Al and Data Analysis

2.2 (Generalized) Linear models

Christian Wolf

—xample: Sand corn vs. Slope

Variable 1 : median diameter (mm) of granules of sand
Variable 2 : gradient of beach slope in degrees

_ 12’00

0,17 0,63 1000

0,19 0,70

0,22 0,82 -

0,23 0,88 o0

0,23 1,15 »

0,30 1,50

0,35 4,40 -

0,42 7,30 o o o om om0 om om om os
0,85 11,30

https://college.cengage.com/mathematics/brase/understandable statistics/7e/s Sand_slope.csv

tudents/datasets/sIr/frames/frame.html
[Physical geography by A.M King, Oxford Press, England]

Can be downloaded on
the lecture website!

https://college.cengage.com/mathematics/brase/understandable_statistics/7e/students/datasets/slr/frames/frame.html
https://college.cengage.com/mathematics/brase/understandable_statistics/7e/students/datasets/slr/frames/frame.html

Data loading and conversion

import numpy as np
from numpy import genfromtxt
import torch

Import the text file into a numpy array
n = genfromtxt{ 'sand_slope.cev', delimiter=";"',
skip_header=1}

¥ Comvert to torch temsar
O = torch.tensor(n, dtype~torch.floatd2)

Separate into two different wvectors

> X = 0O[:,0)]. . view{=1,1)

Y = O[:,1].viewd{-1,1]

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18

Data loading and conversion

print (X,Y)

tensor ([[0.1700],
[0.1900],
[0.2200],
[0.2350],
[0.2350],
[0.3000],
[0.3500],
[0.4200],
[0.8500]])
tensor ([[0.6300],
0.7000],
0.8200],
0.8800] ,
1.1500],
1.5000],
4.4000] ,
7.3000],
1.3000]])

r— [r— r— — [— [— — [—

-

The perfect regression?

We suppose the following relationship for a single data pair (x, y):
y = Tw,

with w a correlation coefficient.

For the full data:
Y = XHW

If we the number of data points matches the problem, we can solve
the linear problem perfectly with

W=Xx"1ly

What happens if we have many more points (typical case?)

Solving the least squares problem

We want to solve the regression problem

min || XW —Y|s
%4

Solving the least squares problem

We want to solve the regression problem

min || XW —Y||2
%4

A solution with the Moore-Penrose can be given as:

X—|— — (XTX)—IXT

The regression coefficients are given by W = XY
In PyTorch:

PI

W

= torch.mm(torch.inverse(torch.mm(torch.transpose (X
,0,1) ,X)), torch.transpose(X,0,1))
torch.mm(PI,Y)

0 N O o B~ W N

N R = HE R R R R
O O©W 00 N O G W N B O ©

Precision of the solution (L; Norm)

print (torch.mm(X,W),

1))

Y,

torch.dist (torch.mm(X,W),

Y,

tensor ([[11.6522]])

tensor ([[1.9809],
[2.2139],
[2.5635],
[2.7383],
[2.7383],
[3.4956],
[4.0783],
[4.89309],
[9.9043]])

tensor ([]

[r— — — p— f— [— [—

[11.

6300],

0.
0.7000],
0.8200],
0.
1
1
4
7

8800] ,

.1500],
.5000],
.4000],
.3000],

3000]])

tensor (14.1739)

Improvement: handle bias

The solution is bad! What happened? We forget the bias term. A
single data point is regressed as 4 = £ = W without constant bias.

Solution: Add bias term y = T = w + &

This can be achieved by adding a constant row of "1 to the

matrix X-
X.=]X 1|

. Xc = torch.cat{(f(X, torch.ones{{(l.size(C) 1))}, 1)

1 # Same code as beforae:

i PIc = torch.mm{torch. inverse(torch.mm(torch. transposa
Ic, 0,1}, Xc)), torch.traospose(lc 0,1})

Wc = torch.am(Plc , ¥Y)

Precision of the solution (L; Norm)

