Al and Data Analysis

2.2 Gradient Back-propagation

Christian Wolf

Recall: Multi-layer Perceptron

Gradient descent

One optimizer step:
ot = ol 4 LV L (h(z,0),y*)

The gradient is a vector of partial derivatives:

- oL
009

oL
061

VL =

oL
00N

Solution with finite differences

Before the publication of the gradient backpropagation algorithm,
gradients were calculated by finite differences:

oL L(x,0)—L(x,0+A
G = S oW

o L(z,0)—L(z,0+A)
~ L(x,0)

— approximate solution, high complexity.

Calculate the exact gradients: linear nets

L et's consider a linear network
Yk = E Wi X
i

and a sum of squared differences error function:

1 2
»Cn — 5 zk: (ynk — tnk)

where samples are indexed by n. The gradient w.r.t. sample n is:

oL

awﬁ-

— (ynj — tnj) Lni

([C. Bishop, Pattern Recognition and Machine Learning, 2006])

Differentiate a multi-layer network (1)

We need to calculate the derivative of a function which is a
composition of several other functions, e.g. linear functions and
point-wise non-linearities.

A two layer network can be written in the following form (omitting
parameters in the notation):

y = f3(f2(fi(z)))
where

filz) = Wy

fa(x) tanh(x)

f3(z) = WOy

It's all about chain rule of calculus...

Recall chain rule: given a function

or
(fog)=(fog) ¢

or, if we name the intermediate variable z = g(x)

dy dy dz

= (Leibnitz’s notation)

All notations are equivalent.

Differentiate a multi-layer network (2)

Let's now consider a multi-layer network, in particular an arbitrary
unit indexed by 5 and receiving inputs from units index by ¢,
providing outputs z;. It's activation a; (before the non-linearity)
and output z; are:

aj =Y wiizi, z = h(a;)
)

Its gradient is (using chain rule):

OL 0L Oa;

6wﬁ- N 8aj awjz'

([C. Bishop, Pattern Recognition and Machine Learning, 2006])

Differentiate a multi-layer network (3)

oL OL Oa;

6wj,- B 8CLJ' (’iji

Since a; =), wj;z;, we get

8aj o
6wjz- -
We write / define:
oL
(Sj = —
a;
We obtain
oL s
8wjz~ IR

= we need to calculate 0; for each unit j.

([C. Bishop, Pattern Recognition and Machine Learning, 2006])

Differentiate a multi-layer network (4)

If the output is linear (no activation) and we have a sum of
squared differences loss, we get:

Ok = Yr — Tk

For the hidden units, we apply the chain rule:

(ap are units to which unit j sends information.)
Rewriting, and taking into account the activation function h(), we
get:

6 = ' (a;)) wijdn
k

= 0, Is calculated from the 0.
= we traverse the network backwards!

C [C. Bishop, Pattern Recognition and Machine Learning, 2006])

The full backpropagation algorithm

1. Forward pass: stimulate the model with input x, calculate all

aj and z; up to the output y.

2. Calculate the 0, for the output units using the derivative of

the loss function.

3. Backward pass: calculate all ; with

5j:h/ (aj) Z wkjék
k

4. Calculate the gradients with

oL

ijz-

= (5]'752'

C

[C. Bishop, Pattern Recognition and Machine Learning, 2006])

Remarks

For batches, gradients are summed.

The algorithm is general and can easily be adapted to other
layers than fully-connected linear layers.

The same algorithm can be used to calculate other gradients,
e.g. deriving outputs with respect to inputs.

Deep Learning frameworks calculate the gradients
automatically given a definition of the foward pass (provided
that the derivative of each sub function is available).

o

Sackpropagation in Py lorch

Autograd

In PyTorch (and some other frameworks), Autograd performs
automatic differentiation through a sequence of tensor instructions

of an imperative language.

Let's consider a simple linear operation:
w=[53], z=[72], y=wz’
The gradient of y w.r.t to x is given as
oy 5
v p— p—
=

The gradient of y w.r.t to w is given as

7= [oe) =11}

-t

Autograd

In PyTorch, we will first create the tensors:

w = torch.tensor ([5, 3], dtype=float, requires_grad=True)
x = torch.tensor ([7, 1], dtype=float, requires_grad=True)

The requires_grad flag ensures that all calculations are tracked.
We perform the linear operation:

y = torch.dot(w,x)

Since the tensor y has been calculated as result of operations on
tracked tensors, it has a gradient function:

print (y)

tensor (38., dtype=torch.float64 , grad_fn=<DotBackward>)

Autograd

We now run a backward pass on the variable y, which calculates
gradients w.r.t. to all involved tensors:

y .backward ()

The gradients are attached to each variable:

print (x.grad)
print (w.grad)

1 tensor ([5., 3.], dtype=torch.float64)
tensor ([7., 1.], dtype=torch.float64)

© 00 ~N O 1 & W N =

[EY
o

A W NN -

Autograd of a neural network

Recall our multi-layer network:

class MLP(torch .nn.Module):
def __init__(self):
super (MLP, self). __init__()
self.fcl = torch.nn.Linear(28%28, 300)
self.fc2 = torch.nn.Linear (300, 10)

def forward(self, x):
x = x.view(—1, 28%28)
x = F.relu(self.fcl(x))
return self.fc2(x)

Here, torch.nn.Linear (A, B) sets up a AxB weight matrix
and a bias vector. All backward passes will calculate gradients with
respect to these tensors:

model = MLP ()

y = model (data)

loss = crossentropy(y, labels)
loss.backward ()

Detaching tracking history

The tracking history uses memory in the tensor's space. If tracking
is not used anymore for a tensor, it's tracking history can be
detached:

print (y)

tensor (38., dtype=torch.float64 , grad_fn=<DotBackward>)

z = y.detach ()
print (z)

tensor (38., dtype=torch.float64)

	Slide 1: AI and Data Analysis
	Slide 2: Recall: Multi-layer Perceptron
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Backpropagation in PyTorch
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

