Al and Data Analysis

2.1 Multi layer models

Christian Wolf

The problems of linear models

Lack of capacity, i.e. complexity of the decision to learn.
Example : XOR
Example : Visual Question Answering

Example: Visual Question
Answering

“What is the moustache
made of?”

Can the answer be predicted as a linear combination of input
pixels and question words ?

Reminder: linear models

D
y(x,w) = Z W;T;
—0
Z1
y1 ()

w®

Input Output
layer layer

Multi-layer Perceptron (MLP)

« Fully-connected » layers

2] 1
to) B S it)

Elementwise activation
functions

Input Hidden Output
layer layer layer

X1

Deep neural network

;é Y1 ()

n

wD) w2 w®

L inear activations

Consider a network with a single hidden layer and two activation
functions ¢ and o:

)= (Tl (i)
] 7

If the activation functions are linear, then we can rewrite the
equations in the following vectorial notation:

y = (eW®)(cwWz)
= WA (WW'g)

!/
= W x

Linear activation functions result in linear models!
— The activation functions between layers should be non-linear.

Common activation functions

Logistic function Hyperbolic tangent Rectified Linear Unit
Sigmoid tanh RelLU

Universal approximation

A feed-forward network with a single hidden layer containing
a finite number of neurons can approximate continuous
functions on compact subsets of R", under mild assumptions
on the activation function.

Single hidden layer require an exponential number of hidden
units (width).

Since 2017 we know that width bounded networks can
approximate any function (mild conditons) if depth can grow.

Lu, Z., Pu, H., Wang, F., Hu, Z., & Wang, L. The Expressive Power of Neural
Networks: A View from the Width, NeurlPS, 2017.

We can approximate any ¢ € €([a, b], R) with a linear combination of
translated /scaled ReLU functions.

Francois Fleuret EE-559 — Deep learning / 3.4. Multi-Layer Perceptrons 7/ 10

We can approximate any ¢ € €([a, b], R) with a linear combination of
translated/scaled ReLU functions.

f(x) = o(wix + by)

Francois Fleuret EE-559 — Deep learning / 3.4. Multi-Layer Perceptrons 7/ 10

We can approximate any ¢ € €([a, b], R) with a linear combination of
translated /scaled ReLU functions.

f(x) =o(wix+ b1) + o(wax + by)

Francois Fleuret EE-559 — Deep learning / 3.4. Multi-Layer Perceptrons 7/ 10

We can approximate any ¢ € €([a, b], R) with a linear combination of
translated /scaled ReLU functions.

f(x) =o(wix + b1) 4+ o(wax + b2) + o(wsx + b3)

N/ N

Francois Fleuret EE-559 — Deep learning / 3.4. Multi-Layer Perceptrons 7/ 10

We can approximate any ¢ € €([a, b], R) with a linear combination of
translated /scaled ReLU functions.

f(x) =o(wix+ b1) + o(wax + by) + o(wsx + b3) + ...

FavaN
T

Francois Fleuret EE-559 — Deep learning / 3.4. Multi-Layer Perceptrons 7/ 10

We can approximate any ¢ € €([a, b], R) with a linear combination of
translated /scaled ReLU functions.

f(x) =o(wix+ b1) + o(wax + by) + o(wsx + b3) + ...

JavAN
TR

Francois Fleuret EE-559 — Deep learning / 3.4. Multi-Layer Perceptrons 7/ 10

We can approximate any ¢ € €([a, b], R) with a linear combination of
translated /scaled ReLU functions.

f(x) =o(wix+ b1) + o(wax + by) + o(wsx + b3) + ...

N/ N

Francois Fleuret EE-559 — Deep learning / 3.4. Multi-Layer Perceptrons 7/ 10

We can approximate any ¢ € €([a, b], R) with a linear combination of
translated /scaled ReLU functions.

f(x) =o(wix+ b1) + o(wax + by) + o(wsx + b3) + ...

N/ N

Francois Fleuret EE-559 — Deep learning / 3.4. Multi-Layer Perceptrons 7/ 10

We can approximate any ¢ € €([a, b], R) with a linear combination of
translated /scaled ReLU functions.

f(x) =o(wix+ b1) + o(wax + by) + o(wsx + b3) + ...

N T

Francois Fleuret EE-559 — Deep learning / 3.4. Multi-Layer Perceptrons 7/ 10

We can approximate any ¢ € €([a, b], R) with a linear combination of
translated /scaled ReLU functions.

f(x) =o(wix+ b1) + o(wax + by) + o(wsx + b3) + ...

