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Reinforcement Learning
and Optimal Control

Literature

This presentation is largely inspired by
the open-IA Tutorial on RL:

https://spinningup.openai.com/en/latest/s
pinningup/rl intro.html

A lengthier introduction into
Reinforcement learning:

Dimitri P. Bertsekas, "Reinforcement
Learning and Optimal Control », 2019.



States

An environment is in a given state s; at any instant ¢.

Fully observable problems — the state is observable to the
agent at any time, e.g. board games (chess, Go), 2D
computer games with visibe full screen (Pacman).

Partially observable problems — only an observation is returned
to the agent at each instant, not the full state.
Examples: robot navigation; 3D computer games
with ego-centric view.




Actions

At each time ¢, the agent takes an action a; from an action space

A.

Discrete action spaces

— Chess: A = {al,Qf3,Ral,bf3,...}.
— Go: A=11...19] x [1...19].
— Dialogue: A = words or characters.

Continuous action spaces

— Robotic arm control: 4 =motor commands
— Drone (UAV) control: A = motor commands



Policies

The policy m of an agent is a function which
— chooses an action given that the agent is in a current state;

— or, Iin the stochastic case, it assigns a probability to an action:

m(at|st)



The reward function

After taking action a; in state s;, the agent is rewarded with a
scalar reward ry:

Tt = R (St7 at, St—i—l)

or, simpler:
Ty — R (St, Cl,t)

We are most often interested in the accumulation of the reward
over time using a horizon T

T

R(T) = thrt

t=0

We discount rewards which are further away in the future by a
factor ~.



Markov Decision Processes

Mathematically, the situation we just presented is formalized as a
Markov Decision Process (MDP)

M = {SaAa P7 Rap()}

where
— & is the set of states.
— A is the action space.
— P(s¢+1|s¢,a¢) is a probability distribution governing state
transitions.
— R (s¢, a4, S¢41) is the reward function.
— pg Is the distribution of the initial state sg.

MDPs, like Markov Chains, satisfy the Markov property: the
outcome depends only on the current state, and not on the full

history.



Trajectories

A trajectory T is a sequence of states s; and actions a; taken by an
agent following a policy. It can be a assigned a probability:

T—-1

P(r|m) = po (s0) | | P (sevalse, ar) 7 (arlsy)
£=0

Given a trajectory, this probability only depends on the
environment (P of the MDP).



What is the objective?

Our goal is to learn a policy myp which optimizes the cumulative

reward:
J(mg) = E [R(7)]

TTTH

= K

TYTTY

T—1
zw}

t=0

= we want to take actions, which are not only of high reward
immediately, but of long term value!



Types of reinforcement learning algorithms

[ RL Algorithms }

v
¢ 3
( Model-Free RL W ( Model-Based RL 1
[Policy Optimization} { Q-Learning J { Learn the Model ] [ Given the Model J
Policy Gradient < \ > DQN » World Models —{ AlphaZero }
’ DDPG < ) ’
A2C / A3C |« > C51 > I2A
) TD3 < )
PPO < > QR-DQN > MBMF
- > SAC <
TRPO < ) > HER > MBVE




Value functions

The Value of state s;, given a policy 7y, is given as the expected
cumulative return when following the given policy from this state:

V7i(s) = E [R(7)|so = s

T~YTT

The optimal value function is obtained with the optimal policy:

V*(s) =max E [R(7)|sg = s]

T T~TT

The Action-value function:
Q" (s,a) = IEil7T (R(T)|so = s,a9 = al
And it's optimal version:

Q*(s,a) =max E [R(7)|sg = s,a09 = al

T T~YTT



Q-Learning

Q-Learning does not directly learn a policy 7, but attemps in
estimating the optimal Q-function Q*(s, a).

The optimal policy is then the one which selects the optimal action

a™ in state s as follows:

a*(s) = arg max Q" (s,a)

= we need to estimate Q) x (s, a).
We only have access to the immediate reward r; at each instant.



Q-Learning

For a given policy m, we can estimate the Q-function with the
Bellman equation:

U (s.0) = B, [rs0) 47 E_[@ (20|

s'~P a’ ~Tr

But we are interested in the Bellmann equation for the optimal
Q-function:

Q*(s,a) = E [T(S, a) +ymax Q" (s, a’)]

s'~P



Q-Learning: value iteration

We update the current estimate of (Q*(s,a) at each time step:

The agent is in state s;, performs an action a, gets a new state s’
and a reward (s, a).

Discrete state and action spaces: we can keep the Q-function in
a table and update it:

Q(s, )™ = (1-0)Q*(s, )" + v |7(s,0) + ymax Q (', d)

a

where v is a learning rate.



Q-Learning: value iteration

Continuous state spaces: we approximate the Q-function with a
neural network:

We minimize a loss between the old value and the new one:
£ Q). r(s,) +ymax (s a)
a/

and learn by gradient descent.



Exploration vs. exploitation

In order to learn a reliable and useful value function, the agent
needs to explore the state space and can’t always take the action
which is currently estimated as optimal =

Exploration /exploitation trade-off.

e-greedy strategy:

1. Draw a random number r € [0, 1].

2. Choose action a as:

¢ .
random ifr<e

a = <
argmax Q(s,a) ifr>e

\

Higher ¢ chooses more exploration.



Deep Q Learning

Deepmind’s work on ATARI games in 2015 launched work in
Deep Reinforcement learning.

Convglution Convglution Fully cgnnected Fully cgnnected
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What if we Reduce the Memory of an Artificial <

(NO REDUCTION) REDUCTIONS

FULL MEMORY ‘ RANDOM

Doom Player?
S o Step 00/66

We built a Doom player Al A using Deep Reinforcement learning.
While playing, it builds and updates an inner representation (memory)
of what it sees from the game. This memory represents what the Al

knows about the game, and is the root of each decision. Reducing the LT T R T | 11
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https://theo-jaunet.github.io/MemoryReduction/
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Appendix:
Policy gradient



Types of reinforcement learning algorithms
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Policy Gradient

Policy gradient directly optimizes the expected cumulative reward
over a parametrized policy function my:

J(mg) = E [R(1)]

TTH

= K

TTTH

T—1
zw}

t=0

We would like to learn the policy network my with gradient descent:
Ori1 = 0 +vVoJ (7T9)

How do we calculate the gradient VgJ (7g)?



Policy Gradient

VoJ (mg) = Vg E |R(7T)]

T~

— Y, / P(r|0)R(r)
_ / VP (7]0)R(7)

:/P(ﬂ@)VglogP(T\H)R(T)
— E [Vylog P(T]|0)R(7)]

T~TTg

T
Z Vo log mg (at|st) R(T)
t=0

Vo (mg) =

E
T~~TT

( https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html )
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