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Visual Question Answering

Is the cabbage to the 
left of the broccoli?
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Transformer based models
A vision and language encoder with self-attention and cross-attention.

Tan, H. and Bansal, M. LXMERT: Learning cross-modality encoder representations from
transformers. EMNLP-IJCNLP 2019. 
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“What	is	on	
the	wall?”

Question	groups	
(context)

Group:	objects	on	walls

(…)(…)

”Picture”:	(Question	prior)

“Mirror”: LSTM[4],	BUTD	[3]

“Star” (GT	Answer):	

VIS-ORACLE,	LXMERT	[26]

“Painting”: BAN4[17],	

MCAN	[31],	MMN[8]

“Shelf”: BUTD+RUBI	[7]

“Left”: BUTD+LM	[9]

“Cotton	dessert”:	

BUTD+BP[9]

C. Kervadec, G. Antipov, M. Baccouche and C. Wolf, Roses Are Red, Violets Are Blue... but Should
VQA Expect Them To? CVPR 2021.

Reasoning vs. bias exploitation (1)

”Star”
(GT answer)



6

Reasoning vs. bias exploitation (2)
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LSTM
BAN
LXMERT
VIS-ORACLE
MMN

C. Kervadec, T. Jaunet, G. Antipov, M. Baccouche, R. Vuillemot and C. Wolf, How Transferrable are 
Reasoning Patterns in VQA? CVPR 2021.

Oracle 
model
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T. Jaunet, C. Kervadec, G. Antipov, M. Baccouche, R. Vuillemot and C. 
Wolf. VisQA: X-raying Vision and Language Reasoning in 
Transformers. IEEE-T. on Visualization and Computer Graphics 2021.

XAI – explainable AI
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Oracle transfer

C. Kervadec, T. Jaunet, G. Antipov, M. Baccouche, R. Vuillemot and C. Wolf, How Transferrable are 
Reasoning Patterns in VQA? CVPR 2021.

Classif.	loss
+BERT	losses

Fine-
tuning

ModelOracle 
modelTraining

Classif.	loss

Adapted
Model

Fine-
tuning

Classif.	loss

Loss	of	reasoning	capacity	after	
transfer	to	noisy	input

Motivation of this 
work (NeurIPS)
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Ground truth reasoning programs

D.A. Hudson and C.D. Manning. GQA: A new dataset for real-world visual reasoning and 
compositional question answering, CVPR 2019.

Does the boat to the left
of the flag look small or 
large? GT: small

RELATE

SELECT

CHOOSE 
SIZE

END

START

Reasoning
program
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Neuro-symbolic reasoning

W. Chen, Z. Gan, L. Li, Y. Cheng, W. Wang, and J. Liu. Meta module network for compositional
visual reasoning. WACV, 2021 
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Supervising program prediction

12

Supervising program prediction

Tokenizer

Object 
Detector

VQA
head

Lang.
Only

Vis. 
Only

Vis. to 
lang.

Does the boat to 
the left of the 
flag look small 

or large?

Lang. 
to vis.

Uni-modal

Supervision

Program
decoder

VL-Transformer

Cross-modal

Input (params. are frozen)

Tan, H. and Bansal, M. LXMERT: Learning cross-modality encoder representations
fromtransformers. EMNLP-IJCNLP 2019. 
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Sample complexity

𝜭

v
q

Learned	knowledge	of	the	reasoning	processes

Latent	variables	necessary	for	reasoning	over	multiple	hops

y
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Sample complexity of overparam. MLPs

Theorem [1][2]: Let A be an overparametrized and randomly

initialized two-layer MLP trained with gradient descent for a

su�cient number of iterations. Suppose g : Rd ! Rm
with

components g(x)(i) =
P

j ↵
(i)
j (�(i)T

j x)p
(i)
j , where �

(i)
j 2 Rd

,

↵
(i) 2 R, and p

(i)
j = 1 or p

(i)
j = 2l, l 2 N+. The sample complexity

CA(g, ✏, �) is

CA(g, ✏, �) = O

0

B@
maxi

P
j p

(i)
j |↵(i)

j |·||�(i)
j ||

p
(i)
j

2 + log(m� )

(✏/m)2

1

CA

[1] S.S. Du S. Arora, W. Hu, Z. Li, and R. Wang. Fine-grained Analysis of optimization

and generalization for overparametrized two-layer neural networks. ICML, 2019.

[2] K. Xu, J. Li, M. Zhang, S.S. Du, K.-I. K., and S. Jegelka. What can Neural

Networks Reason About. ICLR, 2020.
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Assumption: decomposition of reasoning

The unknown reasoning function

y⇤ = g(q,v)

is a mixture model, which decomposes:

y⇤ =
X

r

⇡rhr =
X

r

⇡rgr(v),

where each reasoning mode is a multi-variate polynomial:

h(i)
r = gr(v) =

X

j

↵
(i)
r,j(�

(i)T
r,j v)p

(i)
r,j

with parameters ! =
n
↵
(i)
r,j ,�

(i)
r,j , p

(i)
r,j

o
.



