Al and Data Analysis

2.2 (Generalized) Linear models

Christian Wolf



—xample: Sand corn vs. Slope

Variable 1 : median diameter (mm) of granules of sand
Variable 2 : gradient of beach slope in degrees
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https://college.cengage.com/mathematics/brase/understandable statistics/7e/s Sand_slope.csv

tudents/datasets/sIr/frames/frame.html
[Physical geography by A.M King, Oxford Press, England]

Can be downloaded on
the lecture website!



https://college.cengage.com/mathematics/brase/understandable_statistics/7e/students/datasets/slr/frames/frame.html
https://college.cengage.com/mathematics/brase/understandable_statistics/7e/students/datasets/slr/frames/frame.html

Data loading and conversion

import numpy as np
from numpy import genfromtxt
import torch

# Import the text file into a numpy array
n = genfromtxt{ 'sand_slope.cev', delimiter=";"',
skip_header=1}

¥ Comvert to torch temsar
O = torch.tensor(n, dtype~torch.floatd2)

# Separate into two different wvectors

> X = 0O[:,0)]. . view{=1,1)

Y = O[:,1].viewd{-1,1]
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Data loading and conversion

print (X,Y)

tensor ([[0.1700],
[0.1900],
[0.2200],
[0.2350],
[0.2350],
[0.3000],
[0.3500],
[0.4200],
[0.8500]])
tensor ([[ 0.6300],
0.7000],
0.8200],
0.8800] ,
1.1500],
1.5000],
4.4000] ,
7.3000],
1.3000]])
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The perfect regression?

We suppose the following relationship for a single data pair (x, y):
y = Tw,

with w a correlation coefficient.

For the full data:
Y = XHW

If we the number of data points matches the problem, we can solve
the linear problem perfectly with

W=Xx"1ly

What happens if we have many more points (typical case?)



Solving the least squares problem

We want to solve the regression problem

min || XW —Y|s
%4



Solving the least squares problem

We want to solve the regression problem

min || XW —Y||2
%4

A solution with the Moore-Penrose can be given as:

X—|— — (XTX)—IXT

The regression coefficients are given by W = XY
In PyTorch:

PI

W

= torch.mm(torch.inverse(torch.mm(torch.transpose (X
,0,1) ,X)), torch.transpose(X,0,1))
torch.mm(PI,Y)
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Precision of the solution (L; Norm)

print (torch.mm(X,W),

1))

Y,

torch.dist (torch.mm(X,W),

Y,

tensor ([[11.6522]])

tensor ([[1.9809],
[2.2139],
[2.5635],
[2.7383],
[2.7383],
[3.4956],
[4.0783],
[4.89309],
[9.9043]])

tensor ([]
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8800] ,

.1500],
.5000],
.4000],
.3000],

3000]])

tensor (14.1739)




Improvement: handle bias

The solution is bad! What happened? We forget the bias term. A
single data point is regressed as 4 = £ = W without constant bias.

Solution: Add bias term y = T = w + &

This can be achieved by adding a constant row of "1 to the

matrix X-
X.=]X 1|

. Xc = torch.cat{(f(X, torch.ones{{(l.size(C) 1))}, 1)

1 # Same code as beforae:

i PIc = torch.mm{torch. inverse(torch.mm(torch. transposa
Ic, 0,1}, Xc)), torch.traospose(lc 0,1})

Wc = torch.am(Plc , ¥Y)



Precision of the solution (L; Norm)

[
1 print (torch.mm(Xc,Wc), Y, torch.dist(torch.mm(Xc,Wc),
Y, 1))

tensor ([[17.1594],

[ —2.4759]])
tensor ([[ 0.4412],
.7844],
.2991],
.5565] ,
.5565] ,
.6719],
.5299] |
.7310],
.1095]])
.6300] ,
.7000],
.8200] ,
.8800],
.1500],
.5000],
.4000],
19 .3000],
20 .3000]])
21 tensor (7.2559)
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Inhouse solution

PyTorch has a solution ready-to go:

G,_ =
# The
print

G,_ =
# The
print

torch.gels (Y,X)
solution is in the first row
("By gesls(): W=",G[0])

torch.gels (Y,Xc)
solution is in the first two rows
("By gesls(): W=",G[0:2])

By gesls(): W= tensor ([11.6522])
By gesls(): W= tensor ([[17.1594],

[—2.4759]])




Linear classification (2 classes)

