
The 3 problems of Machine Learning

1. Expressivity
What is the complexity of the functions my model can
represent?

2. Trainability
How easy is training of my model (i.e. solving the
optimization problem)?

3. Generalization
How does my model behave on unseen data?
In presence of a shift in distributions?

(After Eric Jang & Jascha Sohl-Dickstein)



Toy problem
We would like to classify between two classes, cats and dogs.
We have access to two measurements:

x1 — the weight, in kg.
x2 — a sound, in Hz.

Supervised Learning:
We have access to a training set of labeled examples.
What is the predicted class (cat or dog) for a new unseen example?



(Separable) Learning problems

Inputs / features are from a domain set X .
There is a distribution D over the domain X .

Labels are from the label set Y = {0, 1} (binary case).

True labelling function f : X → Y, yi = f(xi)
Predictor (“hypothesis”) h : X → Y, ŷi = h(xi)

Training data S = {(xi, yi)}i=1...m

For the moment we focus on the 0− 1 Loss / error, i.e.:

`0−1(h, (x, y))
def
=

{
0 if h(x) = y
1 if h(x) 6= y



Empirical risk minimization

We would like to estimate the “true” error (risk), which is NOT
available:

LD,f (h)
def
= P

x∼D
[h(x) 6= f(x)]

def
= D({x : h(x) 6= f(x)})

Instead, we have access to the empirical error (risk) on the trainig
set:

LS(h)
def
=
|{i ∈ [m] : h (xi) 6= yi}|

m

Empirical risk minimization optimizes this risk:

hS = min
h
LS(h)



Overfitting
Let us define an “inefficient” classifier ... with training error 0:

hS(x) =

{
yi if ∃i ∈ [m] s.t. xi = x
0 otherwise

Among all possible classifiers with zero training error, which ones is
most likely to generalize best?
Can we find theoretical bounds on generalization?



Hypothesis classes

Can we limit the predictor h (“hypothesis”) to a given class H?



Hypothesis classes

Intuitively, if the decision frontiers are arbitrarily complex, the
generalization gap can become arbitrarily large.



Ensuring generalization

Proposition: if the complexity of the mathematical function
representing h is limited (before looking at the data!), we can limit
the gap between empirical risk and true risk.

How can we measure the complexity of a function?
−→ We need some measure of capacity.

A large family of bounds uses some form of capacity:

∀h ∈ H LD,f (h)︸ ︷︷ ︸
expected risk

− LS(h)︸ ︷︷ ︸
empirical risk

< O∗

(√
cap(H)
m

)
︸ ︷︷ ︸

capacity term

m ... number of training samples.



The classical U-curve (bias/complexity)

(Figure reproduced from M. Belkin, Fit without fear ..., 2021.)
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Some types of bounds

Finite hypothesis classes
The number of hypotheses is finite,
Separable problem.

VC-Dimension
Capacity is described on how many data points a hypothesis
can separate.

. . .

The next slides are largely inspired by: Shai-Shalev-Shwartz
and Shai Ben-David, Understanding Machine Learning, 2014.)
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Finite hypothesis classes

Let us study an easy case: finite hypothesis classes.
Examples:

— All straight lines with parameters a, b being discretized

— All axis aligned rectangles on a discretized grid

— All classification programs expressed in computer code stored
in no more than N bits

— . . .

Proposition: the generalization gap of predictors learned from
finite hypothesis classes is bounded.



i.i.d. Samples

The i.i.d. assumption:

The samples in the training set S are independently and
identically sampled, i.e. S ∼ D.

Without this assumption, mathematical analysis of generalization
error is diffult.



Predictors are random
The hypothesis hS : X → Y is a random function, subject to
randomness induced by the selection of the training set.

There is a non-zero probability, that

— the training set is non representative, or even

— that the same point is sampled again and again.

(Unknown) decision boundary

Problem more stringent in higher dimensions!



Bounding generalization error

We suppose the problem is realizable (=separable), i.e.

∃h∗ ∈ H : L(D,f)(h
∗) = 0

We define the failure of hS as true risk being higher than ε:

L(D,f) (hS) > ε

Probability of failure, over sampling the training set
S|x = (x1, . . . , xm):

Dm
({
S|x : L(D,f) (hS) > ε

})
Our goal is to upper bound this probability.



