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2.2 Gradient Back-propagation
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Recall: Multi-layer Perceptron




Gradient descent

One optimizer step:
ot = ol 4 LV L (h(z,0),y*)

The gradient is a vector of partial derivatives:
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Solution with finite differences

Before the publication of the gradient backpropagation algorithm,
gradients were calculated by finite differences:
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— approximate solution, high complexity.



Calculate the exact gradients: linear nets

L et's consider a linear network
Yk = E Wi X
i

and a sum of squared differences error function:
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where samples are indexed by n. The gradient w.r.t. sample n is:
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( [C. Bishop, Pattern Recognition and Machine Learning, 2006] )




Differentiate a multi-layer network (1)

We need to calculate the derivative of a function which is a
composition of several other functions, e.g. linear functions and
point-wise non-linearities.

A two layer network can be written in the following form (omitting
parameters in the notation):

y = f3(f2(fi(z)))
where

filz) = Wy

fa(x) tanh(x)

f3(z) = WOy



It's all about chain rule of calculus...

Recall chain rule: given a function

or
(fog)=(fog) ¢

or, if we name the intermediate variable z = g(x)

dy dy dz

= (Leibnitz’s notation)

All notations are equivalent.



Differentiate a multi-layer network (2)

Let's now consider a multi-layer network, in particular an arbitrary
unit indexed by 5 and receiving inputs from units index by ¢,
providing outputs z;. It's activation a; (before the non-linearity)
and output z; are:

aj =Y wiizi, z = h(a;)
)

Its gradient is (using chain rule):
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( [C. Bishop, Pattern Recognition and Machine Learning, 2006] )




Differentiate a multi-layer network (3)

oL  OL Oa;
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Since a; = ), wj;z;, we get

8aj o
6wjz- -
We write / define:
oL
(Sj = —
a;
We obtain
oL s
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= we need to calculate 0; for each unit j.

( [C. Bishop, Pattern Recognition and Machine Learning, 2006] )




Differentiate a multi-layer network (4)

If the output is linear (no activation) and we have a sum of
squared differences loss, we get:

Ok = Yr — Tk

For the hidden units, we apply the chain rule:

(ap are units to which unit j sends information.)
Rewriting, and taking into account the activation function h(), we
get:

6 = ' (a;) ) wijdn
k

= 0, Is calculated from the 0.
= we traverse the network backwards!

C [C. Bishop, Pattern Recognition and Machine Learning, 2006] )




The full backpropagation algorithm

1. Forward pass: stimulate the model with input x, calculate all

aj and z; up to the output y.

2. Calculate the 0, for the output units using the derivative of

the loss function.

3. Backward pass: calculate all ; with

5j:h/ (aj) Z wkjék
k

4. Calculate the gradients with
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Remarks

For batches, gradients are summed.

The algorithm is general and can easily be adapted to other
layers than fully-connected linear layers.

The same algorithm can be used to calculate other gradients,
e.g. deriving outputs with respect to inputs.

Deep Learning frameworks calculate the gradients
automatically given a definition of the foward pass (provided
that the derivative of each sub function is available).
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Sackpropagation in Py lorch




Autograd

In PyTorch (and some other frameworks), Autograd performs
automatic differentiation through a sequence of tensor instructions

of an imperative language.

Let's consider a simple linear operation:
w=[53], z=[72], y=wz’
The gradient of y w.r.t to x is given as
oy 5
v p— p—
=

The gradient of y w.r.t to w is given as
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Autograd

In PyTorch, we will first create the tensors:

w = torch.tensor ([5, 3], dtype=float, requires_grad=True)
x = torch.tensor ([7, 1], dtype=float, requires_grad=True)

The requires_grad flag ensures that all calculations are tracked.
We perform the linear operation:

y = torch.dot(w,x)

Since the tensor y has been calculated as result of operations on
tracked tensors, it has a gradient function:

print (y)

tensor (38., dtype=torch.float64 , grad_fn=<DotBackward>)




Autograd

We now run a backward pass on the variable y, which calculates
gradients w.r.t. to all involved tensors:

y .backward ()

The gradients are attached to each variable:

print (x.grad)
print (w.grad)

1 tensor ([5., 3.], dtype=torch.float64)
tensor ([7., 1.], dtype=torch.float64)
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Autograd of a neural network

Recall our multi-layer network:

class MLP(torch .nn.Module):
def __init__(self):
super (MLP, self). __init__()
self.fcl = torch.nn.Linear(28%28, 300)
self.fc2 = torch.nn.Linear (300, 10)

def forward(self, x):
x = x.view(—1, 28%28)
x = F.relu(self.fcl(x))
return self.fc2(x)

Here, torch.nn.Linear (A, B) sets up a AxB weight matrix
and a bias vector. All backward passes will calculate gradients with
respect to these tensors:

model = MLP ()

y = model (data)

loss = crossentropy(y, labels)
loss.backward ()




Detaching tracking history

The tracking history uses memory in the tensor's space. If tracking
is not used anymore for a tensor, it's tracking history can be
detached:

print (y)

tensor (38., dtype=torch.float64 , grad_fn=<DotBackward>)

z = y.detach ()
print (z)

tensor (38., dtype=torch.float64)
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