A decision function ist modeled through a linear relationship

y(x) = wx + wp

Wy is the bias term which can be integrated by adding « 1 » to the input vector:

y(x) = W' X.
Interpretation :

I
y(x) > 0 — Classe 1

y(x) < 0 — Classe 2

y1(r)

The constant « 1 » adds a
« biais » to the model

L15 b N




Linear classification (K classes)

Multiple parametric functions

Y (%) = Wi + wig

In vectorial notation with integrated bias:

y(x) = WTx

Interpretation :

Class kif wyk(z) >yi(z) Vj#k

« The winner takes it all »




Visualization of a simple problem

Linear classifier: 1D input, 3 classes

Input : Parameters :
c = (5] =-l]
D<§|

Output of one class:

Y = ng'

Output of all classes:

y=Wcx



Visualization of a simple problem
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Decision functions

Decision functions of linear classifiers are linear, i.e. d-dimensional hyper-
planes in input space.




The non-linear case

Pre-processing : Non-linear transformation of the data,
according to the application
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(Gaussian basis functions

[C. Bishop, Pattern recognition and Machine learning, 2006]



(Generalized) linear models

How do we train a linear model for classification?
What is the loss function?

(A simple L, or L, norm is not optimal / justified on categorical
data like class labels)

How do we train it?



Logistic regression (2 classes)

A linear model (eventually on transformed input) + a non-linearity at the
output

p(Cilg) = y(¢) = o (W' )
-

Direct model of the posterior
probability

O s the logistic function (« sigmoid ») ensuring that the output is between
0 and 1: 1

o) = 1 ﬁ
) T T exp(—n) J

y1(9)

P16



Logistic regression (K classes)

The extension is similar to the linear case

_ _ exp(ay) « Softmax » to ensure that the
p(Ck' ’¢) — yk)(qb) — Z ' eXp(CLj) OUtpUt sums to 1
J

ap = w; . Linearities




Logistic regression: motivation

Allows a probabilistic view of classification and training.

The objective (loss) is convex: the global minimum can be
attained.

The decision functions are still linear
(« Generalized linear model »).



Logistic regression: training

Training dataset:
Inputs % transformed by basis functions  é(zx)

Categorical outputs «t,, « targets »), 1-a-K encoded (« hot-one-

encoded »):
0

by, = 1 Real (ground-truth) class of sample n

Objective : learn parameters w.ccording to a criterion



Training

To estimate the parameters wve minimise the following error
function (the negative log likelihood of the data):

N K
E(wy,...,wg)=—Inp(T|wy,...,w ZZ nk N Ynk
n=1 k=1

« Cross-entropy loss »
It can be minimized by gradient descent:

N
ijE Wi, . ynj ng

n=1

[C. Bishop, Pattern recognition and Machine learning, 2006]



Learning by gradient descent

lterative minimisation through gradient descent:

glt+1] _ plt] +[;(h(3:, 0),y")

Learning rate

Can be blocked in a local
minimum (not that it matters
much ...)
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[Figure: C. Bishop, 2006]



Linear separation fails on XOR

DATA

Which dataset
do you want to
use?

Ratio of training
to test

data: 50%
—

Moise: 0

[ —

Batch size: 10
—

REGENERATE

FEATURES

Which
properties do
you want to
feed in?

X, [I.
4=

sin{X, )

sin(X;)

+

0 HIDDEN LAYERS

OuUTPUT

Test loss 0.516
Training loss 0.496

Colors shows
data, neuron and !
weight values. ! o !

Show test data Discretize output

https://playground.tensorflow.org



Unless we calcuate features

DATA

Which dataset
do you want to
use?

Ratio of training
to test

data: 50%
—e

MNoise: 0

[ ———

Batch size: 10
—

REGENERATE

FEATURES + — 0 HIDDEN LAYERS OUTPUT
Which Test loss 0.007
properties do Training loss 0.001
you want to
feed in?

X,

%5

[
3

¥,
M2
}L}{z %——-
sin(x,)
Colors shows
" data, neuron and 1'] ;
sin(X;) .

weight values.