Misleading samples
Bad hypotheses:

HB =
{
h ∈ H : L(D,f)(h) > ε

}
The set of misleading samples: each set S|x contains at least
one bad hypothesis with zero training error.

M = {S|x : ∃h ∈ HB, LS(h) = 0}

Can be rewritten as

M =
⋃

h∈HB

{S|x : LS(h) = 0}

Since the problem is separable, failure can only happen if the
sample is misleading, i.e.{

S|x : L(D,f) (hS) > ε
}
⊆M



Misleading samples

The probability of failure is therefore smaller than the probability
of misleading samples:

Dm
({
S|x : L(D,f) (hS) > ε

})
≤ Dm(M)

= Dm (∪h∈HB
{S|x : LS(h) = 0})

≤
∑
h∈HB

Dm ({S|x : LS(h) = 0})

(where we used the union bound D(A ∪B) ≤ D(A) +D(B))



Individual hypotheses h and samples i

For each single bad hypothesis h, the samples are i.i.d., therefore

Dm ({S|x : LS(h) = 0}) = Dm ({S|x : ∀i, h (xi) = f (xi)})

=

m∏
i=1

D ({xi : h (xi) = f (xi)}) .

Since h is a bad hypothesis, we can bound individual errors:

D ({xi : h (xi) = yi}) = 1− L(D,f)(h)

≤ 1− ε



Wrapping up . . .

Over all samples, we get:

Dm ({S|x : LS(h) = 0}) ≤ (1− ε)m

≤ e−εm

Integrating all bad hypotheses, we get:

Dm
({
S|x : L(D,f) (hS) > ε

})
≤ |HB| e−εm

≤ |H|e−εm



Illustration: union bound over bad
hypotheses

(Figure reproduced from Shai-Shalev-Shwartz and Shai Ben-David, Understanding Machine Learning, 2014.)



Sample Complexity of Finite Hypothesis classes

Let H be a finite hypothesis class. Let δ ∈ (0, 1) and ε > 0 and let
m be an integer that satisfies

m ≥ log(|H|/δ)
ε

.

Then, for any labeling function, f , and for any distribution, D, for
which the realizability assumption holds (that is, for some
h ∈ H, L(D,f)(h) = 0), with probability of at least 1–δ over the
choice of an i.i.d. sample S of size m, we have that for every ERM
hypothesis, hS , it holds that

L(D,f)(hS) ≤ ε.



PAC-Learning

A formal definition of PAC-Learning:
“Probably Approximately Correct Learning”

A hypothesis class H is PAC learnable if there exists a function
mH : (0, 1)2 → N and a learning algorithm with the following
property:

For every ε, δ ∈ (0, 1), for every distribution D over X , and for
every labeling function f : X → (0, 1), if the realizable assumption
holds with respect to H,D, f , then when running the learning
algorithm on m ≥ mH(ε, δ) i.i.d. examples generated by D and
labeled by f , the algorithm returns a hypothesis h such that, with
probability of at least 1− δ (over the choice of the examples),
L(D,f)(h) ≤ ε.



Sample Complexity of Finite Hypothesis classes (2)

We rephrase learnability of finite H:

Finite hypothesis classes H are PAC-learnable with sample
complexity

mH(ε, δ) ≤
∣∣∣∣ log(|H|/δ)ε

∣∣∣∣



Bias/complexity: finite H, separable problems

(Figure reproduced from M. Belkin, Fit without fear ..., 2021.)



Non-realizable (non-separable) problems

Reminder: for realizable problems,

— we specify a marginal distribution D over the domain X ,

— the (unknown) labelling function assigns a unique label to
each sample, f : X → (0, 1).

For classification, we call these problems separable.

We now remove this constraint and address more practicable
problems:

— we integrate noise and uncertainty, there is no clear unique
label for a given sample

— we specify the full joint distribution D over domain and labels,
X × Y.



Non-separable problems: example
We try to distinguish between cats and dogs, but with a single
scalar input value x1 (the weight in kg).