[
1 print (torch.mm(Xc,Wc), Y, torch.dist(torch.mm(Xc,Wc),
Y, 1))

tensor ([[17.1594],

[—2.4759]])
tensor ([[0.4412],
.7844],
.2991],
.5565] ,
.5565] ,
.6719],
.5299] |
.7310],
.1095]])
.6300] ,
.7000],
.8200] ,
.8800],
.1500],
.5000],
.4000],
19 .3000],
20 .3000]])
21 tensor (7.2559)

1
2
3
4
5
6
7
8

9
10
11
12 tensor (|
13
14
15
16
17
18

=
I—l\].hl—ll—lOOOOI\J-POOl\)I—‘l—‘l—‘OO

=t

~N o g O~ W N R

w N =

Inhouse solution

PyTorch has a solution ready-to go:

G,_ =
The
print

G,_ =
The
print

torch.gels (Y,X)
solution is in the first row
("By gesls(): W=",G[0])

torch.gels (Y,Xc)
solution is in the first two rows
("By gesls(): W=",G[0:2])

By gesls(): W= tensor ([11.6522])
By gesls(): W= tensor ([[17.1594],

[—2.4759]])

Linear classification (2 classes)

A decision function ist modeled through a linear relationship

y(x) = wx + wp

Wy is the bias term which can be integrated by adding « 1 » to the input vector:

y(x) = W' X.
Interpretation :

I
y(x) > 0 — Classe 1

y(x) < 0 — Classe 2

y1(r)

The constant « 1 » adds a
« biais » to the model

L15 b N

Linear classification (K classes)

Multiple parametric functions

Y (%) = Wi + wig

In vectorial notation with integrated bias:

y(x) = WTx

Interpretation :

Class kif wyk(z) >yi(z) Vj#k

« The winner takes it all »

Visualization of a simple problem

Linear classifier: 1D input, 3 classes

Input : Parameters :
c = (5] =-l]
D<§|

Output of one class:

Y = ng'

Output of all classes:

y=Wcx

Visualization of a simple problem

T

/

r'y r'y L @'\ < <

]

@ &« A Training data
Real decision boundaries

Estimated decision boundaries

Decision functions

Decision functions of linear classifiers are linear, i.e. d-dimensional hyper-
planes in input space.

The non-linear case

Pre-processing : Non-linear transformation of the data,
according to the application

1
,,4.?.'5‘-.’;\
o ® o °
¢2 o. o
0.5 %
]
%
o o9
"
] o
O-
; TR

(Gaussian basis functions

[C. Bishop, Pattern recognition and Machine learning, 2006]

(Generalized) linear models

How do we train a linear model for classification?
What is the loss function?

(A simple L, or L, norm is not optimal / justified on categorical
data like class labels)

How do we train it?

Logistic regression (2 classes)

A linear model (eventually on transformed input) + a non-linearity at the
output

p(Cilg) = y(¢) = o (W')
-

Direct model of the posterior
probability

O s the logistic function (« sigmoid ») ensuring that the output is between
0 and 1: 1

o) = 1 ﬁ
) T T exp(—n) J

y1(9)

P16

Logistic regression (K classes)

The extension is similar to the linear case

_ _ exp(ay) « Softmax » to ensure that the
p(Ck' ’¢) — yk)(qb) — Z ' eXp(CLj) OUtpUt sums to 1
J

ap = w; . Linearities

Logistic regression: motivation

Allows a probabilistic view of classification and training.

The objective (loss) is convex: the global minimum can be
attained.

The decision functions are still linear
(« Generalized linear model »).

Logistic regression: training

Training dataset:
Inputs % transformed by basis functions é(zx)

Categorical outputs «t,, « targets »), 1-a-K encoded (« hot-one-

encoded »):
0

by, = 1 Real (ground-truth) class of sample n

Objective : learn parameters w.ccording to a criterion

Training

To estimate the parameters wve minimise the following error
function (the negative log likelihood of the data):

N K
E(wy,...,wg)=—Inp(T|wy,...,w ZZ nk N Ynk
n=1 k=1

« Cross-entropy loss »
It can be minimized by gradient descent:

N
ijE Wi, . ynj ng

n=1

[C. Bishop, Pattern recognition and Machine learning, 2006]

Learning by gradient descent

lterative minimisation through gradient descent:

glt+1] _ plt] +[;(h(3:, 0),y")

Learning rate

Can be blocked in a local
minimum (not that it matters
much ...)

| g
W7 WpB we
\

w2 VE

[Figure: C. Bishop, 2006]

Linear separation fails on XOR

DATA

Which dataset
do you want to
use?

