[ ecture: Deep Learning and
Differential Programming

5.2 Should we model or learn?

https://liris.cnrs.fr/christian.wolf/teaching INSA Christian Wolf
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(Physical) model

é

Black box
> y (unknown function)
White box
> y (learned but known
complex function)
> y Hybrid model
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Example:
Robot navigation
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Purely geometrical
mapping + planning

Adding semantics

o

+ Real world solutions

- Simple tasks and
reasoning (eg. waypoint
navigation)

Purely learned policies

(Deep-RL)

Inductive biases:
Geometry, topology,
stability etc. l

+ High-level reasoning
+ Discover tasks from

reward

- Does not transfer to the

real world
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Learn how to create a map (SLAM)
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welldnder i

. 3 :
4x Speed
RGBD-SLAM
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e Qurrmethod

[Tateno, Tombari, Laina, Navab,
CVPR 2017]
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Shortest path problems: Dijkstra’s algorithm

Start

Goal
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Shortest path problems: Dijkstra’s algorithm
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Shortest path problems: Dijkstra’s algorithm

Start

Goal
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Shortest path problems: Dijkstra’s algorithm

Start

Goal

Update of the bound
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Shortest path problems: Dijkstra’s algorithm

Start

Goal
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Shortest path problems: Dijkstra’s algorithm

Start

Goal




Active Neural Mapping

- Can we combine traditional path finding (Dijkstra, A*,
front propagation etc.) with learning?

- Habitat Al Challenge (@CVPR 2019): Point Goal Task:

- Winner (Chapelot et al.):
— A learned mapper predicts free space
— A global policy is learned with RL (reward = coverage)
— Planning with front-propagation

— A local policy predicts navigation actions, learned with RL
(reward=L, distance to global goal).

— No end to end training!

— Easy transfer from coverage objective to point goal (replace
global policy by fixed one).

[Chapelot, Gupta, Gandhi, Gupta,
Salakhutdinov, 2019 (unpublished)]
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Active Neural Mapping

Deep networks trained with RL

Pbse Estimate (%,) |

Sensor Pose

Reading (x,)

Global Policy Long-term
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Classical planning: shortest

[Chapelot, Gupta, Gandhi, Gupta, path, not traineable
Salakhutdinov, 2019 (unpublished)]
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[Chapelot, Gupta, Gandhi, Gupta,
Salakhutdinov, 2019 (unpublished)]
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Cognitive Mapping and Planning

— Differentiable planner (value iteration networks)
- End to end training, but no RL (imitation learning)

| | Goal |

f Belief about the world )

gﬂil | Differentiable Diﬁerentiable} T
Egomotion |

f Mapper Planner
i
_

Action to
Execute

—
[ X X ]

[Gupta, Tolani, Davidson, Levine,
Sukthankar, Malik, CVPR 2017]




Purely geometrical
mapping + planning

Adding semantics

v

+ Real world solutions

- Simple tasks and
reasoning (eg. waypoint
navigation)

Purely learned policies

(Deep-RL)

Inductive biases:
Geometry, topology,
stability etc. l

Omeee———

+ High-level reasoning
+ Discover tasks from

reward

- Does not transfer to the

real world
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Memory
Semantic + spatial
representation

Constraints + Structure:
Geometry, Topology, oo _._
Semantics, Stability

-
Behavior / Control
Tl'\ f‘l?
L ] ith diffi tl :
A g ent earning with different losses
T Memm———— Reward, (self)-supervision,
Reasoning

Intrinsic motivation, curiosity

Learning, querying,
attending Observations

20 INSA uwris@



~\

Learning, system
identification
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Computer vision from UAVs

Several problems:
- Computer vision for Control
- Vehicle Control

- Task related computer
vision (eg. plant detetcion)
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End to end learning?

Memory

Control decisions
n\ fv
\/[ Agent

Learning, querying,
attending Observations

Requires a training strategy:
- imitation from human trajectories?
- Reinforcement Learning

Very low explainability 23 INSA Liris®



he beauty and the beast

tracked path
5t gates

y [m]

-10 |

-10 -5 0 5
x[m]

[Kaufmann, Gehrig, Foehn, Ranftl,
Dosovitskiy2, Koltun, Scaramuzzal, 2018]
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The beauty and the beast

Vision / perception: DNNs for state estimation and
obstacle / door detection.

[Kaufmann, Gehrig, Foehn, Ranftl,
Dosovitskiy, Koltun, Scaramuzza, 2018]
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The beauty and the beast

Control: classical model predictive control

u

x(t) =x(t) —x,(t) u(t) =u(t) —u,(t)
subject to r(x,u) =0 h(x,u) <0.

min /t (%] ()Qxa(t) + u) (DR (8)) dt

[Kaufmann, Gehrig, Foehn, Ranftl,
Dosovitskiy, Koltun, Scaramuzza, 2018]
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Neural Lander

— A drone is controlled with a PID controller based on a
model of the drone

- Unknown disturbances (unsteady airflow) is learned by
a deep neural network and supervised learning

p =, mv

R = RS(w), Jw

mg + Rf, +|f,, (la)
Jw X w4+ 7, +1a, (1b)

Estimated from state and
control inputs

[Shi et al., 2019] )
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Neural Lander

Take-off Z error

—— Baseline
—— Neural Lander

[Shi et al., 2019]
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