S
e

Francois Fleuret EE-559 — Deep learning / 3.4. Multi-Layer Perceptrons 7/ 10

We can approximate any ¢ € €([a, b], R) with a linear combination of
translated /scaled ReLU functions.

f(x) =o(wix+ b1) + o(wax + by) + o(wsx + b3) + ...

Francois Fleuret EE-559 — Deep learning / 3.4. Multi-Layer Perceptrons 7/ 10

We can approximate any ¢ € €([a, b], R) with a linear combination of
translated /scaled ReLU functions.

f(x) =o(wix+ b1) + o(wax + by) + o(wsx + b3) + ...

AV N

This is true for other activation functions

Francois Fleuret EE-559 — Deep learning / 3.4. Multi-Layer Perceptrons 7/ 10

| WAS WINNING
IMAGENET

Is adding layers enough?

oy
-
% iy
ks
-
’
A

#

UNTILA
DEEPER MODEL
CAME ALONG

Going deeper

2012 : AlexNet, 8 layers. New techniques: dropout, RelLU

30
3
3 BlamiEE
3| KT

192

=xample: the MNIST dataset

A dataset of handwritten digits introduced by Yann LeCun in 1999
with 60 000 training images and 10 000 test images.

One image is of size 28x28 pixels.

label =5 label = 0 label = 4

label =1
abe

= label

o
L3
I
Ko

)
o
N
I

w
o
I

B

label = 7 label = 2 label = 8 label = 6 label = 9

http://yann.lecun.com/exdb/mnist/

MNIST : MLP performance

linear classifier (1-layer NN) none 12.0||LeCun et al. 1998
linear classifier (1-layer NN) deskewing 84| LeCun et al. 1998
pairwise linear classifier deskewing 7.6||LeCun et al. 1998
:I—ll-ﬁier NN, 300 hidden units, mean square none 47/ LeCun et al. 1998
2-layer NN, 300 HU, MSE, [distortions] none 3.6|LeCun et al. 1998
2-layer NN, 300 HU deskewing 1.6|{LeCun et al. 1998
2-layer NN, 1000 hidden units none 4.5||LeCun et al. 1998
2-layer NN, 1000 HU, [distortions] none 3.8||LeCun et al. 1998
3-layer NN, 3004100 hidden units none 3.05||LeCun et al. 1998
3-layer NN, 3004100 HU [distortions] none 2.5|LeCun et al. 1998
3-layer NN, 500+150 hidden units none 2.95|LeCun et al. 1998
3-layer NN, 500+150 HU [distortions] none 2.45|LeCun et al. 1998

(Validation performance)

http://yann.lecun.com/exdb/mnist/

© 0O N O a0~ W NN

S S o S e S e S
o N & a1 A W NN B O

Writing Data Access

We subclass the Dataset class and implement the methods
__getitem__, __len__Q) (and __init__)!). This class will be
used by actual PyTorch Dataloader, DatalLoader.

import torch
from torch.utils.data import Dataset, DatalLoader
from torchvision import transforms

class MNISTDataset(Dataset):
def __init__(self, dir, transform=None):
Read in the files from the directory and

store them in self.images and self.labels
See MOODLE for the full code of this method

(...)
The access is _NOT_ shuffled. The PyTorch
Dataloader will need to do this.

def __getitem__(self, index):

return self.images[index], self.labels[index]
Return the dataset size
def __len__(self):

return self.no_images

Writing Data Access

The MNIST dataset is actually already supported by PyTorch,
which includes are ready to use Dataset class, which can even
download the data from Yann Lecun’s website.

1 dataset = datasets.MNIST(dir, train, download=True,
transform=transforms.ToTensor())

We use our own dataloader in this lecture to learn how to write
them.

~N O a0 A W

Writing Data Access

Let's recall training through gradient descent:
Ol = ol 4 LV L(R(x,), y*)

The gradient is rarely (never?) taken over the whole dataset, but
over a single sample, or batches (mini-batches) of a certain size.
These batches are sample randomly from the dataset.

The actual shuffling and batching is performed by a built-in
PyTorch Dataloader class, which uses an instance of our
Dataset subclass:

dataset = MNISTDataset ("MNIST—png/testing”,
transforms . Compose (|

transforms . ToTensor (),
transforms.Normalize ((0.1307,), (0.3081,))]))

loader = torch.utils.data.DatalLoader(dataset,
batch_size=50, shuffle=True)

We passed a set of image transforms to the Dataset class, which
applies them to each image.

Tensor dimension conventions

PyTorch functions operate on multi-dimensional tensors and follow
conventions on the order of dimensions.

— The first dimension is the batch dimension

» Use 1 if you don't use batches (= batches of size 1).
» Losses are reduced (sum or mean) over samples in a batch

— the second dimension is the channel dimension

» Use 1 if you don't use channels (= single channels).
» Channel arithmetics will be explained in detail in the section on
convolutions.