Ratio of training
to test

data: 50%
—

Moise: 0

[—

Batch size: 10
—

REGENERATE

FEATURES

Which
properties do
you want to
feed in?

X, [I.
4=

sin{X,)

sin(X;)

+

0 HIDDEN LAYERS

OuUTPUT

Test loss 0.516
Training loss 0.496

Colors shows
data, neuron and !
weight values. ! o !

Show test data Discretize output

https://playground.tensorflow.org

Unless we calcuate features

DATA

Which dataset
do you want to
use?

Ratio of training
to test

data: 50%
—e

MNoise: 0

[———

Batch size: 10
—

REGENERATE

FEATURES + — 0 HIDDEN LAYERS OUTPUT
Which Test loss 0.007
properties do Training loss 0.001
you want to
feed in?

X,

%5

[
3

¥,
M2
}L}{z %——-
sin(x,)
Colors shows
" data, neuron and 1'] ;
sin(X;) .

weight values.

Show test data Discretize output

https://playground.tensorflow.org

Example: Wisconsin breast-cancer

Id Cl.thickness Cell.size Cell.shape Marg.adhesion Epith.c.size Bare.nuclei Bl.cromatin Normal.nucleoli Mitoses Class
1000025 5 1 1 1 2 1 3 1 1 benign
1002945 5 4 4 5 7 10 3 2 1 benign
1015425 3 1 1 1 2 2 3 1 1 benign
1016277 6 8 8 1 3 4 3 7 1 benign
1017023 4 1 1 3 2 1 3 1 1 benign
1017122 8 10 10 8 7 10 9 7 1 malignant
1018099 1 1 1 1 2 10 3 1 1 benign
1018561 2 1 2 1 2 1 3 1 1 benign
1033078 2 1 1 1 2 1 1 1 5 benign
1033078 4 2 1 1 2 1 2 1 1 benign
1035283 1 1 1 1 1 1 3 1 1 benign
1036172 2 1 1 1 2 1 2 1 1 benign
1041801 5 3 3 3 2 3 4 4 1 malignant

https://www.machinelearningplus.com/machine-learning/logistic-regression-tutorial-examples-r/

https://www.machinelearningplus.com/machine-learning/logistic-regression-tutorial-examples-r/
https://www.machinelearningplus.com/machine-learning/logistic-regression-tutorial-examples-r/
https://www.machinelearningplus.com/machine-learning/logistic-regression-tutorial-examples-r/
https://www.machinelearningplus.com/machine-learning/logistic-regression-tutorial-examples-r/
https://www.machinelearningplus.com/machine-learning/logistic-regression-tutorial-examples-r/
https://www.machinelearningplus.com/machine-learning/logistic-regression-tutorial-examples-r/
https://www.machinelearningplus.com/machine-learning/logistic-regression-tutorial-examples-r/
https://www.machinelearningplus.com/machine-learning/logistic-regression-tutorial-examples-r/
https://www.machinelearningplus.com/machine-learning/logistic-regression-tutorial-examples-r/
https://www.machinelearningplus.com/machine-learning/logistic-regression-tutorial-examples-r/
https://www.machinelearningplus.com/machine-learning/logistic-regression-tutorial-examples-r/

~N o aa b~ W N -

10
11
12
13
14
15
16
17
18
19

Data loading and conversion

import numpy as np

from numpy import genfromtxt

import torch

from torch.nn import functional as F

Import the text file into a numpy array

n = genfromtxt(’breast-cancer-wisconsin-cleaned.csv’,
delimiter=’,"’)

D = torch.tensor(n, dtype=torch.float32)

N_samples = D.size (0)

The input 1s the full matrix without first and
last column, plus the 1 column for the bias
X=D[:,1:-1]

X = torch.cat ((X, torch.ones((X.size(0),1))) ,1)

