Al and Data Analysis

2.6 Stochastic Gradient Descent

Christian Wolf

Learning by gradient descent

lterative minimisation through gradient descent:

glt+1] _ plt] +[;(h(3:, 0),y")

Learning rate

Can be blocked in a local
minimum (not that it matters
much ...)

| g
W7 WpB we
\

w2 VE

[Figure: C. Bishop, 2006]

Stochastic Gradient Descent

The vanilla version of SGD:
plittl — gl — pv

where v is the learning rate (a hyper-parameter).

The learning rate has a big impact on convergence and
convergence speed:

— Low v: slow convergence
— High v: overshoot target

= decay learning rate during learning, e.g. divide by two every X
epochs.

The following slides are partially inspired by

(http://cs231n.github.io/neural-networks-3/

SGD with Momentum

Momentum tends to maintains gradient direction between

updates:

V[t+1] ,LLV[t] — vV

g+l — gl o ylet)

where 4 is a new hyper-parameter.
Typical values: 1 = 0.5,0.9,0.95, 0.99.

Nesterov's Accelerated Momentum

Nesterov’'s Accelerated Momentum calculates the gradient V
at the position A1t at which momentum alone would have
brought it:

é[t—l_l] — 9[t+1] _|_ ,LLV[t]
V[t+1] — MV[t] — VVéhH_l]
git+ll gt 4 I+l

Y. Nesterov. A method of solving a convex programming problem with
convergence rate 0(1/sqr(k)). Soviet Mathematics Doklady, 1983

J

Adaptive learning rates: Adagrad

Adagrad keeps a variable vector ¢ holding sums of squared
derivatives, per gradient element:

cttl = el 4 y2
t+1 _ t V
pli+1 — pgld — T

where € is small and ensures numerical stability.

Effect: a large gradient value will lead to lower effective learning
rate for a given parameter.

J. Duchi, E. Hazan, Y. Singer, Adaptive Subgradient Methods
for Online Learning and Stochastic Optimization, JMLR, 2011.

Adaptive learning rates: RMSProp

RMSProp keeps a running average instead of accumulated

gradients:
it = gl + (1 — p)Vv?

pli+1] — gl —,___V

C G. Hinton, unpublished.

Adaptive learning rates: ADAM

The ADAM update rule is similar to RMSProp, but smoothes
the momentum term:

mlttl — By * mlt + (1—61)V

plttl] = By * vltl + (1 — 52)
t+1 _ ¢ mlt+1]

pli+1 — gld — e

Typical values of the hyper-parameters:
B1=0.9, 8, =0.999,¢ = 1le — 08

D.P. Kingma, J. Ba, Adam: A method for
stochastic optimization. Machine Learning, 2014

Adaptive learning rates: ADAM

The ADAM update rule with bias correction decreases the effect
of initialization to zero (bias):

mlitl = b1 * m!t! + (1 — Bl)V
77Lﬁ4—1] B 7;lﬁ4—1]
1 -
plttll = B9 * !t + (1 — 52)V2
l+1) plt+1]
1 — 34
t+1 _ . mlbttl
ol = o v

Remark: z¥ indexes iteration t; 2! denotes z to the power of t.

D.P. Kingma, J. Ba, Adam: A method for
stochastic optimization. Machine Learning, 2014

Visualization

SGD

NAG

Momentum

Adagrad
Adadelta
Rmsprop

'l'l"l,’l,
R I GG
o
ey
AR

0

RN

TSN
AT

1.0

——

- SGD

= Momentum
e NAG

— Adagrad
- Adadelta
Rmsprop

T I 7

=

http://cs231n.github.io/neural-networks-3/

http://cs231n.github.io/neural-networks-3/
http://cs231n.github.io/neural-networks-3/
http://cs231n.github.io/neural-networks-3/
http://cs231n.github.io/neural-networks-3/
http://cs231n.github.io/neural-networks-3/

Learning rates

If you are unsure, use ADAM but also try SGD.

Even the adaptive methods use global learning rates, which need
to be set.

Recall:
— Low v: slow convergence
— High v: overshoot target

= decay learning rate during learning, e.g. divide by two every X
epochs.

Experiments

We will reuse our 2 layer MLP with 2000 hidden units and RelLU
activation and optimize it with SGD and different learning rates on

© 00 ~N o a0 b w N =

L S ST = S = S S G =
o B~ W N = O

MNIST:

class MLP(torch.nn.Module):
def __init__(self):
super (MLP, self).__init__()
self.fcl = torch.nn.Linear (28*28, 200)

self.fc2 = torch.nn.Linear (200, 10)

def forward(self, x):
x = x.view(-1, 28%28)
x = F.relu(self.fcl1(x))
return self.fc2(x)

model = MLP ()
crossentropy = torch.nn.CrossEntropyLoss ()
optimizer = torch.optim.SGD(model.parameters (),

1r=0. OH
Learning rate

The impact of learning rates

A well chosen learning rate of 0.01:

(]
&

The impact of learning rates

We add the curves for a low learning rate 0.0001:
Slow convergence.

Error

]
)

The impact of learning rates

We add the curves for a high learning rate 0.1:

Convergence is fast at the beginning but fails to find a good
optimum at the end.

\

[0.0001]

——

(0.1

The impact of learning rates

We add the curves for a ridiculously high learning rate 1:
Oscillations start to appear (convergence problems).

\\

il
&

	Slide 1: AI and Data Analysis
	Slide 2: Learning by gradient descent
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Visualization
	Slide 11
	Slide 12
	Slide 13: The impact of learning rates
	Slide 14: The impact of learning rates
	Slide 15: The impact of learning rates
	Slide 16: The impact of learning rates

