Lecture: Deep Learning and Differential Programming

5.2 Should we model or learn?

$$\ddot{\theta}_{t} = \frac{g \sin \theta_{t} + \cos \theta_{t} \left[\frac{-F_{t} - ml\dot{\theta}_{t}^{2} \sin \theta_{t} + \mu_{c} \operatorname{sgn}\left(\dot{x}_{t}\right)}{m_{c} + m} \right] - \frac{\mu_{p}\dot{\theta}_{t}}{ml}}{l \left[\frac{4}{3} - \frac{m \cos^{2} \theta_{t}}{m_{c} + m} \right]}$$

$$E + ml \left[\dot{\theta}_{s}^{2} \sin \theta_{t} - \ddot{\theta}_{s} \cos \theta_{s} \right] - \mu_{s} \operatorname{sgn}\left(\dot{x}_{s}\right)$$

$$\ddot{x}_{t} = \frac{F_{t} + ml \left[\dot{\theta}_{l}^{2} \sin \theta_{t} - \ddot{\theta}_{t} \cos \theta_{t} \right] - \mu_{c} \operatorname{sgn} \left(\dot{x}_{t} \right)}{m_{c} + m}$$

Planing/shortest path

- Dijkstra
- A*
- Front Propagation

$$\ddot{\theta}_{t} = \frac{g \sin \theta_{t} + \cos \theta_{t} \left[\frac{-F_{t} - ml\dot{\theta}_{t}^{2} \sin \theta_{t} + \mu_{c} \operatorname{sgn}(\dot{x}_{t})}{m_{c} + m} \right] - \frac{\mu_{p}\dot{\theta}_{t}}{ml}}{l \left[\frac{4}{3} - \frac{m \cos^{2} \theta_{t}}{m_{c} + m} \right]}$$

$$F_{t} + ml \left[\dot{\theta}_{t}^{2} \sin \theta_{t} - \ddot{\theta}_{t} \cos \theta_{t} \right] - \mu_{c} \operatorname{sgn}(\dot{x}_{t})$$

Plannifcation/shortest path

- Dijkstra
- A*
- Front Propagation

Example: Robot navigation

- + Real world solutions
- Simple tasks and reasoning (eg. waypoint navigation)

- + High-level reasoning
- + Discover tasks from reward
- Does not transfer to the real world

Learn how to create a map (SLAM)

[Tateno, Tombari, Laina, Navab, CVPR 2017]

Active Neural Mapping

- Can we combine traditional path finding (Dijkstra, A*, front propagation etc.) with learning?
- Habitat Al Challenge (@CVPR 2019): Point Goal Task:
- Winner (Chapelot et al.):
 - A learned mapper predicts free space
 - A global policy is learned with RL (reward = coverage)
 - Planning with front-propagation
 - A local policy predicts navigation actions, learned with RL (reward=L₂ distance to global goal).
 - No end to end training!
 - Easy transfer from coverage objective to point goal (replace global policy by fixed one).

Active Neural Mapping

Deep networks trained with RL

[Chapelot, Gupta, Gandhi, Gupta, Salakhutdinov, 2019 (unpublished)]

Classical planning: shortest path, not traineable

Active Neural Mapping

Time

Cognitive Mapping and Planning

- Differentiable planner (value iteration networks)
- End to end training, but no RL (imitation learning)

- + Real world solutions
- Simple tasks and reasoning (eg. waypoint navigation)

- + High-level reasoning
- + Discover tasks from reward
- Does not transfer to the real world

Control Theory

Reinforcement Learning

Computer vision from UAVs

Several problems:

- Computer vision for Control
- Vehicle Control
- Task related computer
 vision (eg. plant detetcion)

End to end learning?

Requires a training strategy:

- imitation from human trajectories?
- Reinforcement Learning
 Very low explainability

The beauty and the beast

The beauty and the beast

Vision / perception: DNNs for state estimation and obstacle / door detection.

The beauty and the beast

Control: classical model predictive control

$$\min_{\mathbf{u}} \int_{t_0}^{t_f} \left(\bar{\mathbf{x}}_t^{\top}(t) \mathbf{Q} \bar{\mathbf{x}}_t(t) + \bar{\mathbf{u}}_t^{\top}(t) \mathbf{R} \bar{\mathbf{u}}_t(t) \right) dt$$

$$\bar{\mathbf{x}}(t) = \mathbf{x}(t) - \mathbf{x}_r(t) \quad \bar{\mathbf{u}}(t) = \mathbf{u}(t) - \mathbf{u}_r(t)$$
subject to $\mathbf{r}(\mathbf{x}, \mathbf{u}) = 0$ $\mathbf{h}(\mathbf{x}, \mathbf{u}) \leq 0$.

Neural Lander

- A drone is controlled with a PID controller based on a model of the drone
- Unknown disturbances (unsteady airflow) is learned by a deep neural network and supervised learning

$$\dot{\mathbf{p}} = \mathbf{v},$$
 $m\dot{\mathbf{v}} = m\mathbf{g} + R\mathbf{f}_u + \mathbf{f}_a,$ (1a) $\dot{R} = RS(\boldsymbol{\omega}),$ $J\dot{\boldsymbol{\omega}} = J\boldsymbol{\omega} \times \boldsymbol{\omega} + \boldsymbol{\tau}_u + \boldsymbol{\tau}_a,$ (1b)

Estimated from state and control inputs

Neural Lander

