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Visual Question Answering

& 7V /s the cabbage to the
left of the broccoli?




Transformer based models

A vision and language encoder with self-attention and cross-attention.
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Tan, H. and Bansal, M. LXMERT: Learning cross-modality encoder representations from
transformers. EMNLP-IJCNLP 2019.



Reasoning vs. bias exploitation (1)
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C. Kervadec, G. Antipov, M. Baccouche and C. Wolf, Roses Are Red, Violets Are Blue... but Should
VQA Expect Them To? CVPR 2021.



Reasoning vs. bias exploitation (2)
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C. Kervadec, T. Jaunet, G. Antipov, M. Baccouche, R. Vuillemot and C. Wolf, How Transferrable are
Reasoning Patterns in VQA? CVPR 2021.



XAl — explainable Al

T. Jaunet, C. Kervadec, G. Antipov, M. Baccouche, R. Vuillemot and C.
Wolf. VisQA: X-raying Vision and Language Reasoning in
Transformers. IEEE-T. on Visualization and Computer Graphics 2021.



Oracle transfer

Classif. loss Classif. loss
+BERT losses
Training Oracle | | Fln.e- ool L Fln.e- || Adapted
model tuning tuning Model
. .‘
Motivation of this Loss of reasoning capacity after
work (NeurlIPS) transfer to noisy input

C. Kervadec, T. Jaunet, G. Antipov, M. Baccouche, R. Vuillemot and C. Wolf, How Transferrable are
Reasoning Patterns in VQA? CVPR 2021.



Ground truth reasoning programs

Does the boat to the left
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D.A. Hudson and C.D. Manning. GQA: A new dataset for real-world visual reasoning and
compositional question answering, CVPR 2019.



Neuro-symbolic reasoning

Answer: Man
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W. Chen, Z. Gan, L. Li, Y. Cheng, W. Wang, and J. Liu. Meta module network for compositional
visual reasoning. WACYV, 2021
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Supervising program prediction
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Tan, H. and Bansal, M. LXMERT: Learning cross-modality encoder representations
fromtransformers. EMNLP-IJCNLP 2019.
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Supervising program prediction
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Supervising program prediction
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Supervising program prediction
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Sample complexity
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Sample complexity
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Sample complexity
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Sample complexity of overparam. MLPs

Theorem [1][2]: Let A be an overparametrized and randomly
initialized two-layer MLP trained with gradient descent for a
sufficient number of iterations. Suppose g : R — R™ with

- i), o (%) i

components g(z)*) = D i ozg- )(5J(- )T:c)pa , where ﬁj(.) c RY,

al®) € R, and p§-i) =1 or pgi) = 20,1 € Ny. The sample complexity
Calg,¢€,0) is

L (@)
max; Y2, o |a I8Pl + log(%)
(e/m)?

Calg,€,0) =0

[1] S.S. Du S. Arora, W. Hu, Z. Li, and R. Wang. Fine-grained Analysis of optimization
and generalization for overparametrized two-layer neural networks. ICML, 2019.

[2] K. Xu, J. Li, M. Zhang, S.S. Du, K.-I. K., and S. Jegelka. What can Neural
Networks Reason About. ICLR, 2020.



Assumption: decomposition of reasoning

The unknown reasoning function

*

y* = g(q,v)
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Assumption: decomposition of reasoning

The unknown reasoning function

*

y* = g(q,v)

is a mixture model, which decomposes:
Yy = Zﬂ'r(q)g (v)
T

where each reasoning mode is a multi-variate polynomial:

: i i (4)
R = gr(v) = 3 S (Bry )

J

with parameters w = { 7A],Bm,p,,aj}



Assumption: mode selector



Assumption: mode selector

Assumption The input question embeddings q are separated into
clusters according to reasoning modes r, such that the underlying

reasoning mode estimator g, can be realized as a NN classifier with
dot-product similarity in this embedding space.



Assumption: mode selector

Assumption The input question embeddings q are separated into
clusters according to reasoning modes r, such that the underlying
reasoning mode estimator g, can be realized as a NN classifier with
dot-product similarity in this embedding space.

