)?

Policy Gradient

r✓J (⇡✓) = r✓ E
⌧⇠⇡✓

[R(⌧)]

= r✓

Z

⌧
P (⌧ |✓)R(⌧)

=

Z

⌧
r✓P (⌧ |✓)R(⌧)

=

Z

⌧
P (⌧ |✓)r✓ logP (⌧ |✓)R(⌧)

= E
⌧⇠⇡✓

[r✓ logP (⌧ |✓)R(⌧)]

r✓J (⇡✓) = E
⌧⇠⇡✓

"
TX

t=0

r✓ log ⇡✓ (at|st)R(⌧)

#

https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html

