Al and Data Analysis

2.1 Frameworks and tensors

Christian Wolf

We manipulate tensors

Scalar VB Ctor Matrix

o

Imensional tensors

High d

lmages as tensors

A color image has 3 color channels (red, green, blue) and is
therefore a 3D tensor.

(Multiple) 1D signals

« 1500 volunteers, 1500 Nexus 5 smartphones

« Several months of natural daily usage, 27.6 TB of data

« Multiple sensors: camera, touchscreen, GPS, bluetooth, wifi, cell antenna,
Inertial, magnetometer

lTensors: examples

Example of a tensor of dim 2 (input data, 1D signal)
— Batch dimension (multipe samples)
— Signal dimension

Example of a tensor of dim 2 (output data, classification)

— Batch dimension (multipe samples)
— Prediction for different classes

Example of a tensor of dim 3 (layer activation, 1D signal)
— Batch dimension (multipe samples)
— Signal dimension
— Feature dimension

Example of a tensor of dim 4 (layer activation, 2D image)
— Batch dimension (multipe samples)
— Spatial X dimension
— Spatial Y dimension
— Feature dimension

Example of a tensor of dim 5 (input data, 2D+t video)
— Batch dimension (multipe samples)
— Spatial X dimension
— Spatial Y dimension
— Color channel dimension
— Time dimension

Functional mappings

Output
fo) |
x > Y > L

I— input Loss

L(y,y")

*

Y

I— Groundtruth

How do we code all this?

Inputs, outputs, layer activations, weights are tensors of
different dimensions.

-

ﬁ Output / prediction y
f(m!,m [

T > 1Y > L

I— input I— Loss / objective
) L(y,y")

Y

I— Ground truth

Autograd!

The basic operation is differentiation:
How can we derive ... computer science code???
Deep Learning is "differentiable programming"

Output / prediction
feoy |
x > 1Y > L

L input L Loss / objective
) L(y,y")

Y

L Ground truth

Before 2013

«
2002 >
-

2010 theano

2013 Cafte

2015

Deep Learning Frameworks

The wild west. Models are handcoded in Matlab, C++ by
a small minority of people doing deep learning.

Initial release of Torch by IDIAP Research Institute, later Facebook
Al Research. Interfaces: Lua, C++. It uses Autograd (automatic
dynamic differentiation) [Replaced by PyTorch.

Theano introduced by Montreal Institute for Learning Algorithms
(MILA), University of Montreal. Autograd. [Discontinued

CAFFE introduced by University of California, Berkeley.
Interfaces: C++ and shell+text files.

Tensorflow introduced by Google, with immediate success.
Interaces: Python, C++ (less supported). Uses a static
calculation graph, not Autograd.

MXNet (Appache with researchers from CMU, NYU, NUS,
MIT)

2015

2016

2016

2017

2018

2019

K
b

.F

.F

4

Deep Learning Frameworks

Keras is a meta-language developed by Google Engineer
Francois Chollet, simplifying coding, initially developed to
run on top of Theano. Now also runs on Tensorflow, CNTK.
Part of Tensorflow now.

PyTorch introduced by Facebook, with immediate success.
Interaces: Python, C++ (less supported). Uses a static
calculation graph, not Autograd.

CNTK by Microsoft

Tensorflow introduces eager mode, a dynamic graph
calculation mode based on Autograd to respond to the
success of PyTorch & Co.

Jax'is introduced by Google and directly works with numpy
tensors.

Tensorflow makes the eager mode the default mode in
version 2.0.

Main frameworks

+

Tensorflow Jax PyTorch

Google Google

« Support execution and training on CPUs, GPUs, TPUs (google’s machine
learning hardware)

« Alluse python.

» Tensorflow also supports C++, Swift.

Py Torch
Tensor cheat sheet

Py Torch Live Install Party

PyTorch Build Stable (2.9.1) Preview (Nightly)

Your OS Linux Mac Windows
Language Python C++/Java

Compute Platform SEBAT2E SHEAES SEBAe-6 PoCm-5-4 Default
Run this Command: pip3 install torch torchvision

https://pytorch.org/get-started/locally/

Installing Py Torch

Create a virtual enwvironment where we are "safe”. Use Python 3.7.

L cd

: yirtualeny --system-site-packages ailecture

Activate the environment:

sourca Jailectura/binfactivate

Mow all installs well be done in the virtual env.
Install PyTorch itself and the wision package

. pipd install torch torchvision
: pip3 imnstall scikit-image

© 00 ~N o a0 b~ wWw N

L e T T o SO = S S o S = S S S
© 0O ~N o 61 A W N = O

Creating tensors

loading PyTorch
import torch

create with given shape
torch.full ((shape), value)
torch.full_like (other_tensor ,value)

create with given values
torch.tensor ((values))
torch.tensor ((values), dtype=torch.int16)

create from numpy array
torch.from_numpy (numpyArray)

Create zeros or ones
torch.zeros ((shape))
torch.zeros_like(other_tensor)
torch.ones ((shape))
torch.ones_like (other_tensor)

S a1 A W N =

Creating tensors, tensor |/0O

Random tensors
torch.randn (3, 4)

Tensor I/0
A = torch.load ("A.tensor")
torch.save (A, "A.tensor")

© 00 ~N O aa A W NN o=

[S T e O
g b W N = O

Tensor slicing

Slicing is similar to python (NumPy) Slicing or Matlab notation.