Show test data Discretize output

https://playground.tensorflow.org



Example: Wisconsin breast-cancer

Id Cl.thickness Cell.size Cell.shape Marg.adhesion Epith.c.size Bare.nuclei Bl.cromatin Normal.nucleoli Mitoses Class
1000025 5 1 1 1 2 1 3 1 1 benign
1002945 5 4 4 5 7 10 3 2 1 benign
1015425 3 1 1 1 2 2 3 1 1 benign
1016277 6 8 8 1 3 4 3 7 1 benign
1017023 4 1 1 3 2 1 3 1 1 benign
1017122 8 10 10 8 7 10 9 7 1 malignant
1018099 1 1 1 1 2 10 3 1 1 benign
1018561 2 1 2 1 2 1 3 1 1 benign
1033078 2 1 1 1 2 1 1 1 5 benign
1033078 4 2 1 1 2 1 2 1 1 benign
1035283 1 1 1 1 1 1 3 1 1 benign
1036172 2 1 1 1 2 1 2 1 1 benign
1041801 5 3 3 3 2 3 4 4 1 malignant

https://www.machinelearningplus.com/machine-learning/logistic-regression-tutorial-examples-r/
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Data loading and conversion

import numpy as np

from numpy import genfromtxt

import torch

from torch.nn import functional as F

# Import the text file into a numpy array

n = genfromtxt(’breast-cancer-wisconsin-cleaned.csv’,
delimiter=’,"’)

D = torch.tensor(n, dtype=torch.float32)

N_samples = D.size (0)

# The input 1s the full matrix without first and
# last column, plus the 1 column for the bias
X=D[:,1:-1]

X = torch.cat ((X, torch.ones((X.size(0),1))) ,1)

# The targets. Change all 2->0 and 4->1
T=D[:,-1:]
T[T==2]1=0
T[T==4]=1
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The model

class LogisticRegression(torch.nn.Module):

def

__init__(self):
super (LogisticRegression, self).__init__ ()

# The linear layer (input dim, output dim)
# It also contains a weight matrix

# (here single output-> vector)

self .fcl = torch.nn.Linear (10, 1)

# The forward pass of the network. x is the input

def

forward (self, x):
return F.sigmoid(self.fcl1(x))
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Set up the environment

# Instantiate the model
model = LogisticRegression ()

# The loss function: binary cross-entropy
criterion = torch.nn.BCELoss ()

# Set up the optimizer: stochastic gradient descent

# with a learning rate of 0.01
optimizer = torch.optim.SGD(model.parameters (),
=0.01)

1r




© 0 ~N o G b W N

N N B R R R R =) =)
R O O 0O ~N o o o W N +=H O

lterative training

# 1 epoch = 1 pass over the full dataset

for epoch in range (200):
print ("Starting epoch", epoch, " ",end=’’)
calcAccuracy ()

for sample in range(N_samples):
# model -> train mode, clear gradients
model .train ()
optimizer.zero_grad ()

# Forward pass (stimulate model with inputs)

y = model (X[sample,:])

# Compute Loss
loss = criterion(y, T[samplel])

# Backward pass: calculate the gradients
loss.backward ()

# One step of stochastic gradient descent

optimizer.step ()
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Evaluation

Calculate the accuracy (in percent) at each epoch:
Proportion of correctly classified samples.
Random performance = 50% on a binary task.

def calcAccuracy():

# model -> eval mode
model.eval ()

correct = 0.0

for sample in range(N_samples):

# threshold the output probability
y = 1 if model (X[sample,:]) > 0.5 else O
correct += (y == T[sample]) .numpy ()

print ("Accuracy = ", 100.0*correct/N_samples)
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Results

Starting epoch 0 Accuracy = [34.69985359]
Starting epoch 1 Accuracy = [91.21522694]
Starting epoch 2 Accuracy = [93.99707174]
Starting epoch 3 Accuracy = [95.16837482]
Starting epoch 4 Accuracy = [95.75402635]
Starting epoch 5 Accuracy = [95.60761347]
Starting epoch 6 Accuracy = [95.75402635]
Starting epoch 7 Accuracy = [95.75402635]
Starting epoch 8 Accuracy = [96.33967789]
Starting epoch 9 Accuracy = [96.48609078]
Starting epoch 10 Accuracy = [96.63250366]
Starting epoch 11 Accuracy = [96.63250366]
Starting epoch 12 Accuracy = [96.63250366]
Starting epoch 13 Accuracy = [96.63250366]
Starting epoch 14 Accuracy = [96.63250366]

(...)

Starting epoch 197 Accuracy [97.07174231]
Starting epoch 198 Accuracy = [97.07174231]
Starting epoch 199 Accuracy = [97.07174231]



What is missing?

— The model is simpler than deep neural networks, but sufficient
for the task.

— We did not use batch processing, i.e. using more than one
sample for a given gradient update

— We calculated performance on the training set. We might
overfit.
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