The targets. Change all 2->0 and 4->1
T=D[:,-1:]
T[T==2]1=0
T[T==4]=1

© 00 ~N o a0 b W N R

[Nt
N = O

The model

class LogisticRegression(torch.nn.Module):

def

__init__(self):
super (LogisticRegression, self).__init__ ()

The linear layer (input dim, output dim)
It also contains a weight matrix

(here single output-> vector)

self .fcl = torch.nn.Linear (10, 1)

The forward pass of the network. x is the input

def

forward (self, x):
return F.sigmoid(self.fcl1(x))

© 00 ~N o a0 b W N o=

Set up the environment

Instantiate the model
model = LogisticRegression ()

The loss function: binary cross-entropy
criterion = torch.nn.BCELoss ()

Set up the optimizer: stochastic gradient descent

with a learning rate of 0.01
optimizer = torch.optim.SGD(model.parameters (),
=0.01)

1r

© 0 ~N o G b W N

N N B R R R R =) =)
R O O 0O ~N o o o W N +=H O

lterative training

1 epoch = 1 pass over the full dataset

for epoch in range (200):
print ("Starting epoch", epoch, " ",end=’’)
calcAccuracy ()

for sample in range(N_samples):
model -> train mode, clear gradients
model .train ()
optimizer.zero_grad ()

Forward pass (stimulate model with inputs)

y = model (X[sample,:])

Compute Loss
loss = criterion(y, T[samplel])

Backward pass: calculate the gradients
loss.backward ()

One step of stochastic gradient descent

optimizer.step ()

© 00 N o g A~ W N o=

= = =
N = O

Evaluation

Calculate the accuracy (in percent) at each epoch:
Proportion of correctly classified samples.
Random performance = 50% on a binary task.

def calcAccuracy():

model -> eval mode
model.eval ()

correct = 0.0

for sample in range(N_samples):

threshold the output probability
y = 1 if model (X[sample,:]) > 0.5 else O
correct += (y == T[sample]) .numpy ()

print ("Accuracy = ", 100.0*correct/N_samples)

© 00 N O 6 & WO N =

e e e e e
g A WO N = O

Results

Starting epoch 0 Accuracy = [34.69985359]
Starting epoch 1 Accuracy = [91.21522694]
Starting epoch 2 Accuracy = [93.99707174]
Starting epoch 3 Accuracy = [95.16837482]
Starting epoch 4 Accuracy = [95.75402635]
Starting epoch 5 Accuracy = [95.60761347]
Starting epoch 6 Accuracy = [95.75402635]
Starting epoch 7 Accuracy = [95.75402635]
Starting epoch 8 Accuracy = [96.33967789]
Starting epoch 9 Accuracy = [96.48609078]
Starting epoch 10 Accuracy = [96.63250366]
Starting epoch 11 Accuracy = [96.63250366]
Starting epoch 12 Accuracy = [96.63250366]
Starting epoch 13 Accuracy = [96.63250366]
Starting epoch 14 Accuracy = [96.63250366]

(...)

Starting epoch 197 Accuracy [97.07174231]
Starting epoch 198 Accuracy = [97.07174231]
Starting epoch 199 Accuracy = [97.07174231]

What is missing?

— The model is simpler than deep neural networks, but sufficient
for the task.

— We did not use batch processing, i.e. using more than one
sample for a given gradient update

— We calculated performance on the training set. We might
overfit.

	Slide 1
	Slide 2: Example: Sand corn vs. Slope
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Linear classification (2 classes)
	Slide 13: Linear classification (K classes)
	Slide 14: Visualization of a simple problem
	Slide 15: Visualization of a simple problem
	Slide 16: Decision functions
	Slide 17: The non-linear case
	Slide 18: (Generalized) linear models
	Slide 19: Logistic regression (2 classes)
	Slide 20: Logistic regression (K classes)
	Slide 21: Logistic regression: motivation
	Slide 22: Logistic regression: training
	Slide 23: Training
	Slide 24: Learning by gradient descent
	Slide 25: Linear separation fails on XOR
	Slide 26: Unless we calcuate features
	Slide 27: Example: Wisconsin breast-cancer
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