Example for a 2D tensor:

A[1,5]
A[:,5]
Al1,:]

Al1:6,]
Al:,0:-1]

A[4:17,3]

A[B==3]=4

Al1l:

B

b

:]

+H=*

+*

=

access an element (row, col)
column access
row access

range access (1:6 = 1,2,3,4,5)
Negative index count backwards

-1 = last col/row

provides a tensor of logical
results

replace a slice

Set values in A to 4 at pos
where there is a 3 in B

© 00 ~N O G A W N =

D T e e T e SO = N S S S S =
0o N oo o AW N = O

Manipulating tensors

concatenate tensors
torch.cat ((tensors), axis)

split tensors into chunks of equal size
torch.split (tensor, splitSize, dim=0)

reshape tensor w/o changing the data
torch.view(tensor, shape)

Repeat along a given dimension
X.repeat (4,2)

transpose tensor
torch.t(tensor) # 1D and 2D tensors
torch.transpose(tensor, dimO, diml)

Sorting
torch.sort (input, dim=-1)

© 00 ~N o aa b~ w NN

= =
= O

Tensor math

Overloaded operators

x = A+Y*xZ-B # * 1s elementwise mul
Sum, product, min, max of all elements
torch.sum(tensor) torch.min(tensor)
torch.prod(tensor) torch.max(tensor)

Linear algebra

torch.mm(A, B) # Matrix multiplication
torch.inverse(tensor) # Matrix inversion

torch.det (tensor) # Determinant

© 00 ~N O aa A W N o=

Elementwise operations

torch.
torch.
torch.
.tan(tensor)

torch

torch.
torch.
torch.

torch

exp (tensor)
cos (tensor)
sin(tensor)

add (tensor ,
div(tensor,

torch.
torch.
torch.
.tanh (tensor)

torch

tensor?2)
tensor?2)
mult (tensor ,tensor?2)

.sub(tensor, tensor2)

log(tensor)
cosh(tensor)

sinh(tensor)

or
or
or
or

tensor+scalar
tensor/scalar
tensor*xscalar
tensor -scalar

Broadcasting

If a PyTorch operation supports broadcast, then its Tensor
arguments can be automatically expanded to be of equal sizes
(without making copies of the data).

x=torch.empty(5,1,4,1)
y=torch.empty(3,1,1)
(x+y) .size ()

torch.Size ([5, 3, 4, 1])

x=torch.empty(5,2,4,1)
y=torch.empty(3,1,1)
(x+y) .size ()

RuntimeError: The size of tensor a (2) must match the size
of tensor b (3) at non—singleton dimension 1

https://pytorch.org/docs/stable/notes/broadcasting.html

Broadcasting: rules

Two tensors are “broadcastable” if the following rules hold:
— Each tensor has at least one dimension.

— When iterating over the dimension sizes, starting at the
trailing dimension, the dimension sizes must either be equal,
one of them is 1, or one of them does not exist.

If two tensors x,y are “broadcastable”, the resulting tensor size is
calculated as follows:

— If the number of dimensions of and ¥y are not equal, prepend
1 to the dimensions of the tensor with fewer dimensions to

make them equal length.
— Then, for each dimension size, the resulting dimension size is
the max of the sizes of x and y along that dimension.

https://pytorch.org/docs/stable/notes/broadcasting.html

© 0O ~N o a0 b w N R

e = =
w N = O

Images as tensors

pip install scikit-image

import torch
from skimage import io

image = io.imread("blue_tigrou. jpg")
io.imsave("tigre_saved. jpg", image)

G=imagel[:,:,0]
G=image [:,:,1]
B=image [:,:,2]
io.imsave("tigre_r.jpg", R)
io.imsave("tigre_g.jpg", G)
io.imsave("tigre_b.jpg", B)

~N OO aa b~ o wo N =

Tensors from .csv files

from numpy import genfromtxt

Import the text file into a numpy array
n = genfromtxt(’file.csv’, delimiter=’;’)

Convert to torch tensor
D = torch.tensor(n, dtype=torch.float32)

	Slide 1
	Slide 2: We manipulate tensors
	Slide 3: High dimensional tensors
	Slide 4: Images as tensors
	Slide 5: (Multiple) 1D signals
	Slide 6: Tensors: examples
	Slide 7: Functional mappings
	Slide 8: How do we code all this?
	Slide 9: Autograd!
	Slide 10: Deep Learning Frameworks
	Slide 11: Deep Learning Frameworks
	Slide 12: Main frameworks
	Slide 13: PyTorch Tensor cheat sheet
	Slide 14: PyTorch Live Install Party
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