Let’s assume the following class conditional probabilities:
P(x1|y = 1) // cat

P(x1|y = 2) // dog

<latexit sha1_base64="B+j6mOJBwlZQXHJ6Qb2CqxDv/mY="></latexit>x1

They overlap!
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The Bayes optimal classifier

The true error is the error obtained by a classifier h when the
labels are sampled according to the distribution D:

LD(h)
def
= P

(x,y)∼D
[h(x) 6= y]

def
= D({(x, y) : h(x) 6= y})

The Bayes optimal classifier maximizes the posterior
probability:

fD(x) =

{
1 if P[y = 1 | x] ≥ 1/2
0 otherwise
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. . .



VC-Dimension

Finite hypothesis classes are learnable.

Infinite hypothesis classes are not learnable, if they are completely
unrestricted (No free lunch theorem).

However, infinite hypothesis classes can be learnable too, if the
capacity is somehow limited.
How do we measure this limitation (=capacity)?



Shattering of linear classifiers

Linear classifiers can separate 2 or 3 points,

— whatever their labelling yi,

— whatever their position xi.



Shattering of linear classifiers
For a set of 4 points or more:

— some configurations {(xi, yi)}4i=1 can be separated by a linear
classifier,

— some can not!

(XOR brought the AI winter . . . )



Shattering ...

A classifier with elliptical decision boundaries can separate 4
points,

— whatever their labelling yi,

— whatever their position xi.



Shattering: more formally

Reminder: a hypothesis class H is the class of functions
h : X → (0, 1).

A hypothesis class H shatters a finite set
C = {c1, c2, . . . , cm} ⊂ X if the set of functions from C to (0, 1)
that can be derived from H, i.e.

HC = {(h (c1) , . . . , h (cm)) : h ∈ H}

is equal to the set of all functions from C to (0, 1).

(Each element in (HC) is a sequence of bits 0/1)



VC-dimension

The VC-dimension of a hypothesis class H is the maximum size of
a set C ⊂ X such that C can be shattered by H.
(Not all sets C!)

Examples:

Linear classifiers in 2D have a VC dimension of 3.
Generally, in D dimensions, linear classifiers have dimension D+1.

⇒ there exist sets of 4 points in 3D space, which can be separated
by hyperplanes whatever their labelling.



Example: linear separators in 3D

⇒ there exist sets of 4 points in 3D space, which can be separated
by hyperplanes whatever their labelling.



The fundamental theorem of PAC
Learning

The Fundamental Theorem of Statistical Learning
Let H be a hypothesis class of functions from a domain X to (0, 1)
and let the loss function be the 0− 1 loss. Then, the following are
equivalent:

— H has a finite VC-dimension.

— H is PAC learnable.

— Any ERM rule is a successful PAC learner for H.

(Other equivalencies exist and are out of scope of this lecture)

Proof in: Shai-Shalev-Shwartz and Shai
Ben-David, Understanding Machine Learning, 2014.)



The fundamental theorem of PAC
Learning

The Fundamental Theorem of Statistical Learning —
Quantitative Version
Let H be a hypothesis class of functions from a domain X to (0, 1)
and let the loss function be the 0− 1 loss. Assume that it’s
VC-dimension is H = d <∞. Then, there are absolute constants
C1, C2 such that:

H is PAC learnable with sample complexity

C1
d+ log(1/δ)

ε
≤ mH(ε, δ) ≤ C2

d log(1/ε) + log(1/δ)

ε

(Other properties are implied ... and are out of scope of this lecture)

Proof in: Shai-Shalev-Shwartz and Shai
Ben-David, Understanding Machine Learning, 2014.)



Then Deep Learning came along ...

(Noh et al., 2015)



Rethinking generalization

C. Zhang, S. Bengio, M. Hardt, B. Recht and O. Vinyals, Understanding
deep learning requires rethinking generalization, ICLR 2017 (best paper)



Rethinking generalization
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Rethinking generalization



The double U-curve

(Figure reproduced from M. Belkin, Fit without fear ..., 2021.)



Lack of overfitting

(Figure reproduced from M. Belkin, Fit without fear ..., 2021.)


