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Under- and Overfitting in Regression
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[C. Bishop, Pattern recognition and Machine learning, 2006]
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[Figure: Tim Hulsen]



We can overfit on what exactly?

We would like to learn to predict a value y from observed input x

Handcrafted from domain Learned from training data
knowledge (e.g. type of
model, number of layers,
number of units:
architecture)



Optimization over the training data

We optimize a loss function £ taking ground-truth targets ¢ and
predictions y of a model h over its parameters 6:

0 = arg m@in L(h(x,0),t)
Fitting is thus the result of the optimization process ... and every
optimization on data process can lead to potential overfitting.
We overfit on the data on which we optimize (here: training data).
The validation data provides a better estimate of the error of the
model.



Validation (hold-out) set
We remove parts of the data from training, and use it for

evaluation, to check whether we overfit.

Validation data

Training data



Optimization over the validation data

Problem: while working on the problem, we select and optimize
network architectures, so a better notation for the function A

would be:
h(z,0;¢)

where ( are the hyper-parameters of the network.
In practice, we really solve the following problem:

mcin m@in L(h(x,0;(C),1)



Optimization loops

* Design model architecture

» Load next batch

min min L(h(z, 0;¢),t Forward pass
¢ 0 (7@, 8;), 1) Backward pass — calculate gradients
. SGD Weight update

Calculate validation performance
Change model

Graduate student / Engineer / Meta-learning algorithm

Validation performance is NOT representative of the performance of
the model in the wild! We overfit on the validation data!



Validation (hold-out) set
We remove parts of the data from training, and use it for

evaluation, to check whether we overfit.
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Visualization of the training
Process



Running Tensorboard

Install:

pip3 install tensorboard

PyTorch code:

- OO S

from torch.utils.tensorboard import SummaryWriter

# Setup a writer and configure a log file directory
writer = SummaryWriter (’runs/mnist_mlp_r0.01’)

Start the tensorboard exectuable

tensorboard --logdir=runs

The executable sets up a web server on port 6006:

TensorBoard 2.0.0 at http://localhost:6006/ (Press CTRL4C to
quit)
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Running Tensorboard

We load two different datasets, a training and a validation set:

# Training set and loader
valid_dataset = MNISTDataset ("MNIST-png/testing",
transforms.Compose ([
transforms.ToTensor (),
transforms.Normalize ((0.1307,), (0.3081,))1))
valid_loader = torch.utils.data.Dataloader (
valid_dataset,
batch_size=BATCHSIZE, shuffle=True)

# Validation set and loader ("hold out" set)
train_dataset = MNISTDataset ("MNIST-png/training",
transforms.Compose ([
transforms.ToTensor (),
transforms.Normalize ((0.1307,), (0.3081,))1))
train_loader = torch.utils.data.Dataloader (
train_dataset,
batch_size=BATCHSIZE, shuffle=True)
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Writing into Tensorboard

for epoch in range(100):
for batch_idx, (data, labels) in enumerate(train_loader):

(...)

# Print statistics
if (batch_idx % STATS_.INTERVAL) =— 0:
train_err=100.0%(1.0—running_correct/count)

# Call a second loop which iterates over
# validation batches, calculating error

vloss , verr = calcError (model, valid_loader)

# Write statistics to the log file

writer.add_scalars ('Loss’', {
"training:': running_loss / STATS_INTERVAL,
'validation:': vloss },

epoch * len(train_loader) + batch_idx)

writer.add_scalars ('Error’', {
"training:': train_err ,
"validation:': verr },

epoch x len(train_loader) + batch_idx)
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Write a regex to filter runs
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Logistic Regression undertfits
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Write a regex to filter runs
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