— the following dimensions are application dependant, e.g. rows,
columns in images.

© 00 ~N O a0 b~ w N o=

[N v T S = S S U =
o~ W N = O

The 2 layer model

The model is similar to our linear example. Differences:
— A hidden layer with 300 units and relu activation.

— A forward pass deals with a full batch.

class MLP(torch.nn.Module):
def __init__(self):
super (MLP, self).__init__()
input size to 300 units
self.fcl = torch.nn.Linear (28*28, 300)
300 units to 10 output classes

self .fc2 = torch.nn.Linear (300, 10)

def forward(self, x):
Reshape from a 3D tensor (batchsize,
to a flattened (batchsize, 28x%28)
1 sample = 1 vector
x = x.view(-1, 28%28)
x = F.relu(self.fcl1(x))
return self.fc2(x)

28,

28)

© 00 ~N o a0 b W N

[y
o

11
12
13
14
15

Setup model, loss, optimizer

This time we have more than 2 classes, we use the Cross-entropy
loss.

Instantiate the model
model = MLP ()

This criterion combines LogSoftMax and NLLLoss
in one single class.
crossentropy = torch.nn.CrossEntropyLoss ()

Set up the optimizer: stochastic gradient descent

with a learning rate of 0.01

optimizer = torch.optim.SGD(model.parameters (), 1lr
=0.01)

Init some statistics
running_loss = 0.0
running_correct = 0
running_count = 0

© 00 ~N & 0 b W N R

N H R R R R R R
O ©O© 00 N O 61 W N H O

Cycling through batches and samples

Cycle through epochs
for epoch in range(100):

Cycle through batches. One batch is a set of
images and a set of ground truth labels
for batch_idx, (data, labels) in enumerate(loader):

optimizer.zero_grad ()

We calculate a prediction on the full batch
y = model(data)

Loss of the full batch, summed
loss = crossentropy(y, labels)

Calculate gradients of the full batch
loss . backward ()

One gradient update
optimizer.step ()

© 00 ~N O 1 & W N -

[S S
N = O

13

14
15
16

Track training error

Calculate the winner class
_, predicted = torch.max(y.data, 1)

How many correct samples?
running_correct += (predicted = labels).sum().item ()
running_count += BATCHSIZE

Every 100 batches, print statistics
if (batch_idx % 100) — O:

train_err = 100.0%(1.0—running_correct / running_count)
print ('Epoch: %d batch: %5d ' % (epoch + 1, batch_idx +
1), end="")

print ('train—loss: %.3f train—err: %.3f" % (
running_loss / 100, train_err))

running_loss = 0.0

running_correct = 0.0

running_count=0.0

© 00 N OO a1 W NN =

N = e
w NN = O

Example output

AW N =

Epoch: 1 batch: 1 train—loss: 0.024 train—err: 98.000
Epoch: 1 batch: 101 train—loss: 1.576 train—err: 36.140
Epoch: 1 batch: 201 train—loss: 0.747 train—err: 16.320
Epoch: 1 batch: 301 train—loss: 0.539 train—err: 12.880
Epoch: 1 batch: 401 train—loss: 0.481 train—err: 13.000
Epoch: 1 batch: 501 train—loss: 0.414 train—err: 11.280
Epoch: 1 batch: 601 train—loss: 0.386 train—err: 10.380
Epoch: 1 batch: 701 train—loss: 0.385 train—err: 10.900
Epoch: 1 batch: 801 train—loss: 0.363 train—err: 10.540
Epoch: 1 batch: 901 train—loss: 0.320 train—err: 9.120
Epoch: 1 batch: 1001 train—loss: 0.323 train—err: 8.920
Epoch: 1 batch: 1101 train—loss: 0.325 train—err: 9.400
Epoch: 2 batch: 1 train—loss: 0.304 train—err: 8.880
(..)

Epoch: 75 batch: 801 train—loss: 0.007 train—err: 0.000
Epoch: 75 batch: 901 train—loss: 0.007 train—err: 0.020
Epoch: 75 batch: 1001 train—loss: 0.008 train—err: 0.000
Epoch: 75 batch: 1101 train—loss: 0.009 train—err: 0.040

This is training error, not validation error, i.e. NOT representative
of the performance of the model!

	Slide 1
	Slide 2: The problems of linear models
	Slide 3: Reminder: linear models
	Slide 4: Multi-layer Perceptron (MLP)
	Slide 5: Deep neural network
	Slide 6
	Slide 7: Common activation functions
	Slide 8: Universal approximation
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Going deeper
	Slide 23: Example: the MNIST dataset
	Slide 24: MNIST : MLP performance
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