21

Assumption: decomposition of reasoning

The unknown reasoning function

y⇤ = g(q,v)

is a mixture model, which decomposes:

y⇤ =
X

r

⇡r(q)gr(v),

where each reasoning mode is a multi-variate polynomial:

h(i)
r = gr(v) =

X

j

↵
(i)
r,j(�

(i)T
r,j v)p

(i)
r,j

with parameters ! =
n
↵
(i)
r,j ,�

(i)
r,j , p

(i)
r,j

o
.



22

Assumption: decomposition of reasoning

The unknown reasoning function

y⇤ = g(q,v)

is a mixture model, which decomposes:

y⇤ =
X

r

⇡r(q)gr(v),

where each reasoning mode is a multi-variate polynomial:

h(i)
r = gr(v) =

X

j

↵
(i)
r,j(�

(i)T
r,j v)p

(i)
r,j

with parameters ! =
n
↵
(i)
r,j ,�

(i)
r,j , p

(i)
r,j

o
.



23

Assumption: mode selector

⇡r(q) ?
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Assumption: mode selector

Assumption The input question embeddings q are separated into

clusters according to reasoning modes r, such that the underlying

reasoning mode estimator g⇡ can be realized as a NN classifier with

dot-product similarity in this embedding space.

�! the reasoning mode estimator can be expressed as a generalized

linear model:

⇡ = g⇡(q) = �
�⇥
�
T
0 q, �

T
1 q, ...

⇤�
, (1)
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The full reasoning function

y⇤(i) =
X
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Complexity with program supervision

Assumption: through supervising reasoning programs, learning is

separated into several di↵erent processes,

1. learning of the reasoning mode estimator g⇡();

2. learning of the the di↵erent reasoning modules learned

independently.
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Di↵erence in complexity

Under very conservative assumptions, the gain in complexity is

p
2
�(m2 + 1

2)

�(m2 )

(Proof in the paper)
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Impact of program supervision

Model
Oracle Prog. GQA-OOD GQA AUC†

transf. sup. acc-tail acc-head test-dev binary⇤ open⇤ test-std prog.

s
c
r
a
t
c
h (a) Baseline 42.9 49.5 52.4 - - - /

(b) Oracle transfer X 48.2±0.3 54.6±1.1 57.0±0.3 74.5 42.1 57.3 /

(c) Ours X X 48.8±0.1 56.1±0.3 57.8±0.2 75.4 43.0 58.2 97.1

+
lx
m
e
r
t

(d) Baseline 47.5 55.2 58.5 - - - /

(e) Oracle transfer X 47.1 54.8 58.4 77.1 42.6 58.8 /

(f) Ours X X 48.0±0.6 56.6±0.6 59.3±0.3 77.3 44.1 59.7 96.4

BERT/LXMERT pre-training on GQA unbalanced training.

Scores on GQA (test-dev and test-std) and GQA-OOD (test). * binary and open scores

are computed on the test-std.

† we evaluate visual argument prediction by computing AUC0.66 on GQA-val.
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Impact of types of supervision

Ablations
GQA-OOD GQA

acc-tail (val.) val.

(1) VQA only 46.9 62.2

(2) Coarse only 46.5 62.5

(3) Coarse + dep. 46.8 62.8

(4) Full w/o v.arg 47.3 63.7

(5) Full (ours) 49.9 66.2

Compact model, no LXMERT/BERT pre-training, no Oracle

GQA validation set

v.arg = supervision of visual arguments
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Empirical estimation of sample complexity
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Comparison with SOTA

Method
Visual Additional Training data (M) GQA-OOD GQA

feats. supervision Img Sent acc-tail acc-head bin. open all

BAN4 RCNN - ⇡ 0.1 ⇡1 47.2 51.9 76.0 40.4 57.1

MCAN RCNN - ⇡ 0.1 ⇡1 46.5 53.4 75.9 42.2 58.0

Oracle transfer RCNN - ⇡0.18 ⇡1 48.3 55.5 75.2 44.1 58.7

MMN RCNN Program ⇡0.1 ⇡15 48.0 55.5 78.9 44.9 60.8

LXMERT RCNN - ⇡0.18 ⇡9 49.8 57.7 77.8 45.0 60.3

Ours VinVL Program ⇡0.1 ⇡15 49.1 59.7 80.1 48.0 63.0

NSM SG Scene graph ⇡0.1 ⇡1 - - 78.9 49.3 63.2

OSCAR+VinVL VinVL - ⇡5.7 ⇡9 - - 82.3 48.8 64.7
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Conclusion
- We exploit the fact that Oracle models are less prone 

to shortcut learning.

- We train an Oracle model and transfer to a 
deployable model.

- We supervise program prediction during the transfer 
to maintain a strong link to the objective.

- We theorectially show that program supervision 
decreases sample complexity under some 
assumptions.