— the reasoning mode estimator can be expressed as a generalized
linear model:

r=g:(q)=0c([wa 71 a-]) (1)



The full reasoning function

x(1) __ Z Z z)Tm)pgg.



The full reasoning function

V=330 B

Theorem: Let A be an overparametrlzed and randomly initialized
two-layer MLP trained with gradient descent for a sufficient number of
iterations. Suppose g : R — R™ with components

9()) = 3, 3, (v Fw)all) (8) 2)P"s where , € RY, 87) € RY.
( ) € R, and p( ) =1or p( ) = 2[,1 € N,.. The sample complexity
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max; r TP,
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(Proof in the paper)



Complexity with program supervision

Assumption: through supervising reasoning programs, learning is
separated into several different processes,

1. learning of the reasoning mode estimator g, ();

2. learning of the the different reasoning modules learned

independently.
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Complexity with program supervision

Assumption: through supervising reasoning programs, learning is
separated into several different processes,

1. learning of the reasoning mode estimator ¢,(); @O0

2. learning of the the different reasoning modules learned

independently.
o© C%) o-@



Difference in complexity

Under very conservative assumptions, the gain in complexity is

(3 +3)
VAT 2)

/N

(Proof in the paper)



Impact of program supervision

Oracle|Prog. GQA-OOD GQA AUCT
Model : - " %

transf.| sup. |acc-tail acc-head|test-dev binary* open™ test-std| prog.
< (a) Baseline 42.9 49.5 52.4 : - E /
w (b) Oracle transfer| v 48.240.3 54.6+1.1 |57.0+0.3 745 421 57.3 /
% (c) Ours v v |48.840.1 56.1+0.3(57.8+0.2 75.4 43.0 58.2 | 97.1
£ (d) Baseline 47.5 55.2 58.5 - - - /
£ (e) Oracle transfer| 47.1 54.8 58.4 77.1 426 58.8 /
N (f) Ours v v’ |48.0+0.6 56.6+0.6|59.3+0.3 77.3 44.1 59.7 | 96.4

BERT /LXMERT pre-training on GQA unbalanced training.
Scores on GQA (test-dev and test-std) and GQA-OOD (test). * binary and open scores
are computed on the test-std.

T we evaluate visual argument prediction by computing AUC0.66 on GQA-val.



Impact of types of supervision

GQA-OOD | GQA

Ablations acc-tail (val.) | val.
(1) VQA only 46.9 62.2
(2) Coarse only 46.5 62.5
(3) Coarse + dep. 46.8 62.8
(4) Full w/o v.arg 47.3 63.7 ——
(5) Full (ours) 49.9 66.2 ——

Compact model, no LXMERT /BERT pre-training, no Oracle
GQA validation set

v.arg = supervision of visual arguments



Empirical estimation of sample complexity

(@p)
@)
\

GQA val accuracy (%)
Ot
()
\

M~
)
\

—e— prog. sup.
—m— baseline
| | | | |

\
0 20 40 60 80 100
Portion of training data (%)




Comparison with SOTA

M Visual | Additional |Training data (M) GQA-OOD GQA
ethod . : :

feats. |supervision |[Img  Sent acc-tail acc-head| bin. open all
BAN4 RCNN |- ~ 0.1 =1 47.2 51.9 |76.0 40.4 57.1
MCAN RCNN |- ~ 0.1 =1 46.5 53.4 |75.9 42.2 58.0
Oracle transfer| RCNN |- ~0.18 ~1 48.3 55.5 |75.2 441 58.7
MMN RCNN | Program ~0.1 =15 48.0 55,5 |78.9 449 60.8
LXMERT RCNN |- ~0.18 =9 49.8 57.7 |77.8 45.0 60.3
Ours VinVL |Program ~0.1 =15 49.1 59.7 |80.1 48.0 63.0
NSM SG |Scene graph|~0.1 =~ - - 78.9 49.3 63.2
OSCAR+vinvL |VinVL |- ~b.7 = - - 82.3 48.8 64.7




Conclusion

We exploit the fact that Oracle models are less prone
to shortcut learning.

We train an Oracle model and transfer to a
deployable model.

We supervise program prediction during the transter
to maintain a strong link to the objective.

We theorectially show that program supervision
decreases sample complexity under some
assumptions.
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